
Publications
Dimension transformation formula for conformal maps into the complement of an SLE curve
– Probability Theory and Related Fields
(2020)
176,
649
(DOI: 10.1007/s00440-019-00952-y)
Liouville quantum gravity and the Brownian map I: the $\mathrm{QLE}(8/3,0)$ metric
– Inventiones Mathematicae
(2020)
219,
75
(DOI: 10.1007/s00222-019-00905-1)
Non-simple $\SLE$ curves are not determined by their range
– Journal of the European Mathematical Society
(2020)
22,
669
(DOI: 10.4171/jems/930)
The geodesics in Liouville quantum gravity are not Schramm-Loewner evolutions
– Probability Theory and Related Fields
(2019)
177,
677
(DOI: 10.1007/s00440-019-00949-7)
Gaussian free field light cones and $\mathrm{SLE}_{\kappa }(\rho )$
– Annals of Probability
(2019)
47,
3606
(DOI: 10.1214/18-AOP1331)
The Tutte Embedding of the Poisson–Voronoi Tessellation of the Brownian Disk Converges to $\sqrt{8/3}$-Liouville Quantum Gravity
– Communications in Mathematical Physics
(2019)
374,
735
(DOI: 10.1007/s00220-019-03610-5)
Convergence of the self-avoiding walk on random quadrangulations to
SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity
(2019)
Liouville quantum gravity spheres as matings of finite-diameter trees
– Annales de l'institut Henri Poincare (B) Probability and Statistics
(2019)
55,
1712
(DOI: 10.1214/18-aihp932)
UNIQUENESS of the WELDING PROBLEM for SLE and LIOUVILLE QUANTUM GRAVITY
– Journal of the Institute of Mathematics of Jussieu
(2019)
20,
757
(DOI: 10.1017/S1474748019000331)
Metric gluing of Brownian and $\sqrt{8/3}$-Liouville quantum gravity surfaces
– Annals of Probability
(2019)
47,
2303-
(DOI: 10.1214/18-aop1309)
- <
- 2 of 6