Symmetric Rendezvous Search Games

Richard Weber ${ }^{\dagger}$

Search and Rendezvous Workshop
Lorentz Center, May 1-4, 2012
\dagger Statistical Laboratory, Centre for Mathematical Sciences,
University of Cambridge

Aisle miles (2006)

NewScientist

Why Don't Penguins Feet Freeze?

AND 114 OTHER QUESTIONS

The follow-up to the No. 1 bestseller
Does Anything Eat Wasps?

Two people lose each other while wandering through the aisles of a large supermarket.

One person wishes to find the other.
Should that person stop moving and remain in a single visible site while the other person continues to move through the aisles? Or would an encounter or sighting occur sooner if both were moving through the aisles?

Quo vadis? (Mosteller, 1965)

Two strangers who have a private recognition signal agree to meet on a certain Thursday at 12 noon in New York City, a town familiar to neither to discuss an important business deal, but later they discover that they have not chosen a meeting place, and neither can reach the other because both have embarked on trips. If they try nevertheless to meet, where should they go?

Telephone coordination game (Alpern, 1976)

In each of two rooms there is a player and n telephones.
Phones are connected pairwise in some unknown fashion.

At attempts $1,2, \ldots$, the players pick up phones and say "hello".
Their common aim is to minimize the expected number of attempts until they hear one another.

Symmetric rendezvous search on n locations

Assumptions

1. Two players are randomly placed at two distinct of n locations.
2. There is no commonly held labelling of the locations.
3. At each of steps, $1,2, \ldots$, each player visits one of the locations.
4. The players adopt identical (randomizing) strategies.

What should their common strategy be if they wish to meet in the least expected number of steps?

Some possible strategies

Move-at-random If at each discrete step $1,2, \ldots$ each player were to locate himself at a randomly chosen location, then the expected time to meet would be n. E.g.,

$$
E T=1+\frac{n-1}{n} E T \quad \Longrightarrow \quad E T=n
$$

Some possible strategies

Move-at-random If at each discrete step $1,2, \ldots$ each player were to locate himself at a randomly chosen location, then the expected time to meet would be n. E.g.,

$$
E T=1+\frac{n-1}{n} E T \quad \Longrightarrow \quad E T=n
$$

Wait-for-mommy Suppose the players could break symmetry (or had some prior agreement). Now it is best for one player to remain stationary while the other tours all other locations in random order. They will meet (on average) half way through the tour. So

$$
E T=\frac{1}{n-1}(1+2+\cdots+(n-1))=\frac{1}{2} n
$$

Wait-for-mommy

E.J. Anderson and R.R. Weber. The rendezvous problem on discrete locations. J. Appl. Prob. 27, 839-851, 1990.

Theorem 1 In the asymmetric rendezvous search game on n locations the optimal strategy is wait-for-mommy.

The Anderson-Weber strategy

Motivated by the optimality of wait-for-mommy in the asymmetric case, Anderson and Weber (1990) proposed the following strategy:

AW: If rendezvous has not occurred within the first $(n-1) j$ steps then in the next $n-1$ steps each player should either stay at his initial location or tour the other $n-1$ locations in random order, with probabilities p and $1-p$, respectively, where p is to be chosen optimally.

Facts about AW

$n=2$:
AW with $p=1 / 2$ is optimal and equivalent to move-at-random.

Facts about AW

$n=2$:
AW with $p=1 / 2$ is optimal and equivalent to move-at-random.
As $n \rightarrow \infty$:
AW (with $p \rightarrow 0.24749$) achieves a meeting time of $\approx 0.8289 n$ (which is better than move-at-random).

Anderson-Weber strategy on 3 locations

On 3 locations, AW specifies that in each block of two consecutive steps, each player should, independently of the other, either stay at his initial location or tour the other two locations in random order, doing these with respective probabilities $p=\frac{1}{3}$ and $1-p=\frac{2}{3}$.

Anderson-Weber strategy on 3 locations

On 3 locations, AW specifies that in each block of two consecutive steps, each player should, independently of the other, either stay at his initial location or tour the other two locations in random order, doing these with respective probabilities $p=\frac{1}{3}$ and $1-p=\frac{2}{3}$.
R.R. Weber, Optimal symmetric rendezvous search on three locations, Math Oper Res., 37(1): 111-122, 2012.

Theorem 3 On 3 locations, AW minimizes ET.
Corollary. The minimal expected meeting time is $w=\frac{5}{2}$.
AW gives $E T=\frac{5}{2}$, whereas move-at-random gives $E T=3$.

Formulation of the problem

Suppose the three locations are arranged around a circle.

Each player calls his home location ' a ', chooses a 'clockwise' direction and labels locations clockwise of home as ' b ' and ' c '.

A sequence of a player's moves can now be described.
E.g., a player's first 6 moves might be 'ababbc'.

Make the problem easier by providing the players with a common notion of clockwise. (We'll see this does not actually help.)
Player II starts one position clockwise of Player I.

$$
B_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Matrix B_{1} has ' 1 ' if after the first step they do not meet, and ' 0 ' if they do.
Rows of B_{1} correspond to I playing a, b or c.
Columns of B_{1} correspond to II playing a, b or c.

The minimum of $P(T>2)$

The indicator matrix for not meeting within 2 steps is
$B_{2}:=B_{1} \otimes B_{1}=\left(\begin{array}{ccc}B_{1} & B_{1} & 0 \\ 0 & B_{1} & B_{1} \\ B_{1} & 0 & B_{1}\end{array}\right)=\left(\begin{array}{ccccccccc}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
Rows 1-9 (and columns 1-9) correspond respectively to Player I (or II) playing patterns of moves over the first two steps of $a a, a b, a c, b a, b b, b c, c a, c b, c c$.
$E T=\sum_{k=0}^{\infty} P(T>k)$.

AW minimizes $P(T>2)$

Let $\bar{B}_{2}=\frac{1}{2}\left(B_{2}+B_{2}^{\top}\right)$ (to account for II starting either one or two locations clockwise of I).
is to be minimized over probability vectors p.
Minimizer is $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$, where ' $a a^{\prime}$ ', ' $b c^{\prime}$ ' and ' $c b$ ' are to be chosen equally likely, (which is AW).

Another minimizer is $p^{\top}=(0,1,0,1,0,0,0,0,1)$, where ' $a b$ ', ' $b a$ ' and ' $c c$ ' are to be chosen equally likely.

A quadratic programming problem

To prove that AW minimizes $p^{\top} \bar{B}_{2} p$ we must solve a difficult quadratic programming problem.
The difficulty arises because \bar{B}_{2} is not positive semidefinite. It's eigenvalues are $\left\{4,1,1,1,1,1,1,-\frac{1}{2},-\frac{1}{2}\right\}$.
This means that there can be local minima to $p^{\top} \bar{B}_{2} p$.
E.g., $p=\frac{1}{9}(1,1,1,1,1,1,1,1,1)$, is a local minimum; but $p^{\top} \bar{B}_{2} p=\frac{4}{9}$. This is not a global minimum.

In general, if a matrix C is not positive semidefinite, the following problem is NP-hard:

$$
\operatorname{minimize} p^{\top} C p: p \geq 0,1^{\top} p=1
$$

Details of proof in slides at the end of this talk

 We actually prove that, for all k, AW minimizes$$
E[\min \{T, k+1\}]=\sum_{j=0}^{k} P(T>j)=p^{\top} M_{k} p
$$

www.statslab.cam.ac.uk/~rrw1/talks

Conclusion

AW is optimal on 2 and 3 locations.
What about $n>3$ locations?

Conclusion

AW is optimal on 2 and 3 locations.
What about $n>3$ locations?
AW is not optimal on 4 locations. Optimal AW has

$$
p=\frac{1}{4}(3 \sqrt{681}-77) \approx 0.321983
$$

Conclusion

AW is optimal on 2 and 3 locations.
What about $n>3$ locations?
AW is not optimal on 4 locations. Optimal AW has

$$
\begin{aligned}
& p=\frac{1}{4}(3 \sqrt{681}-77) \approx 0.321983 \\
& E T=\frac{1}{12}(15+\sqrt{681}) \approx 3.42466
\end{aligned}
$$

Conclusion

AW is optimal on 2 and 3 locations.
What about $n>3$ locations?
AW is not optimal on 4 locations. Optimal AW has

$$
\begin{aligned}
& p=\frac{1}{4}(3 \sqrt{681}-77) \approx 0.321983 \\
& E T=\frac{1}{12}(15+\sqrt{681}) \approx 3.42466
\end{aligned}
$$

But there is a better strategy with $E T$ less by 0.00014668 .
The optimal strategy for 4 locations is unknown.

Conjectures

Conjecture: The minimum expected time to meet on n locations is increasing in n.

Conjectures

Conjecture: The minimum expected time to meet on n locations is increasing in n.

Conjecture: AW is optimal on 3 locations when there is over-looking, i.e.

$$
B_{1}=\left(\begin{array}{ccc}
1 & 1 & \alpha \\
\alpha & 1 & 1 \\
1 & \alpha & 1
\end{array}\right), \quad B_{k}:=B_{1} \otimes B_{k-1}
$$

Conjectures

Conjecture: The minimum expected time to meet on n locations is increasing in n.

Conjecture: AW is optimal on 3 locations when there is over-looking, i.e.

$$
B_{1}=\left(\begin{array}{ccc}
1 & 1 & \alpha \\
\alpha & 1 & 1 \\
1 & \alpha & 1
\end{array}\right), \quad B_{k}:=B_{1} \otimes B_{k-1}
$$

Conjecture: AW is asymptotically optimal, in the sense that one can do no better than $E T \sim 0.8289 n$.

Symmetric rendezvous search on the line

Two players are placed 2 units apart on a line, randomly facing left or right. At each step each player must either move one unit forward or backwards. Each player knows that the other player is equally likely to be in front or behind him, and equally likely to be facing either way. How can they meet in the least expected time?

$4.1820 \leq w \leq 4.2574$ (Improve these bounds?)

$4.1820 \leq w \leq 4.2574$ (Improve these bounds?)
Conjecture: $w=4.25$ has been made by Donglei Du.

$4.1820 \leq w \leq 4.2574$ (Improve these bounds?)
Conjecture: $w=4.25$ has been made by Donglei Du.
Conjecture: The optimal strategy is not Markovian.

$4.1820 \leq w \leq 4.2574$ (Improve these bounds?)
Conjecture: $w=4.25$ has been made by Donglei Du.
Conjecture: The optimal strategy is not Markovian.
We have seen that on 3 locations it is no help for players to be given a common notion of clockwise. Similarly, here:

$4.1820 \leq w \leq 4.2574$ (Improve these bounds?)
Conjecture: $w=4.25$ has been made by Donglei Du.
Conjecture: The optimal strategy is not Markovian.
We have seen that on 3 locations it is no help for players to be given a common notion of clockwise. Similarly, here:
Conjecture: it does not to help if players are told that they are initially faced the same way.

Symmetric rendezvous search in other spaces

Alpern (1976) has also proposed the following problem.

Two astronauts land at random spots on a planet (which is assumed to be a uniform sphere, without any known distinguishing marks or directions) How should they move so as to be within 1 kilometre of one another in the least expected time?

Appendix

Proof that AW is optimal on 3 locations

A method for finding lower bounds

Suppose we are trying to minimize $p^{\top} C p$, but C is not positive semidefinite.

We can obtain a lower bound on the solution as follows.

$$
\begin{aligned}
\min & \left\{p^{\top} C p: p \geq 0,1^{\top} p=1\right\} \\
& =\min \left\{\operatorname{trace}\left(C p p^{\top}\right): p \geq 0,1^{\top} p=1\right\} \\
& \geq \min \{\operatorname{trace}(C X): X \succeq 0, X \geq 0, \operatorname{trace}(J X)=1\},
\end{aligned}
$$

where $J=11^{\top}$ is a matrix of all 1 s.
This is by using the fact that if p satisfies the l.h.s. constraints, then $X=p p^{\top}$ satisfies the r.h.s. constraints.

Semidefinite programming problems

> 'linear programming for the 21st century'.

Given symmetric matrices C, A_{1}, \ldots, A_{m}, consider the problem

$$
\begin{gathered}
\operatorname{minimize}\{\operatorname{trace}(C X) \\
\left.: X \succeq 0, X \geq 0, \operatorname{trace}\left(A_{i} X\right)=b_{i}, i=1, \ldots, m\right\} .
\end{gathered}
$$

This is a Semidefinite Programming Problem (SDP).
The minimization is over the components of X.
This can mean lots of decision variables.
If X is $j \times j$ and symmetric, then there are $j(j-1) / 2$ variables.
SDPs can be solved to any degree of numerical accuracy using interior point algorithms (e.g., using Matlab and sedumi).

A lower bound on $p^{\top} \bar{B}_{2} p$

As a relaxation of the quadratic program:

$$
\operatorname{minimize}\left\{p^{\top} \bar{B}_{2} p: p \geq 0,1^{\top} p=1\right\}
$$

we consider the SDP:

$$
\operatorname{minimize}\left\{\operatorname{trace}\left(\bar{B}_{2} X\right): X \succeq 0, X \geq 0, \operatorname{trace}\left(J_{2} X\right)=1\right\},
$$

where J_{2} is the 9×9 matrix of 1 s . There are 36 decision variables.
We find that the minimum value is $1 / 3$.
But $p^{\top} \bar{B}_{2} p=1 / 3$ for $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$.
So we may conclude that $1 / 3$ is the minimal value of $p^{\top} \bar{B}_{2} p$.

Lower bounds on $E[\min \{T, k+1\}]$

Let w_{k} be the minimal possible value of the 'expected k-truncated rendezvous time',

$$
E[\min \{T, k+1\}]=\sum_{j=0}^{k} P(T>j)=p^{\top} M_{k} p
$$

where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k}
$$

To find a lower bound on w_{k} we consider the SDP:

$$
\operatorname{minimize}\left\{\operatorname{trace}\left(\bar{M}_{k} X\right): X \succeq 0, X \geq 0, \operatorname{trace}\left(X J_{k}\right)=1\right\}
$$

Lower bounds on w_{k}

Solving SDPs, we get
lower bounds when players have a common clockwise:

k	1	2	3	4
w_{k}	$\frac{5}{3}$	2	$\frac{20}{9}$	$\frac{21}{9}$

lower bounds when players have no common clockwise:

k	1	2	3	4	5
w_{k}	$\frac{5}{3}$	2	$\frac{20}{9}$	$\frac{21}{9}$	$\frac{65}{27}^{\ddagger}$

Observations

1. These lower bounds prove that AW minimizes $E[\min \{T, k+1\}]$ as far as $k=4$.
2. But it is computationally infeasible to go much further. The number of decision variables in the SDP is 3240 when $k=4$. For $k=5$ it would be 29403 .

A conjecture concerning AW

$$
E T=\sum_{j=0}^{\infty} P(T>j)
$$

AW does not minimize every term in this sum. E.g., AW gives $P(T>4)=\frac{1}{9}$, but there is a strategy with $P(T>4)=\frac{1}{10}$. w_{k} is the minimal value of $E[\min \{T, k+1\}]=\sum_{j=0}^{k} P(T>j)$. It is found by minimizing $p^{\top} M_{k} p$, where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k}
$$

Empirically, the lower bounds for w_{k} are always achieved by AW (and are the same whether or not the players have a common notion of clockwise.) This leads us to conjecture the following.

The optimality of AW for 3 locations

Theorem 4 The AW strategy is optimal for the symmetric rendezvous search game on 3 locations, minimizing $E[\min \{T, k+1\}]$ to w_{k} for all $k=1,2, \ldots$, where

$$
w_{k}= \begin{cases}\frac{5}{2}-\frac{5}{2} 3^{-\frac{k+1}{2}}, & \text { when } k \text { is odd } \\ \frac{5}{2}-\frac{3}{2} 3^{-\frac{k}{2}}, & \text { when } k \text { is even. }\end{cases}
$$

Consequently, the minimal achievable value of $E T$ is $w=\frac{5}{2}$. $\left\{w_{k}\right\}_{0}^{\infty}=\left\{1, \frac{5}{3}, 2, \frac{20}{9}, \frac{21}{9}, \frac{65}{27}, \ldots\right\}$.

Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

The minimum of $E[\min \{T, 3\}]$

We can take $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$ and

$$
\left.\begin{array}{l}
M_{2}=\left(\begin{array}{lllllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 1 \\
2 & 3 & 3 & 2 & 3 & 3 & 1 & 1 & 1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 1 & 1 \\
1 & 1 & 1 & 3 & 3 & 2 & 3 & 3 & 2 \\
1 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 \\
1 & 1 & 1 & 3 & 2 & 3 & 3 & 2 & 3 \\
3 & 3 & 2 & 1 & 1 & 1 & 3 & 3 & 2 \\
2 & 3 & 3 & 1 & 1 & 1 & 2 & 3 & 3 \\
3 & 2 & 3 & 1 & 1 & 1 & 3 & 2 & 3
\end{array}\right) \\
\geq H_{2}=\left(\begin{array}{llllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 \\
0 \\
2 & 3 & 3 & 2 & 3 & 3 & 0 & 1 \\
1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 0 \\
1 \\
1 & 1 & 0 & 3 & 3 & 2 & 3 & 3 \\
2 \\
0 & 1 & 1 & 2 & 3 & 3 & 2 & 3 \\
1 & 0 & 1 & 3 & 2 & 3 & 3 & 2 \\
3 \\
3 & 3 & 2 & 1 & 1 & 0 & 3 & 3 \\
2 & 3 & 3 & 0 & 1 & 1 & 2 & 3 \\
3 \\
3 & 2 & 3 & 1 & 0 & 1 & 3 & 2
\end{array}\right)
\end{array}\right) .
$$

Eigenvalues of \bar{M}_{2} are $\left\{19, \frac{5}{2}, \frac{5}{2}, 1,1,1,1,-\frac{1}{2},-\frac{1}{2}\right\}$, so it is not positive semidefinite.
Eigenvalues of \bar{H}_{2} are $\left\{18,3,3, \frac{3}{2}, \frac{3}{2}, 0,0,0,0\right\}$ so $\bar{H}_{2} \succeq 0$. Here

$$
\bar{H}_{2 p} p=\left(\begin{array}{ccccccccc}
3 & \frac{5}{2} & \frac{5}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} \\
\frac{5}{2} & 3 & \frac{5}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} \\
\frac{5}{2} & \frac{5}{2} & 3 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 \\
2 & \frac{3}{2} & \frac{3}{2} & 3 & \frac{5}{2} & \frac{5}{2} & 2 & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & 2 & \frac{3}{2} & \frac{5}{2} & 3 & \frac{5}{2} & \frac{3}{2} & 2 & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 2 & \frac{5}{2} & \frac{5}{2} & 3 & \frac{3}{2} & \frac{3}{2} & 2 \\
2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 3 & \frac{5}{2} & \frac{5}{2} \\
\frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{5}{2} & 3 & \frac{5}{2} \\
\frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{5}{2} & \frac{5}{2} & 3
\end{array}\right)\left(\begin{array}{c}
\frac{1}{3} \\
0 \\
0 \\
0 \\
0 \\
\frac{1}{3} \\
0 \\
\frac{1}{3} \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right)
$$

Thus p satisfies a Kuhn-Tucker condition for there to be a local minimum of $p^{\top} \bar{H}_{2} p=2$.
Since $\bar{H}_{2} \succeq 0$, a local minimum is also a global minimum.
So $w_{2}=2$. This is achieved by AW.

Minimizing $E[\min \{T, k+1\}]$

Similarly, consider the problem of minimizing $E[\min \{T, k+1\}]$.
This is equivalent to minimizing $p^{\top} \bar{M}_{k} p$, where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k} .
$$

As we did with H_{2} for M_{2}, we look for H_{k}, such that $H_{k} \leq M_{k}$ and $\bar{H}_{k} \succeq 0$. This is a semidefinite programming problem

$$
\operatorname{maximize}\left\{\operatorname{trace}\left(J_{k} H_{k}\right): H_{k} \leq M_{k}, \bar{H}_{k} \succeq 0\right\} .
$$

How can we find H_{k} ?

maximize $\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}$.

How can we find H_{k} ?

$$
\operatorname{maximize}\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}
$$

$H_{2}=\left(\begin{array}{lllllllll}3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 \\ 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 \\ 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 \\ 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 \\ 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 \\ 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 \\ 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 \\ 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 \\ 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000\end{array}\right)$
and $\min _{p}\left\{p^{\top} H_{2} p\right\}=1.9999889$.

How can we find H_{k} ?

$$
\operatorname{maximize}\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}
$$

$H_{2}=\left(\begin{array}{lllllllll}3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 \\ 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 \\ 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 \\ 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 \\ 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 \\ 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 \\ 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 \\ 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 \\ 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000\end{array}\right)$
and $\min _{p}\left\{p^{\top} H_{2} p\right\}=1.9999889$. But $\min _{p}\left\{p^{\top} H_{2} p\right\}=2$ using

$$
H_{2}=\left(\begin{array}{lllllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 0 \\
2 & 3 & 3 & 2 & 3 & 3 & 0 & 1 & 1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 0 & 1 \\
1 & 1 & 0 & 3 & 3 & 2 & 3 & 3 & 2 \\
0 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 \\
1 & 0 & 1 & 3 & 2 & 3 & 3 & 2 & 3 \\
3 & 3 & 2 & 1 & 1 & 0 & 3 & 3 & 2 \\
2 & 3 & 3 & 0 & 1 & 1 & 2 & 3 & 3 \\
3 & 2 & 3 & 1 & 0 & 1 & 3 & 2 & 3
\end{array}\right)
$$

How to construct H_{k}

Let us search for H_{k} of a special form. For $i=0, \ldots, 3^{k}-1$ we write $i_{\text {base } 3}=i_{1} \cdots i_{k}$ (keeping k digits, including leading 0 s); so $i_{1}, \ldots, i_{k} \in\{0,1,2\}$. Define

$$
P_{i}=P_{i_{1} \cdots i_{k}}=P_{1}^{i_{1}} \otimes \cdots \otimes P_{1}^{i_{k}}
$$

where

$$
P_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Observe that $M_{k}=\sum_{i} m_{k}(i) P_{i}$, where m_{k} is the first row of M_{k}. This motivates seeking H_{k} of the form

$$
H_{k}=\sum_{i=0}^{3^{k}-1} x_{k}(i) P_{i}
$$

Concluding steps of the proof

We want

1. $M_{k}=\sum_{i} m_{k}(i) P_{i} \geq H_{k}=\sum_{i} x_{k}(i) P_{i}$.
2. $\bar{H}_{k} \succeq 0$.

Since $P_{0}, \ldots, P_{3^{k}-1}$ commute they have common eigenvectors.
Let $\omega=-\frac{1}{2}+i \frac{1}{2} \sqrt{3}$, a cube root of 1 . Let $V_{k}=U_{k}+i W_{k}$.

$$
V_{k}=V_{1} \otimes V_{k-1}, \quad \text { where } V_{1}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

Columns of V_{k} are eigenvectors of the P_{i} and also of M_{k}. Columns of U_{k} are eigenvectors of the \bar{P}_{i} and also of \bar{M}_{k}.

Our SDP becomes equivalent to a LP, with constraints

1. $m_{k} \geq x_{k}$ and 2. $U_{k} x_{k} \geq 0$.

We show that we may take $H_{k}=\sum_{i} x_{k}(i) P_{i}$, where

$$
x_{1}=(2,2,1)^{\top} \quad x_{2}=(3,3,2,3,3,2,1,1,0)^{\top}
$$

and choose a_{k} so that for $k \geq 3$,

$$
\begin{aligned}
x_{k}= & 1_{k}+(1,0,0)^{\top} \otimes x_{k-1} \\
& +(0,1,0)^{\top} \otimes\left(a_{k}, a_{k}, 2,2, a_{k}, 2,1,1,1\right)^{\top} \otimes 1_{k-3} .
\end{aligned}
$$

Here a_{k} is chosen maximally such that $U_{k} x_{k} \geq 0$ and $m_{k} \geq x_{k}$.
All rows of H_{k} have the same sum, and so $p^{\top} H_{k} p$ is minimized by $p=\left(1 / 3^{k}\right) 1_{k}$, and the minimum value is $p^{\top} H_{k} p=1_{k}^{\top} x_{k} / 3^{k}$.
So the theorem is true provided $1^{\top} x_{k}=3^{k} w_{k}$.
$1^{\top} x_{k}=3^{k} w_{k}$ iff we can take

$$
a_{k}= \begin{cases}3-\frac{1}{3^{(k-3) / 2}}, & \text { when } k \text { is odd, } \\ 3-\frac{2}{3^{(k-2) / 2}}, & \text { when } k \text { is even. }\end{cases}
$$

Note that a_{k} increases monotonically in k, from 2 towards 3 . As $k \rightarrow \infty$ we find $a_{k} \rightarrow 3$ and $1_{k}^{\top} x_{k} / 3^{k} \rightarrow \frac{5}{2}$.
Finally, we prove that with these a_{k} we have always have

$$
\begin{aligned}
& \text { 1. } m_{k} \geq x_{k} \text {, (implying } M_{k} \geq H_{k} \text {). } \\
& \text { 2. } U_{k} x_{k} \geq 0 \text {, (implying } \bar{H}_{k} \succeq 0 \text {). }
\end{aligned}
$$

Both are proved by induction. The first is easy and the second is hard. To prove the second we use the recurrence relation for x_{k} to find recurrences relations for components of the vectors $U_{k} x_{k}$, and then show that all components are nonnegative.

Proof that AW is not optimal on 4 locations

Anderson-Weber strategy on 4 locations

On 4 locations the expected rendezvous time under AW satisfies

$$
\begin{aligned}
E T & =p^{2}(3+E T)+2 p(1-p) 2+(1-p)^{2}\left(\frac{1}{2} \frac{16}{9}+\frac{1}{2}(3+E T)\right) \\
& =\frac{43-14 p+25 p^{2}}{9\left(1+2 p-3 p^{2}\right)} .
\end{aligned}
$$

The minimum of $E T$ is achieved by taking

$$
p=\frac{1}{4}(3 \sqrt{681}-77) \approx 0.321983
$$

which lead to

$$
E T=\frac{1}{12}(15+\sqrt{681}) \approx 3.42466
$$

Suppose location 1 (2) is the home location of player I (II). Each player independently labels his non-home locations as a, b, c. A tour of non-home locations is one of $a b c, a c b, b a c, b c a, c a b, c b a$.

Suppose location 1 (2) is the home location of player I (II).
Each player independently labels his non-home locations as a, b, c. A tour of non-home locations is one of $a b c, a c b, b a c, b c a, c a b, c b a$. If I has $(a, b, c)=(2,3,4)$ and II has $(a, b, c)=(1,3,4)$ we find

$$
B=\left(\begin{array}{llllll}
2 & \mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & 2 & \mathrm{X} & 2 & 3 & \mathrm{X} \\
3 & \mathrm{X} & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 2 & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 1 & 1 \\
2 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 1 & 1
\end{array}\right)
$$

Rows and columns to correspond to $a b c, a c b, b a c, b c a, c a b, c b a$.
A number shows the step at which players meet.
X indicates that they do not meet.

Suppose location 1 (2) is the home location of player I (II).
Each player independently labels his non-home locations as a, b, c. A tour of non-home locations is one of $a b c, a c b, b a c, b c a, c a b, c b a$. If I has $(a, b, c)=(2,3,4)$ and II has $(a, b, c)=(1,3,4)$ we find

$$
B=\left(\begin{array}{llllll}
2 & \mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & 2 & \mathrm{X} & 2 & 3 & \mathrm{X} \\
3 & \mathrm{X} & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 2 & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 1 & 1 \\
2 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 1 & 1
\end{array}\right)
$$

Rows and columns to correspond to $a b c, a c b, b a c, b c a, c a b, c b a$.
A number shows the step at which players meet.
X indicates that they do not meet.
There are 36 such matrices, over which we must average, for each possible pair of assignments by players I and II, of $(2,3,4)$ and $(1,3,4)$, respectively, to (a, b, c).

$$
\begin{aligned}
& \left(\begin{array}{llllll}
2 & \mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & 2 & \mathrm{X} & 2 & 3 & \mathrm{X} \\
3 & \mathrm{X} & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 2 & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 1 & 1 \\
2 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 1 & 1
\end{array}\right)\left(\begin{array}{llllll}
\mathrm{X} & 2 & \mathrm{X} & 2 & 3 & \mathrm{X} \\
2 & \mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & 3 & \mathrm{X} & \mathrm{X} & 1 & 1 \\
2 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 1 & 1 \\
3 & \mathrm{X} & 1 & 1 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & 2 & 1 & 1 & \mathrm{X} & \mathrm{X}
\end{array}\right)\left(\begin{array}{llllll}
3 & \mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} & 3 \\
1 & 1 & 3 & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
1 & 1 & \mathrm{X} & 2 & \mathrm{X} & \mathrm{X} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & 3 & 1 & 1 \\
\mathrm{X} & \mathrm{X} & 2 & \mathrm{X} & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llllll}
\mathrm{X} & 3 & 2 & \mathrm{X} & 2 & \mathrm{X} \\
2 & \mathrm{X} & \mathrm{X} & 3 & \mathrm{X} & 2 \\
1 & 1 & \mathrm{X} & \mathrm{X} & 3 & \mathrm{X} \\
1 & 1 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & \mathrm{X} & 1 & 1 & \mathrm{X} & 3 \\
\mathrm{X} & \mathrm{X} & 1 & 1 & 2 & \mathrm{X}
\end{array}\right)\left(\begin{array}{llllll}
\mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} & 3 \\
3 & \mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & 3 & 1 & 1 \\
\mathrm{X} & \mathrm{X} & 2 & \mathrm{X} & 1 & 1 \\
1 & 1 & 3 & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
1 & 1 & \mathrm{X} & 2 & \mathrm{X} & \mathrm{X}
\end{array}\right)\left(\begin{array}{llllll}
2 & \mathrm{X} & \mathrm{X} & 3 & \mathrm{X} & 2 \\
\mathrm{X} & 3 & 2 & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} & \mathrm{X} & 1 & 1 & \mathrm{X} & 3 \\
\mathrm{X} & \mathrm{X} & 1 & 1 & 2 & \mathrm{X} \\
1 & 1 & X & X & 3 & \mathrm{X} \\
1 & 1 & X & X & X & 2
\end{array}\right) \\
& \left(\begin{array}{llllll}
\mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} & 3 \\
3 & \mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} & \mathrm{X} & \mathrm{X} & 3 & 1 & 1 \\
\mathrm{X} & \mathrm{X} & 2 & \mathrm{X} & 1 & 1 \\
1 & 1 & 3 & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
1 & 1 & \mathrm{X} & 2 & \mathrm{X} & \mathrm{X}
\end{array}\right)\left(\begin{array}{llllll}
\mathrm{X} & 3 & 2 & \mathrm{X} & 2 & \mathrm{X} \\
2 & \mathrm{X} & \mathrm{X} & 3 & \mathrm{X} & 2 \\
1 & 1 & \mathrm{X} & \mathrm{X} & 3 & \mathrm{X} \\
1 & 1 & \mathrm{X} & \mathrm{X} & \mathrm{X} & 2 \\
\mathrm{X} & \mathrm{X} & 1 & 1 & \mathrm{X} & 3 \\
\mathrm{X} & \mathrm{X} & 1 & 1 & 2 & \mathrm{X}
\end{array}\right)\left(\begin{array}{lllll}
1 & 1 & 3 & \mathrm{X} & \mathrm{X} \\
1 & \mathrm{X} \\
3 & \mathrm{X} & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} \\
\mathrm{X} & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} & 2 & \mathrm{X} & 2 & \mathrm{X} \\
\mathrm{X} \\
\mathrm{X} & \mathrm{X} & 2 & \mathrm{X} & 1 \\
\mathrm{X} & 3 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llllll}
1 & 1 & X & X & 3 & X \\
1 & 1 & X & X & X & 2 \\
X & 3 & 2 & X & 2 & X \\
2 & X & X & 3 & X & 2 \\
X & X & 1 & 1 & 2 & X \\
X & X & 1 & 1 & X & 3
\end{array}\right)\left(\begin{array}{llllll}
X & X & X & 3 & 1 & 1 \\
X & X & 2 & X & 1 & 1 \\
X & 2 & X & 2 & X & 3 \\
3 & X & 2 & X & 2 & X \\
1 & 1 & X & 2 & X & X \\
1 & 1 & 3 & X & X & X
\end{array}\right)\left(\begin{array}{llllll}
X & X & 1 & 1 & X & 3 \\
X & X & 1 & 1 & 2 & X \\
2 & X & X & 3 & X & 2 \\
X & 3 & 2 & X & 2 & X \\
1 & 1 & X & X & X & 2 \\
1 & 1 & X & X & 3 & X
\end{array}\right)
\end{aligned}
$$

A new search game on 6 locations

When a player makes a tour in AW he chooses it at random. Might something else be better?

Consider a new game, in which at each new step (of 3 old steps) each player makes a tour of his non-home locations.

Let $A A B$ denote three successive tours: the first tour is chosen at random, the second is chosen to be the same as the first, and the third is chosen randomly from amongst the 5 not yet tried.

If successive tours are chosen at random,

$$
E T=1+\frac{1}{2} E T
$$

so $E T=2$.

The optimal 2-Markov policy

Over two steps possible strategies are $A A$ and $A B$. We find a non-meet matrix of

$$
P_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{5} \\
\frac{1}{5} & \frac{13}{50}
\end{array}\right)
$$

So

$$
E T=p^{\top}\left(\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{5} \\
\frac{1}{5} & \frac{13}{50}
\end{array}\right) E T\right) p
$$

and ()$\succ 0$. This is minimized by $p^{\top}=(1 / 6,5 / 6)$, so in fact it is optimal to choose tours at random.

The optimal 3-Markov policy

Now possible strategies over 3 steps are $A A A, A A B, A B A$, $A B B, A B C$. The not-meeting matrix is

$$
P_{3}=\left(\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{20} \\
\frac{1}{5} & \frac{13}{50} & \frac{2}{25} & \frac{2}{25} & \frac{11}{100} \\
\frac{1}{5} & \frac{2}{25} & \frac{13}{50} & \frac{2}{25} & \frac{11}{100} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{13}{50} & \frac{11}{100} \\
\frac{1}{20} & \frac{11}{100} & \frac{11}{100} & \frac{11}{100} & \frac{7}{50}
\end{array}\right)
$$

We find $P_{3} \succeq 0$. Again, it turns out that choosing tours at random is optimal, $p^{\top}=(1,5,5,5,20) / 6^{2}$.

A 4-Markov policy better than AW

Over 4 steps there are 15 possible strategies: $A A A A, A A A B$, $A A B A, A A B B, A A B C, A B A A, A B A B, A B A C, A B B A$, $A B B B, A B B C, A B C A, A B C B, A B C C, A B C D$.
$P_{4}=$

$$
\left(\begin{array}{ccccccccccccccc}
\frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{20} & \frac{1}{5} & \frac{1}{5} & \frac{1}{20} & \frac{1}{5} & \frac{1}{5} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & 0 \\
\frac{1}{5} & \frac{13}{50} & \frac{2}{25} & \frac{2}{25} & \frac{11}{100} & \frac{2}{25} & \frac{2}{25} & \frac{11}{100} & \frac{2}{25} & \frac{2}{25} & \frac{11}{100} & \frac{1}{50} & \frac{1}{50} & \frac{1}{50} & \frac{3}{100} \\
\frac{1}{5} & \frac{2}{25} & \frac{13}{50} & \frac{2}{25} & \frac{11}{10} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{11}{100} & \frac{11}{100} & \frac{1}{50} & \frac{3}{100} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{13}{50} & \frac{11}{100} & \frac{2}{25} & \frac{2}{75} & \frac{1}{30} & \frac{2}{75} & \frac{2}{25} & \frac{1}{30} & \frac{1}{30} & \frac{1}{30} & \frac{11}{10} & \frac{23}{450} \\
\frac{1}{20} & \frac{11}{100} & \frac{11}{100} & \frac{11}{100} & \frac{7}{50} & \frac{1}{50} & \frac{1}{30} & \frac{7}{150} & \frac{1}{30} & \frac{1}{50} & \frac{7}{150} & \frac{7}{150} & \frac{7}{150} & \frac{1}{20} & \frac{14}{225} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{13}{50} & \frac{2}{25} & \frac{11}{100} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{11}{100} & \frac{1}{50} & \frac{11}{100} & \frac{3}{100} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{2}{75} & \frac{1}{30} & \frac{2}{25} & \frac{13}{50} & \frac{11}{100} & \frac{2}{75} & \frac{2}{25} & \frac{1}{30} & \frac{1}{30} & \frac{11}{100} & \frac{1}{30} & \frac{23}{450} \\
\frac{1}{20} & \frac{11}{100} & \frac{1}{50} & \frac{1}{30} & \frac{7}{150} & \frac{11}{100} & \frac{11}{100} & \frac{7}{50} & \frac{1}{30} & \frac{1}{50} & \frac{7}{150} & \frac{7}{150} & \frac{1}{20} & \frac{7}{150} & \frac{14}{225} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{2}{75} & \frac{1}{30} & \frac{2}{25} & \frac{2}{75} & \frac{1}{30} & \frac{13}{50} & \frac{2}{25} & \frac{11}{100} & \frac{11}{100} & \frac{1}{30} & \frac{1}{30} & \frac{23}{450} \\
\frac{1}{5} & \frac{2}{25} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{2}{25} & \frac{2}{25} & \frac{1}{50} & \frac{2}{25} & \frac{13}{50} & \frac{11}{100} & \frac{1}{50} & \frac{11}{100} & \frac{11}{100} & \frac{3}{100} \\
\frac{1}{20} & \frac{11}{100} & \frac{1}{50} & \frac{1}{30} & \frac{7}{150} & \frac{1}{50} & \frac{1}{30} & \frac{7}{150} & \frac{11}{100} & \frac{11}{100} & \frac{7}{50} & \frac{1}{20} & \frac{7}{150} & \frac{7}{150} & \frac{14}{225} \\
\frac{1}{20} & \frac{1}{50} & \frac{11}{100} & \frac{1}{30} & \frac{7}{150} & \frac{11}{100} & \frac{1}{30} & \frac{7}{150} & \frac{11}{100} & \frac{1}{50} & \frac{1}{20} & \frac{7}{50} & \frac{7}{150} & \frac{7}{150} & \frac{14}{225} \\
\frac{1}{20} & \frac{1}{50} & \frac{11}{100} & \frac{1}{30} & \frac{7}{150} & \frac{1}{50} & \frac{11}{100} & \frac{1}{20} & \frac{1}{30} & \frac{11}{100} & \frac{7}{150} & \frac{7}{150} & \frac{7}{50} & \frac{7}{150} & \frac{14}{225} \\
\frac{1}{20} & \frac{1}{50} & \frac{1}{50} & \frac{11}{100} & \frac{1}{20} & \frac{111}{100} & \frac{1}{30} & \frac{7}{150} & \frac{1}{30} & \frac{11}{100} & \frac{7}{150} & \frac{7}{150} & \frac{7}{150} & \frac{7}{50} & \frac{14}{225} \\
0 & \frac{3}{100} & \frac{1}{100} & \frac{23}{450} & \frac{14}{225} & \frac{3}{100} & \frac{23}{450} & \frac{14}{225} & \frac{23}{450} & \frac{3}{100} & \frac{14}{225} & \frac{14}{225} & \frac{14}{225} & \frac{14}{225} & \frac{7}{90}
\end{array}\right)
$$

P_{4} has a negative eigenvalue. Choosing tours at random is

$$
p^{\top}=\frac{1}{6^{3}}(1,5,5,5,20,5,5,20,5,5,20,20,20,20,60)
$$

and this gives $E T=2$. However, using

$$
p^{\top}=\frac{1}{12}(0,1,1,0,0,1,0,0,0,1,0,0,0,0,8)
$$

we get $E T=2-\frac{23}{16200}$.
Players do $A A A B, A A B A, A B A A, A B B B$ each with probability $1 / 12$, and $A B C D$ with probability $2 / 3$.
P_{4} has a negative eigenvalue. Choosing tours at random is

$$
p^{\top}=\frac{1}{6^{3}}(1,5,5,5,20,5,5,20,5,5,20,20,20,20,60)
$$

and this gives $E T=2$. However, using

$$
p^{\top}=\frac{1}{12}(0,1,1,0,0,1,0,0,0,1,0,0,0,0,8)
$$

we get $E T=2-\frac{23}{16200}$.
Players do $A A A B, A A B A, A B A A, A B B B$ each with probability $1 / 12$, and $A B C D$ with probability $2 / 3$.
This is like AW. With probability $p=1 / 3$ a player does his home tour A and one other tour B. With probability $p=2 / 3$ he tours 3 other non-home tours B, C, D.

A strategy better than AW for 4 locations

Consider a 12-Markov strategy consisting of four 3-steps. In each 3-step a player remains home with probability p, or tours his non-home locations with probability $1-p$. It is AW, except that when a player makes tours he does so as previously described. Any 1st and 2 nd tours are made at random, but then 3rd and 4th tours are made such that $A A A B, A A B A, A B A A, A B B B$ have probabilities $1 / 12$, and $A B C D$ has probability $2 / 3$.
There are 1585 possible paths of nonzero probability. Careful computation finds $E T=$
$\frac{-227773 p^{8}+582884 p^{7}-1329319 p^{6}+1737938 p^{5}-1941235 p^{4}+1420688 p^{3}-998569 p^{2}+389834 p-217648}{3\left(82001 p^{8}-218608 p^{7}+327728 p^{6}-315256 p^{5}+215870 p^{4}-104656 p^{3}+36128 p^{2}-8008 p-15199\right)}$
For $p=(1 / 4)(3 \sqrt{681}-77)$ (same as AW) this gives $E T$ less than AW by 0.00014668 .

