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Abstract

We consider the problem of optimal control for a number of alternative

Markov decision processes, where at each moment in time exactly one

process must be “continued” while all other processes are “frozen”. Only

the process that is continued produces any reward and changes its state.

The aim is to maximize expected total discounted reward. A familiar

example would be the problem of optimally scheduling the processing of

jobs that reside in a single-server queue. A each moment one of the jobs

is processed by the server, while all the other jobs are made to wait. Our

aim is to minimize the expected total holding cost incurred until all jobs

are complete. Another example is that of hunting for an apartment; we

must choose the order in which to view apartments and decide when to

stop viewing and rent the best apartment of those that have been

viewed. This type of problem has a beautiful and surprising solution in

terms of Gittins indices. In this tutorial I will review the theory of bandit

processes and Gittins indices, describe some applications in scheduling

and queueing, and tell you about some frontiers of research in the field.
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Single machine scheduling

N jobs are to be processed successively on one machine.

In what order should we process them?

Job i has a known processing times ti, a positive integer.

On completion of job i a reward ri is obtained.

If processed in the order 1, 2, . . . , N , total discounted reward is

r1β
t1 + r2β

t1+t2 + · · ·+ rNβ
t1+···+tN

where 0 < β < 1.
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Dynamic programming solution

Let Sk ⊂ {1, . . . , N} be a set of k uncompleted jobs.

The dynamic programming equation is

F (Sk) = max
i∈Sk

[
βtiri + βtiF (Sk − {i})

]
,

with F0(∅) = 0.

In principle we can solve the scheduing problem with dynamic
programming.

But of course there is an easier way . . .
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Interchange arguments

Consider processing jobs in the order:

i1, . . . , ik, i, j, ik+3, . . . , iN .

Consider interchanging the order of jobs i and j:

i1, . . . , ik, j, i, ik+3, . . . , iN .

Rewards under the two schedules are respectively

R1 + βT+tiri + βT+ti+tjrj +R2

R1 + βT+tjrj + βT+tj+tiri +R2.

T = ti1 + · · ·+ tik , and

R1 and R2 are rewards accruing from jobs coming before and after
i, j; (which is the same in both schedules).
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Simple algebra =⇒ Reward of the first schedule is greater if

riβ
ti/(1− βti) > rjβ

tj/(1− βtj ).

Hence a schedule can be optimal only if the jobs are taken in
decreasing order of the indices riβti/(1− βti).

Theorem

Total discounted reward is maximized by the index policy of always
processing the uncompleted job of greatest index, computed as

Gi =
riβ

ti(1− β)

(1− βti)
.

Notice that
1− βti
1− β

= 1 + β + · · ·+ βti−1,

so Gi → ri/ti as β → 1.

12 / 52



Simple algebra =⇒ Reward of the first schedule is greater if

riβ
ti/(1− βti) > rjβ

tj/(1− βtj ).

Hence a schedule can be optimal only if the jobs are taken in
decreasing order of the indices riβti/(1− βti).

Theorem

Total discounted reward is maximized by the index policy of always
processing the uncompleted job of greatest index, computed as

Gi =
riβ

ti(1− β)

(1− βti)
.

Notice that
1− βti
1− β

= 1 + β + · · ·+ βti−1,

so Gi → ri/ti as β → 1.

12 / 52



Weitzman’s Pandora problem

Weitzman, M. L. (1979). Optimal search for the best alternative.
Econometrica, 47:641–654.

Martin L. Weitzman is Professor of Economics at Harvard University.
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Weitzman’s Pandora problem

Pandora has n boxes.
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Weitzman’s Pandora problem

Pandora has n boxes.

Box i contains a prize, of value xi, distributed with known
c.d.f. Fi.

At known cost ci she can open box i and discover xi.

Pandora may open boxes in any order, and stop at will..

She opens a subset of boxes S ⊆ {1, . . . , n} and then stops.
She wishes to maximize the expected value of

R = max
i∈S

xi −
∑
i∈S

ci.
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Reasons for liking Weitzman’s problem

Weitzmans’ problem is attractive.

1. It has many applications:

hunting for a house

selling a house (accepting the best offer)

searching for a job,

looking for research project to focus upon.

2. It has an index policy solution, a so-called Pandora rule

- Calculate a ‘reservation prize’ value for each box.

- Open boxes in descending order of reservation prizes until a
prize is found whose value exceeds the reservation prize of any
unopened box.
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Index policy for Pandora’s problem

We seek to maximize expected value of

R = max
i∈S

xi −
∑
i∈S

ci.

where S is the set of opened boxes.

The reservation value (index) of box i is

x∗i = inf
{
y : y ≥ −ci + E[max(xi, y)]

}
.

Weitzman’s Pandora rule. Open the unopened box with greatest
reservation value, until all reservations values are less than the
greatest prize that has been found.
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Deal or no deal
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Scheduling in a two-class M/M/1 queue

Jobs of two types arrive at a single server according to
independent Poisson streams, with rates λi, i = 1, 2.

Service times of type (class) i jobs are

exponentially distributed with mean µ−1
i , i = 1, 2.

independent of each other and of the arrival streams.

Assume overall rate at which work arrives at the system,
namely λ1/µ1 + λ2/µ2, is less than 1.
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Our goal: minimize holding cost rate

We wish to choose policy π

— which is to be past-measurable [non-anticipative], non-idling
and preemptive —,

to minimize the long-term holding cost rate, i.e.

minimize
π

{
c1Eπ(N1) + c2Eπ(N2)

}
.

ci is a positive-valued class i holding cost rate.

Ni is the number of class i jobs in the system.

Eπ is expectation under steady state distribution induced by π.
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A conservation law

Work-in-system process, W π(t), is the aggregate of the
remaining service times of all jobs in the system at t.

Pollaczek–Khinchine formula for the M/G/1 queue states that if
X has the distribution of a service time then the mean work in
system is Eπ[W ] = 1

2λEX
2/(1− λEX).

Since π is non-idling, Eπ[W ] is independent of π, and so

Eπ[W ] =
Eπ(N1)

µ1
+
Eπ(N2)

µ2
=
ρ1µ

−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2
,

ρi = λi/µi is the rate at which class i work enters the system.
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Some constraints

Let xπi = Eπ(Ni)/µi be the mean work-in-system of class i.

The work-in-system of type 1 jobs is no less than it would be if we
always gave them priority. Hence

xπ1 =
Eπ(N1)

µ1
≥ ρ1µ

−1
1

1− ρ1
.

with equality under the policy (denoted 1→ 2) that always gives
priority to type 1 jobs.

Similiarly,

xπ2 =
Eπ(N2)

µ2
≥ ρ2µ

−1
2

1− ρ2
.

under 2→ 1.
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A mathematical program

Consider the optimization problem

minimize
π

{c1Eπ(N1) + c2Eπ(N2)} = minimize
π

{c1µ1xπ1 + c2µ2x
π
2}

= minimize
(x1,x2)∈X

{c1µ1x1 + c2µ2x2} ,

where X is the set of (xπ1 , x
π
2 ) that are achievable for some π.

Have argued that

X ⊆ P =

{
(x1, x2) :x1 ≥

ρ1µ
−1
1

1− ρ1
, x2 ≥

ρ2µ
−1
2

1− ρ2
,

x1 + x2 =
ρ1µ

−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2

}
.
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A linear program relaxation
LP relaxation of our optimization problem is

minimize
(x1,x2)∈P

{
c1µ1x1 + c2µ2x2

}

P =

{
(x1, x2) :x1 ≥

ρ1µ
−1
1

1− ρ1
, x2 ≥

ρ2µ
−1
2

1− ρ2
,

x1 + x1 =
ρ1µ

−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2

}
.

Easy to solve!

If c1µ1 > c2µ2 then the optimal solution is at x∗ where

x∗1 =
ρ1µ

−1
1

1− ρ1
, x∗2 =

ρ1µ
−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2
− ρ1µ

−1
1

1− ρ1
.

Furthermore x∗ ∈ X and achieved by the policy 1→ 2.
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Lessons

Long term holding cost rate is maximized by giving priority to
the job class of greatest ciµi.

The policy 1→ 2 is an index policy.

At all times the server devotes its effort to the job of
greatest index, i.e. greatest ciµi.

The obvious generalizaton of this result is true if there were
more than 2 job types.

Given the hint of this simple example, how would you prove it?
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Proof strategy

Find a set of linear inequalities that must be satisfied. These
define a polytope P , such that achievable x must lie in P .

There are constraints like

xi ≥
ρiµ
−1
1

1− ρ1
, x1 + x2 ≥

ρ1µ
−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2∑
i∈S

xi ≥
∑

i∈S ρiµ
−1
1

1−
∑

i∈S ρi
, for all S ⊆ {1, . . . ,m}.

Minimize
∑

i ciµixi over x ∈ P .

Show optimal solution, x∗, is in X and is achieved by index
policy that prioritizes jobs in decreasing order of ciµi.
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Bandit processes
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Two-job scheduling problem

(r1, t1) = (9, 5), (r2, t2) = (6, 2).

0, 0, 0, 0, 9, 0, ...

0, 6, 0, 0, 0, 0, ...

0 < β < 1.
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Two-job scheduling problem

(r1, t1) = (9, 5), (r2, t2) = (6, 2).

, , , , , 0, ...

, , , , 0, 0, ...
0, 6, 0, 0, 0, 0, 9,

Reward = 0 + 6 + 0 + 0 + 0+ 0 + 0 + 9β β2 β3 β4 β5 β6 β7

0 < β < 1.
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Two-armed bandit

3, 10, 4, 9, 12, 1, ...

5, 6, 2, 15, 2, 7, ...

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, 10, 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

Reward = 5 + 6 + 3 + 10 + . . .β β2 β3
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Bandit processes

A bandit process is a special type of Markov Decision Process in
which there are just two possible actions:

u = 1 (continue)

produces reward r(xt) and the state changes, to xt+1,
according to Markov dynamics Pi(xt, xt+1).

u = 0 (freeze)

produces no reward and the state does not change (hence the
term ‘freeze’).

A simple family of alternative bandit processes (SFABP) is a
collection of N such bandit processes, in known states
x1(t), . . . , xN (t).
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SFABP

At each time, t ∈ {0, 1, 2, . . .},
One bandit process is to be activated (pulled/continued)

If arm i activated then it changes state:

x→ y with probability Pi(x, y)

and produces reward ri(xi(t)).

All other bandit processes remain passive (not pulled/frozen).

Objective: maximize the expected total β-discounted reward

E

[ ∞∑
t=0

rit(xit(t))β
t

]
,

where it is the arm pulled at time t, (0 < β < 1).
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Dynamic effort allocation

Job Scheduling: in what order should I work on the tasks in
my in-tray?

Research projects: how should I allocate my research time
amongst my favorite open problems so as to maximize the
value of my completed research?

Searching for information: shall I spend more time browsing
the web, or go to the library, or ask a friend?

Dating strategy: should I contact a new prospect, or try
another date with someone I have dated before?
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Dynamic programming solution

The dynamic programming equation is

F (x1, . . . , xN )

= max
i

{
ri(xi) + β

∑
y

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xN )
}

If bandit i moves on a state space of size ki, then (x1, . . . , xN )
moves on a state space of size

∏
i ki (exponential in N).
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Gittins Index solution

Theorem [Gittins, ‘74, ‘79, ‘89]

Expected discounted reward is maximized by always continuing the
bandit having greatest value of ‘dynamic allocation index’

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

]
where τ is a (past-measurable) stopping-time.

Gi(xi) is called the Gittins index.

Gittins and Jones (1974). A dynamic allocation index for the sequential design of

experiments. In Gani, J., editor, Progress in Statistics, pages 241–66. North-Holland,

Amsterdam, NL. Read at the 1972 European Meeting of Statisticians, Budapest.
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Multi-armed bandit allocation indices

1st Edition edition, 1989, Gittins

Many applications to clinical trials, job scheduling, search, etc.
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Exploration versus exploitation

“Bandit problems embody in essential form a conflict
evident in all human action: information versus immediate
payoff.”

— Peter Whittle (1989)

34 / 52



Gittins index

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
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t=0 β
t
∣∣∣ xi(0) = xi

]
Discounted reward up to τ .

Discounted time up to τ .

Note the role of the stopping time τ .
Stopping times are times recognisable when they occur.
How do you make perfect toast?

There is a rule for timing toast,
One never has to guess,
Just wait until it starts to smoke,
then 7 seconds less. (David Kendall)
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Gittins index

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

]
Discounted reward up to τ .

Discounted time up to τ .

In the scheduling problem τ = ti and

Gi =
riβ

ti

1 + β + · · ·+ βti−1
= (1− β)

riβ
ti

1− βti
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Single machine scheduling

N jobs are to be processed successively on one machine.

Job i has a known processing times ti, a positive integer.

On completion of job i a reward ri is obtained.

Total discounted reward is maximized by the index policy which
processes jobs in decreasing order of indices, Gi.

Gi =
riβ

ti

1 + β + · · ·+ βti−1
= (1− β)

riβ
ti

1− βti
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Gittins index via calibration

Can also define Gittins index by comparing to arm of fixed pay rate:

Gi(xi) = sup

{
λ :

∞∑
t=0

βtλ ≤ sup
τ≥1

E

[
τ−1∑
t=0

βtri(xi(t)) +

∞∑
t=τ

βtλ
∣∣∣xi(0) = xi

]}
.

Consider a problem with two bandit processes: the bandit process
Bi and a calibrating bandit process, say Λ, which pays out a
known reward λ at each step it is continued.

The Gittins index of Bi is the value of λ for which we are
indifferent as to which of Bi and Λ to continue initially.
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Gittins index theorem is surprising!

Peter Whittle tells the story:

“A colleague of high repute asked an equally well-known col-
league:

— What would you say if you were told that the
multi-armed bandit problem had been solved?’

— Sir, the multi-armed bandit problem is not of such a
nature that it can be solved.’
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What has happened since 1989?

Index theorem has become better known.

Alternative proofs have been explored.

Playing golf with N balls

Achievable performance region approach

Many applications (economics, engineering, . . . ).

Notions of indexation have been generalized.

Restless Bandits
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Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved,
remodelled and resituated the index theorem.

Beale (1979)

Karatzas (1984)

Varaiya, Walrand, Buyukkoc (1985)

Chen, Katehakis (1986)

Kallenberg (1986)

Katehakis, Veinott (1986)

Eplett (1986)

Kertz (1986)

Tsitsiklis (1986)

Mandelbaum (1986, 1987)

Lai, Ying (1988)

Whittle (1988)

Weber (1992)

El Karoui, Karatzas (1993)

Ishikida and Varaiya (1994)

Tsitsiklis (1994)

Bertsimas, Niño-Mora (1996)

Glazebrook, Garbe (1996)

Kaspi, Mandelbaum (1998)

Bäuerle, Stidham (2001)

Dimitriu, Tetali, Winkler (2003)
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Proofs of the Index Theorem

Interchange arguments (but cunning ones!)

Economic/gaming argument

Linear programming relaxation (achievable region method)
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Golf with N balls

Dumitriu, Tetali and Winkler, (2003). On playing golf with two balls.

N balls are strewn about a golf course at locations x1, . . . , xN .

Objective

Minimize the expected total cost incurred up to sinking a first ball.

Answer

When ball i is in location xi it has an index γi(xi).

Play the ball of smallest index, until a ball goes in the whole.
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Gittins index theorem for golf with N balls

Golf with one ball

Consider golf with one ball, initially in location xi.

Let’s offer the golfer a prize λ, obtained when he sinks this ball in
the hole (state 0).

We might ask, what is the least λ for which it is optimal for him to
take at least one more stroke — allowing him the option to retire
at any point thereafter?

γi(xi) = inf

{
λ : 0 ≤ sup

τ≥1
E

[
λ1{xi(τ)=0} −

τ−1∑
t=0

ci(xi(t)

∣∣∣∣∣xi(0) = xi

]}
.

Call γi(xi) the fair prize, (or Gittins index).

43 / 52



Gittins index theorem for golf with N balls

Golf with one ball

Consider golf with one ball, initially in location xi.

Let’s offer the golfer a prize λ, obtained when he sinks this ball in
the hole (state 0).

We might ask, what is the least λ for which it is optimal for him to
take at least one more stroke — allowing him the option to retire
at any point thereafter?

γi(xi) = inf

{
λ : 0 ≤ sup

τ≥1
E

[
λ1{xi(τ)=0} −

τ−1∑
t=0

ci(xi(t)

∣∣∣∣∣xi(0) = xi

]}
.

Call γi(xi) the fair prize, (or Gittins index).

43 / 52



Gittins index theorem for golf

Golf with one ball

Consider golf with one ball, initially in location xi.

Let’s offer the golfer a prize λ, obtained when he sinks this ball in
the hole (state 0).

We might ask, what is the least λ for which it is optimal for him to
take at least one more stroke — allowing him the option to retire
at any point thereafter?

γi(xi) = inf

{
λ : 0 ≤ sup

τ≥1
E

[
λ1{xi(τ)=0} −

τ−1∑
t=0

ci(xi(t))

∣∣∣∣∣xi(0) = xi

]}
.

Call γi(xi) the fair prize, (or Gittins index).

44 / 52



How to play golf
with one ball and an increasing fair prize

Having been offered a fair prize the golfer will play until the ball

goes in the hole, or

reaches a state xi(t) from which the offered prize is no longer
great enough to tempt him to play further.

If the latter occurs, let us increase the prize to γi(xi(t)).

It becomes the ‘prevailing prize’ at time t, i.e. maxs≤t γi(xi(s)).

The prevailing prize is nondecreasing in t.

Now the golfer need never retire and can keep playing until the ball
goes in the hole, say at time τ .

But his expected profit is just 0.

E

[
γi(xi(τ − 1))−

τ−1∑
t=0

ci(xi(t)

∣∣∣∣∣ xi(0) = xi

]
= 0.
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Golf with 1 ball

γ(x) = 3.0, γ(x′) = 2.5, γ(x′′) = 4.0
Prevailing prize sequence is 3.0, 3.0, 4.0, . . .
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Golf with 2 balls

γ(x) = 3.0
γ(y) = 3.2
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Index theorem for golf with N balls

Suppose the golfer keeps playing until a ball goes in the hole.

His prize is the prevailing prize of the ball he sinks.

Prevailing prizes are defined in such a way that the golfer cannot
make a strictly positive profit, and so for any policy σ,

Eσ(cost incurred) ≥ Eσ(prize eventually won) (1)

Let π be the policy: always play the ball with least prevailing prize.

Because each ball’s sequence of prevailing prizes is nondecreasing.

Eσ(prize eventually won) ≥ Eπ(prize eventually won) (2)

But the golfer breaks even under π.

Eπ(prize eventually won) = Eπ(cost incurred) (3)
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Golf and the multi-armed bandit
Having solved the golf problem, the solution to the multi-armed
bandit problem follows. Just let P (x, 0) = 1− β for all x.

The expected cost incurred until a first ball is sunk equals the
expected total β-discounted cost over the infinite horizon.

The fair prize, g(x), is 1/(1− β) times the Gittins index, G(x).

g(x) = inf

{
g : sup

τ≥1
E

[
τ−1∑
t=0

−c(x(t))βt

+ (1− β)(1 + β + · · ·+ βτ−1)g

∣∣∣∣∣x(0) = x

]
≥ 0

}

=
1

1− β
inf
τ≥1

E
[∑τ−1

t=0 c(x(t))βt
∣∣∣x(0) = x

]
E
[∑τ−1

t=0 β
t
∣∣∣x(0) = x

]
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bandit problem follows. Just let P (x, 0) = 1− β for all x.

The expected cost incurred until a first ball is sunk equals the
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The fair prize, g(x), is 1/(1− β) times the Gittins index, G(x).

g(x) = inf

{
g : sup

τ≥1
E

[
τ−1∑
t=0

−c(x(t))βt

+ (1− β)(1 + β + · · ·+ βτ−1)g

∣∣∣∣∣x(0) = x

]
≥ 0

}

=
1

1− β
inf
τ≥1

E
[∑τ−1

t=0 c(x(t))βt
∣∣∣x(0) = x

]
E
[∑τ−1

t=0 β
t
∣∣∣x(0) = x

]

49 / 52



Golf and the multi-armed bandit
Having solved the golf problem, the solution to the multi-armed
bandit problem follows. Just let P (x, 0) = 1− β for all x.

The expected cost incurred until a first ball is sunk equals the
expected total β-discounted cost over the infinite horizon.

The fair prize, g(x), is 1/(1− β) times the Gittins index, G(x).

g(x) = inf

{
g : sup

τ≥1
E

[
τ−1∑
t=0

−c(x(t))βt

+ (1− β)(1 + β + · · ·+ βτ−1)g

∣∣∣∣∣x(0) = x

]
≥ 0

}

=
1

1− β
inf
τ≥1

E
[∑τ−1

t=0 c(x(t))βt
∣∣∣x(0) = x

]
E
[∑τ−1

t=0 β
t
∣∣∣x(0) = x

]
49 / 52



Gittins index theorem and Weitzman’s problem

Theorem (Gittins index theorem, 1972) The problem posed by
a family of alternative bandit processes, is solved by always
continuing the bandit process having the greatest Gittins index.

Compare this to the solution to the Weitzman’s problem which is

Theorem (Weitzman’s Pandora rule, 1979). Pandora’s problem
is solved by always opening the unopened box with greatest
reservation value, until all reservations values are less than the
greatest prize that has been found.
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Pandora plays golf

Learn how to play golf with more than one ball.

- You can solve Weitzman’s Pandora’s boxes problem.

Each of Pandora’s boxes is a ball, starting in state 1, say.

First time ball i is hit a cost ci is incurred, and ball lands at
location xi (chosen as a sample from Fi).

Second time ball i is hit, (from its current state xi), a cost
−xi is incurred, the ball goes in the hole and the game ends.

Problem of minimizing the expected cost of putting a ball in the
hole

≡
Problem of maximizing the expected value of Pandora’s greatest
discovered prize, net of costs of opening boxes.

Gittins =⇒ Pandora, mentioned by Chade and Smith (2006)
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Index policies
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Tutorial

Bandit Processes and Index Policies

Richard Weber, University of Cambridge

Young European Queueing Theorists (YEQT VII) workshop on

Scheduling and priorities in queueing systems,

Eindhoven, November 4–5–6, 2013
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Summary of Lecture 1

Warmup

Interchange arguments

Index policies

Pandora’s problem

Achievable region method for M/M/1 queue

Bandit processes

Bandit processes

Gittins index theorem
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How do you make perfect toast?

There is a rule for timing toast,
One never has to guess,
Just wait until it starts to smoke,
then 7 seconds less.

(David Kendall)
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Summary of Lecture 2

Index policies for multi-class queues

M/M/1 (preemptive)

Achievable region method

Branching bandits

Tax problems

M/G/1 (nonpreemptive)

Index policies for restless bandits

Restless bandits

Whittle index

Asymptopic optimality

Risk-sensitive indices
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Multi-class queues
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Multi-class M/M/1 preemptive

Let the average work-in-system of class i be xπi = Eπ[Ni]/µi.

Find linear inequalities that must be satisfied by the xπi .

These define a polytope P , such that achievable xπ are in P .

In particular for any S ⊆ E = {1, 2, . . . , k}, consider∑
i∈S

xπi = average work-in-system due to job classes in S

≤ f(S)

for some f(S). Equality achieved by always giving priority to
jobs of classes not in S.

Minimize
∑

i ciµixi over x ∈ P .

Show optimal solution, x∗, is achievable by index policy that
prioritizes jobs in decreasing order of ciµi.
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Proof of cµ-rule optimality

Linear program relaxation:

minimize
∑

i ciµixi∑
i∈S xi ≤ f(S), for all S ⊂ E∑
i∈E xi = f(E)

xi ≥ 0

Dual linear program:

maximize
∑

S ySf(S)∑
S:i∈S yS ≤ ciµi, for all i

yS ≤ 0, S ⊂ E
yE is unconstrained

Assume c1µ1 > · · · > ckµk. Let π be policy 1→ 2→ · · · → k.

Denote Sj = {j, . . . , k}.
Taking x = xπ =⇒∑

i∈Sj
xi = f(Sj), j = 1, . . . , k,

Primal feasibility holds.
Complementary slackness and
dual feasilibilty hold if set yS as
follows:

yE = c1µ1,
yS2 = c2µ2 − c1µ1,
yS3 = c3µ3 − c2µ2,

...
ySk

= ckµk − ck−1µk−1,
and all other yS = 0.

=⇒ π is optimal.
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Nonpreemptive multi-class M/G/1

Jobs again of k classes {1, . . . , k}. Holding cost rates ci.

Class i job has service time ti, chosen ∼ Fi.
While processing it a random number of new jobs of type j
arrive, distributed as a Poisson random variable with mean
λjti.

Example of a branching bandit.

Gittins index theorem holds.

(Proof similar to that is last lecture
— but when hit, golf ball splits into many golf balls.)

Problem: minimize time-average holding cost.
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Nonpreemptive multi-class M/G/1

Let µ−1i = Eti.

c1µ1 > · · · > ckµk.

Assume Gittins index theorem for branching bandits.

We now prove that the nonpreemptive scheduling policy that
minimizes the expected weighted holding cost is the cµ-rule, the
priority policy π : 1→ 2→ · · · → k.
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Tax problems

Consider a job which enters at time 0, leaves at time t, and pays
tax in between: discounted cost is∫ t

0
cie
−αsds =

1

α
[ci − cie−αt].

An alternative view (on the r.h.s.) is that we

‘pay ci/α on entry’,

‘receive refund ci/α on exit’ (with discount factor of e−αt

applied).

If we cannot control when jobs enter, then we just want to
maximize collection of refunds.
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Gittins index in tax problems

The Gittins index is

Gi = sup
τ

E[sum of discounted refunds collected up to τ ]

E[integral of discounted time up to τ ]

which in the limit α→ 0

→ sup
τ

E[sum of refunds collected up to τ ]

Eτ

(A policy which is α-discount optimal for all sufficiently small α is
average-cost optimal.)
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Nonpreemptive M/G/1 queue

Suppose that G1 > G2 > · · · > Gk.

G1 = sup
τ

E[sum of refunds collected up to τ ]

Eτ
=

c1
Et1

= c1µ1.

To find Gi we start with one class i job, process it, and then any
‘daughters’ in classes 1, . . . , i− 1 until the system is again clear of
jobs in classes 1, . . . , i− 1.

Poisson arrivals =⇒ expected refunds C, and expected time T ,
accumulating during clearing is proportional to ti. So for some θ,

Gi =
E[ci + (θti)C]

E[ti + (θti)T ]
.
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Nonpreemptive M/G/1 queue

Similarly, we might start with one job in class i− 1, process it, and
then clear all daughter jobs in classes 1, . . . , i− 2.

But the index calculation gives the same value if we also clear all
daughter class i− 1 jobs, and so for the same θ as above

Gi−1 =
E[ci−1 + (θti−1)C]

E[ti−1 + (θti−1)T ]

Gi =
E[ci + (θti)C]

E[ti + (θti)T ]
.

Gi−1 ≥ Gi =⇒ ci−1/Eti−1 ≥ ci/Eti.
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Optimality of cµ-rule in multi-class M/G/1

Gittins index theorem for branching bandits
+ Gittins indices ordered the same as ciµi =⇒

Theorem

The average waiting cost in a multi-class M/G/1 queue is minimized
(amongst nonpreemptive strategies) by always processing the job of
greatest ciµi, where µi = 1/Eti.

Notice that the Gi do depend on the arrival rates, but their
ordering does not.
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Restless bandits
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Spinning plates
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Restless bandits

[Whittle ‘88]

Two actions are available: active (a = 1) or passive (a = 0).

Rewards, r(x, a), and transitions, P (y |x, a), depend on the
state and the action taken.

Objective: Maximize time-average reward from n restless
bandits under a constraint that only m (m < n) of them
receive the active action simultaneously.
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Opportunistic spectrum access

Communication channels may be busy or free.

0 1 2 3 T

Channel 1

Channel 2

Opportunities

Opportunities

Aim is to ‘inspect’ m out of n channels, maximizing the number of
these that are found to be free.
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Relaxed problem for a single restless bandit

Consider a relaxed problem, posed for 1 bandit only.

Seek to maximize average reward obtained from this bandit under
a constraint that a = 1 for only a fraction ρ = m/n of the time.
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LP for the relaxed problem

Let zax be proportion of time that the bandit is in state x and
action a is taken (under a stationary Markov policy).

An upper bound for our problem can found from a LP in variables
{zax : x ∈ E, a ∈ {0, 1}}:

maximize
∑
x,a

r(x, a)zax

s.t. zax ≥ 0 , for all x, a ;
∑
x,a

zax = 1 ;∑
a

zax =
∑
y

zayP (x | y, a(y)) , for all x ;
∑
x

z0x = 1− ρ .
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The subsidy problem

Optimal value of the dual LP problem is g, where this can be
found from the average-cost dynamic programming equation

φ(x) + g = max
a∈{0,1}

{
r(x, a) + λ(1− a) +

∑
y

φ(y)P (y |x, a)

}
.

g, φ(x) and λ are the Lagrange multipliers for constraints.

λ may be interpreted as a subsidy for taking a = 0.

Solution partitions state space into sets: E0 (a = 0), E1 (a = 1)
and E01 (randomization between a = 0 and a = 1).
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Indexability

Reasonable that as the subsidy λ (for a = 0) increases from −∞
to +∞ the set of states E0 (where a = 0 optimal) should increase
monotonically.

If it does then we say the bandit is indexable.

Whittle index, W (x), is the least subsidy for which it can be
optimal to take a = 0 in state x.

This motivates a heuristic policy:

Apply the active action to the m bandits with the greatest
Whittle indices.

Like Gittins indices for classical bandits, Whittle indices can be
computed separately for each bandit.

Same as the Gittins index when a = 0 is freezing action.
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Two questions

Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.

Special classes of restless bandits are indexable: such as ‘dual
speed’, Glazebrook, Niño-Mora, Ansell (2002), W. (2007).

Indexability can be proved in some problems (such as the
opportunistic spectrum access problem, Liu and Zhao (2009)).

How good is the heuristic policy using Whittle indices?

It may be optimal. (opportunistic spectrum access —
identical channels, Ahmad, Liu, Javidi, and Zhao (2009)).

Lots of papers with numerical work.

It is often asymptotically optimal, W. and Weiss (1990).
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Asymptotic optimality
At time t there are (n1, . . . , nk) bandits in states 1, . . . , k.
Suppose a priority policy orders the states 1, 2, . . . . Let

m = ρn.

zi = ni/n be proportion in state i.

nai = number that receive action a.

uai (z) = nai /ni.

qaij = rate a bandit in state i jumps to state j under action a;

qij(z) = u0i (z)q
0
ij + u1i (z)q

1
ij
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Fluid model approximation

Now suppose n is large. Transitions will be happening very fast.

By the law of large numbers we expect that the ‘path’ z(t) evolves
close to the fluid model in which

dzi/dt =
∑
j

[ujq
1
ji + (1− uj)q0ji]zj − zi

∑
j

[uiq
1
ij + (1− ui)q0ij ]

where uj = uj(z) is a function of z so that
∑

i ui(z)zi = ρ.

Suppose, in order of Whittle index, the states are 1, . . . , k.

For z1 + · · ·+ zh−1 < ρ, z1 + · · ·+ zh+1 > ρ, we have

uj(z) =


1 j < h
ρ−
∑

i<h zi
zj

j = h

0 j > h
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Fluid approximation

But this is not so bad. For i < h,

dzi/dt =
∑
j<h

q1jizj +
∑
j>h

q0jizj +

ρ−∑
j<h

zj

 q1hi

+

∑
j≤h

zj − ρ

 q0hi − zi
∑
j

q1ij

Similar expressions hold for i > h and i = h.

The general form is

dz/dt = A(z)z + b(z)

where A(z) and b(z) are constants within polyhedral regions.
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Asymptotic optimality

dz/dt = A(z)z + b(z)

System has an asymptotically stable equilibrium point if from any
start z(0), z(t)→ z∗ as t→∞.

Theorem [W. and Weiss ‘90]

If bandits are indexable, and the fluid model for the Whittle index
policy has an asymptotically stable equilibrium point, then the
Whittle index policy is asymptotically optimal, — in the sense that
the reward per bandit tends to the reward that is obtained under
the relaxed policy.

(proof via large deviation theory for sample paths.)
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Possibility of limit cycle

z1

z2

z3 = 1− z1 − z2

ż = A1z + b1

ż = A2z + b2

ż = A3z + b3

1

10

k = 3 and ρ = 1/2. Dynamics differ in the regions z1 > 1/2,
z1 < 1/2 and z1 + z2 > 1/2;
z1 + z2 < 1/2.
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Heuristic may not be asymptotically optimal

(
q0ij

)
=


−2 1 0 1
2 −2 0 0
0 56 − 113

2
1
2

1 1 1
2

− 5
2

 ,
(
q1ij

)
=


−2 1 0 1
2 −2 0 0
0 7

25
− 113

400
1

400
1 1 1

2
− 5

2



r0 = (0, 1, 10, 10) , r1 = (10, 10, 10, 0) , ρ = 0.835

Bandit is indexable.

Equilibrium point is (z̄1, z̄2, z̄3, z̄4) = (0.409, 0.327, 0.100, 0.164).

z̄1 + z̄2 + z̄3 = 0.836.

Relaxed policy obtains 10 per bandit per unit time.
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Heuristic is not asymptotically optimal

But equilibrium point z̄ is not asymptotically stable.

0.10

0.16

0.32

0.42

z1

z2

z3

z4

t →

a = 1

a = 0

a = 0/1

Relaxed policy obtains 10 per bandit.

Heuristic obtains only 9.9993 per bandit.

30 / 40



Equilibrium point optimization

Recall the fluid model equilibrium point optimization problem

minimize c(z, u) : ż = a(z, u) = 0,
∑

i ziui = ρ,
∑

i zi = 1,

where

c(z, u) =
∑

i[c
1
iui + c0i (1− ui)]zi

a(z, u) =
∑

j [ujq
1
ji + (1− uj)q0ji]zj − zi

∑
j [uiq

1
ij + (1− ui)q0ij ]

Dual

φi + g = min
{
c0i − λ+

∑
j q

0
ijφj , c

1
i +

∑
j q

1
ijφj

}
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‘Large deviations’-inspired model

Suppose n is large, but we try to model more sensitively the
dependence on n by considering deviations from the fluid model.

dz/dt = a(z, u) + ε(z, u)

Assume
P (ε(z, u)dt = ηdt) ∼ e−nI(z,u,η)dt

(inspired by the theory of large deviations).

I(z, u, 0) = 0 and I(z, u, η) is convex increasing in η.
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Risk-sensitive control

We are now positioned to consided a risk-sensitive performance
measure

E
[∫ T

0 c(z, u)dt
]

replaced by − 1

θ
logE

[
e−θ

∫ T
0 c(z,u)dt

]

≈ E
[∫ T

0 c(z, u) dt
]
− 1

2θ var
(∫ T

0 c(z, u) dt
)

θ > 0 corresponds to risk-seeking.

θ < 0 corresponds to risk-aversion.
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Large deviations

Consider a path {z(t), u(t), ε(t), 0 ≤ t ≤ T}.

P (path)× cost(path) = e−n
∫ T
0 I(z,u,ε)dt × e−θ

∫ T
0 c(z,u)dt.

Let θ = βn.

E
(

exp(−θ
∫ T
0 c(x, u)dt)

)
is determined by summing the above

over all paths, and so essentially

E
(

exp(−θ
∫ T
0 c(x, u)dt)

)
∼ exp

(
−nβ inf

ε

[∫ T

0
c(z, u) + β−1I(z, u, ε)dt

])
.
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Risk-sensitive optimal equilibrium point

The constraint ż = a(z, u) + ε can be imposed with a Lagrange
multiplier, and so we seek z, u, ε, φ to extremize:∫ T

0

[
c(z, u) + φT (ż − a(z, u)− ε) + β−1I(z, u, ε)

]
dt

One could now look for the extremizing path.

But suppose a fixed point is reached at large T .

It is the point found by extremizing,

c(z, u) + φT (−a(z, u)− ε) + β−1I(z, u, ε)

+ λ
(

1− ρ−∑i zi(1− ui)
)
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Example

Consider a large number of components of a single type.

z1, z2 are the proportions of components in up and down states.

u = 0: up components go down at rate z1;

u = 1: up components go down at rate z1, and
down components go up at rate z2 = z2u.

Stochastic model:
ż2 = −z2u+ z1 + ε2

where ε2dt is Brownian motion with variance z1 + z2u.

I(z, u, ε2) =
ε22

2(z1 + z2u)
.
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Risk-sensitive optimal equilibrium point

Suppose cost rate is cz2u− rz1.

In pursuit of an index we ask for what λ are both u = 0 and u = 1
optimal when extremizing (w.r.t. zi, φ, ε2)

cz2 − rz1 − φ(−z2u+ z1 + ε2) + β−1
ε22

2(z1 + z2u)
− λz2(1− u)

λ is a subsidy for not attending to components that are down.

. . . find a candidate for a risk-sensitive index:

λ∗i =
1

2
(ri − ci) +

1

8
β(ri + ci)

2.

Consider two component types for which r1 − c1 = r2 − c2.

If β = 0 we should we are indifferent between these.

If β > 0, (risk-seeking), there is a distinct preference.
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Summary of Lecture 2

Multi-class M/M/1 (nonpreemptive)

Achievable region method

Multi-class M/G/1 (nonpreemptive)

Branching bandits

Tax problems

Restless bandits

Whittle index

Asymptopic optimality

Risk-sensitive indices
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Questions
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