
Multi-armed Bandits
and the Gittins Index Theorem

Richard Weber

Statistical Laboratory, University of Cambridge

A talk to accompany Lecture 7



Two-armed Bandit

3, 10, 4, 9, 12, 1, ...

5, 6, 2, 15, 2, 7, ...

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

3, 10, 4, 9, 12, 1, ...

, 6, 2, 15, 2, 7, ...
5

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

3, 10, 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, 10, 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4, 9 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , , 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4, 9, 12 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , , 1, ...

, , , 15, 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

Reward = 5 + 6 + 3 + 10 + . . .β β2 β3

0 < β < 1.

Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Two-armed Bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

Reward = 5 + 6 + 3 + 10 + . . .β β2 β3

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.



Bandit Processes

A bandit process is a special type of Markov Decision Process in
which there are just two possible actions:

• u = 1 (continue)
produces reward r(xt) and the state changes, to xt+1,
according to Markov dynamics Pi(xt, xt+1).

• u = 0 (freeze)
produces no reward and the state does not change (hence the
term ‘freeze’).

A simple family of alternative bandit processes (SFABP)

- is a collection of n such bandit processes.

- states are x1(t), . . . , xn(t).
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SFABP

At each time, t ∈ {0, 1, 2, . . . },
• One bandit process is to be activated (pulled/continued)

If arm i activated then it changes state:

x→ y with probability Pi(x, y)

and produces reward ri(xi(t)).

• All other bandit processes remain passive (not pulled/frozen).

Objective: maximize the expected total β-discounted reward

E

[ ∞∑
t=0

rit(xit(t))β
t

]
,

where it is the arm pulled at time t, (0 < β < 1).
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Dynamic Programming Solution

The dynamic programming equation is

F (x1, . . . , xn)

= max
i

{
ri(xi) + β

∑
y

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xn)
}



Dynamic Effort Allocation

• Job Scheduling: in what order should I work on the tasks in
my in-tray?

• Research projects: how should I allocate my research time
amongst my favorite open problems so as to maximize the
value of my completed research?



Dynamic Effort Allocation

• Searching for information: shall I spend more time browsing
the web, or go to the library, or ask a friend?

• Dating strategy: should I contact a new prospect, or try
another date with someone I have dated before?



Single Machine Scheduling

• n jobs are to be processed successively on one machine.

• Job i has a known processing times ti, a positive integer.

• On completion of job i a reward ri is obtained.

• If job 1 is processed immediately before job 2 the sum of
discounted rewards from the two jobs is r1β

t1 + r2β
t1+t2 .

r1β
t1 + r2β

t1+t2 > r2β
t2 + r1β

t2+t1

⇐⇒ G1 = (1− β)
r1β

t1

1− βt1
> (1− β)

r2β
t2

1− βt2
= G2.

• So total discounted reward is maximized by the index policy
which processes jobs in decreasing order of indices, Gi.
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Gittins Index Theorem

Theorem [Gittins, ‘74, ‘79, ‘89]

The expected discounted reward obtained from a simple family of
alternative bandit processes is maximized by always continuing the
bandit having greatest Gittins index

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

] .

where τ is a (past-measurable) stopping-time.

Gi(xi) is called the Gittins index.
Gittins and Jones (1974). A dynamic allocation index for the sequential design of
experiments. In Gani, J., editor, Progress in Statistics, pages 241–66. North-Holland,
Amsterdam, NL. Read at the 1972 European Meeting of Statisticians, Budapest.
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Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

]
Discounted reward up to τ .

Discounted time up to τ .

Note the role of the stopping time τ .
Stopping times are times recognisable when they occur.
How do you make perfect toast?

There is a rule for timing toast,
One never has to guess,
Just wait until it starts to smoke,
then 7 seconds less. (David Kendall)



Calibration

Alternatively,

Gi(xi) = sup

{
λ :

∞∑
t=0

βtλ ≤ sup
τ≥1

E

[
τ−1∑
t=0

βtri(xi(t)) +

∞∑
t=τ

βtλ
∣∣∣xi(0) = xi

]}
.

Interpretation is a problem with two bandit processes:

- bandit process Bi and
- a calibrating bandit process, say Λ, paying known reward λ at
each step it is continued.

Gittins index of Bi is the value of λ for which we are indifferent as
to which of Bi and Λ to continue initially.

Notice that once we decide, at time τ , to switch from continuing
Bi to continuing Λ then information about Bi does not change
and so it must be optimal to stick with continuing Λ ever after.
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Fair Charge

Gi(xi) = sup

{
λ :

∞∑
t=0

βtλ ≤ sup
τ≥1

E

[
τ−1∑
t=0

βtri(xi(t)) +

∞∑
t=τ

βtλ
∣∣∣xi(0) = xi

]}

Alternatively,

Gi(xi) ≡ sup

{
λ : 0 ≤ sup

τ≥1
E

[
τ−1∑
t=0

βt
(
ri(xi(t))− λ

) ∣∣∣xi(0) = xi

]}
.



Example: Single Machine Scheduling

Problem in which n jobs are to be scheduled on one machine.

Job i has a known processing times ti, a positive integer.

On completion of job i a positive reward ri is obtained.

Interchange argument showed discounted sum of rewards
maximized by processing jobs in decreasing order of index
riβ

t1/(1− βt1).

Now we do this using Gittins index.

Gi = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

] =
riβ

ti

1 + β + · · ·+ βti−1

Optimal stopping time is τ = ti and Gi =
riβ

ti(1− β)

(1− βti)
.
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A Short History of Gittins Index Theorem

Exploration vs Exploitation

“Bandit problems embody in
essential form a conflict evident
in all human action: information
versus immediate payoff.”
(Whittle)

Many applications to clinical trials, job scheduling, search, etc.
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Clinical Trials

Robbins, H. (1952). ”Some aspects of the sequential design of
experiments”.



Clinical Trials

Robbins, H. (1952). ”Some aspects of the sequential design of
experiments”.



Bernoulli Bandits

- One of n drugs is to be administered at each of t = 0, 1, . . .

- The sth time drug i is administered it is successful, Xi(s) = 1,
or unsuccessful, Xi(s) = 0.

- Xi(1), Xi(2), . . . are i.i.d. samples.

- P (Xi(s) = 1) = θi.

- θi is unknown, but has a prior distribution, say uniform on [0, 1]

f(θi) = 1 , 0 ≤ θi ≤ 1 .
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Bernoulli Bandits

Having seen si successes and fi are failures, the posterior is

f(θi | si, fi) = (si+fi+1)!
si!fi!

θsii (1− θi)fi , 0 ≤ θi ≤ 1 ,

with mean (si + 1)/(si + fi + 2).

We wish to maximize the expected total discounted sum of
number of successes.
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Gittins Indices for Bernoulli Bandits, β = 0.9

s 2 3 4 5 6 7 8
f
1 .7029 .8001 .8452 .8723 .8905 .9039 .9141 .9221
2 .5001 .6346 .7072 .7539 .7869 .8115 .8307 .8461
3 .3796 .5163 .6010 .6579 .6996 .7318 .7573 .7782
4 .3021 .4342 .5184 .5809 .6276 .6642 .6940 .7187
5 .2488 .3720 .4561 .5179 .5676 .6071 .6395 .6666
6 .2103 .3245 .4058 .4677 .5168 .5581 .5923 .6212
7 .1815 .2871 .3647 .4257 .4748 .5156 .5510 .5811
8 .1591 .2569 .3308 .3900 .4387 .4795 .5144 .5454

(s1, f1) = (2, 3): posterior mean = 3
7 = 0.4286, index = 0.5163

(s2, f2) = (6, 7): posterior mean = 7
15 = 0.4667, index = 0.5156

So we prefer to use drug 1 next, even though it has the smaller
probability of success.
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Gittins Index Theorem is Surprising

Peter Whittle tells the story:

“A colleague of high repute asked an equally well-known col-
league:

— What would you say if you were told that the multi-armed
bandit problem had been solved?’

— Sir, the multi-armed bandit problem is not of such a
nature that it can be solved.’



Gittins Index Theorem is Surprising

Peter Whittle tells the story:

“A colleague of high repute asked an equally well-known col-
league:

— What would you say if you were told that the multi-armed
bandit problem had been solved?’

— Sir, the multi-armed bandit problem is not of such a
nature that it can be solved.’



Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved,
remodelled and resituated the index theorem.

Beale (1979)

Karatzas (1984)

Varaiya, Walrand, Buyukkoc (1985)

Chen, Katehakis (1986)

Kallenberg (1986)

Katehakis, Veinott (1986)

Eplett (1986)

Kertz (1986)

Tsitsiklis (1986)

Mandelbaum (1986, 1987)

Lai, Ying (1988)

Whittle (1988)

Weber (1992)
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Proof of the Index Theorem

Start with a problem in which only bandit process Bi is available.

Define the fair charge, γi(xi), as the maximum amount that a
gambler would be willing to pay per step to be permitted to
continue Bi for at least one more step, and with option to stop
continuing it whenever he likes thereafter.

γi(xi) = sup

{
λ : 0 ≤ sup

τ≥1
E

[
τ−1∑
t=0

βt
(
ri(xi(t))− λ

) ∣∣∣xi(0) = xi

]}

γi(xi) = Gi(xi), as defined previously.

The stopping time τ is the first time that Gi(xi(τ)) < Gi(xi(0)),

i.e. the first time that the charge is looking too expensive.

Gambler would rather stop than continue while paying this charge.
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Prevailing Charges

When Gi(xi(τ)) < Gi(xi(0)) the gambler will stop playing.

But suppose at this point the charge is reduced to Gi(xi(τ)); then
it remains just-profitable for the gambler to keep on playing.

This defines a prevailing charge, say gi(t) = mins≤tGi(xi(s)).

gi(t) is a nonincreasing function of t and its value depends only on
the states through which bandit i evolves.

Observation 1. Suppose that in the problem with n alternative
bandit processes, B1, . . . , Bn, the gambler not only collects
rit(xit(t)), but must also pays the prevailing charge git(xit(t)) of
the bandit Bit that he chooses to continue at time t. Then he
cannot do better than just break even (i.e. expected profit 0).
— This is because he could only make a strictly positive profit (in
expected value) if this were to happen for at least one bandit. Yet
the prevailing charge has been defined so that if he pays the
prevailing charges he can only just break even.
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Observation 2. He maximizes the expected discounted sum of the
prevailing charges that he pays by always continuing the bandit
with the greatest prevailing charge.
— This is because he thereby interleaves the n nonincreasing
sequences of prevailing charges gi into one nonincreasing sequence
of prevailing charges. This way of interleaving them maximizes
their discounted sum.

For example, prevailing charges of

g1 : 10, 10, 9, 5, 5, 3, . . .

g2 : 20, 15, 7, 4, 2, 2, . . .

are best interleaved (so as to maximize discounted charge paid) as

20, 15, 10, 10, 9, 7, 5, 5, 4, 3, 2, 2, . . .

sum of discounted charges paid = 20 + 15β + 10β2 + 10β3 + · · ·
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Observation 3. Consider the Gittins index policy π∗ of always
continuing the bandit with the greatest Gi(xi) (which is also the
one having greatest gi(xi)).
Using π∗ he just breaks even (because by continuing Bi until its
prevailing charge decreases is the way to break even).

Observation 1 is that for any policy π,

Eπ

[ ∞∑
t=0

βt
(
rit(xit(t))− git(xit(t))

) ∣∣∣x(0)

]
≤ 0

=⇒ Eπ

[ ∞∑
t=0

βtrit(xit)
∣∣∣x(0)

]
≤ Eπ

[ ∞∑
t=0

βtgit(xit)
∣∣∣x(0)

]
.

Observation 2 is that the right hand side is maximized by π∗.

Observation 3 is that under π∗ the inequality is an equality.

So the left hand side is maximized by π∗.
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Pandora’s Boxes Problem

• Pandora has n boxes.

• Box i contains a prize, of unknown value xi, distributed with
known c.d.f. Fi.

• At known cost ci she can open box i and discover xi.

• Pandora may open boxes in any order, and stop at will.

She then takes the greatest prize she has found.

• She opens a subset of boxes S ⊆ {1, . . . , n} and then stops,
seeking to maximize the expected value of

R = −
∑
i∈S

ci + max
i∈S

xi.
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Pandora’s Problem Recast as a Bandit
Problem

- Box i is associated with bandit Bi, which starts in state 0.

- First time Bi is continued reward is −ci, and the state becomes
xi, chosen by the distribution Fi.

- At all subsequent times Bi is continued the reward is
r(xi) = (1− β)xi, and the state remains xi.

Suppose we wish to maximize the expected value of

−
τ∑
t=1

βt−1cit + max{r(xi1), . . . , r(xiτ )}
∞∑
t=τ

βt

= −
τ∑
t=1

βt−1cit + βτ max{xi1 , . . . , xiτ }.
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Gittins index of an opened box is r(xi)/(1− β) = xi.

Gittins index of an unopened box i is the solution to

Gi
1− β

= −ci +
β

1− β
Emax{r(xi), Gi}.

Pandora’s optimal strategy is thus:
Open boxes in decreasing order of Gi until first reaching a point
that a revealed prize is greater than all Gi of unopened boxes.
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