Table of notation

ℓ	Loss function
\mathcal{H}, \mathcal{F} or \mathcal{B}	Classes of functions
$R(h)$	Risk $\mathbb{E}(\ell(h(X), Y))$ for fixed h
$\hat{R}(h)$	Empirical risk $\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(X_{i}\right), Y_{i}\right)$
h_{0}	Typically used to denote a minimiser of the risk over all functions h $\mathcal{X} \rightarrow \mathcal{Y}$ e.g. a Bayes classifier in the classification setting or $\mathbb{E}(Y \mid X=\cdot)$ in a regression setting
h^{*}	Minimiser of the risk R over \mathcal{H}
\hat{h}	Minimiser of the empirical risk \hat{R} over \mathcal{H}; this is random
$R(\hat{h})$	Risk $\mathbb{E}\left(\ell(\hat{h}(X), Y) \mid\left(X_{i}, Y_{i}\right)_{i=1}^{n}\right)$ for random \hat{h}; this is a random quantity depending on the data $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ used to train \hat{h}
$U \stackrel{d}{=} V$	U has the same distribution as V
ε_{i}	Typically a Rademacher random variable which takes values $1,-1$ each with probability $1 / 2$
$U \Perp V$	U is independent of V
$z_{1: n}$	Shorthand for $\left(z_{1}, \ldots, z_{n}\right)$
$\mathcal{F}\left(z_{1: n}\right)$	Set of 'behaviours' of \mathcal{F} on $z_{1: n}$ i.e. $\left\{\left(f\left(z_{1}\right), \ldots, f\left(z_{n}\right)\right): f \in \mathcal{F}\right\}$
$\hat{\mathcal{R}}\left(\mathcal{F}\left(z_{1: n}\right)\right)$	Empirical Rademacher complexity $\mathbb{E}\left(\left.\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(Z_{i}\right) \right\rvert\, Z_{1: n}=z_{1: n}\right)=$ $\mathbb{E}\left(\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(z_{i}\right)\right)$
$\mathcal{R}_{n}(\mathcal{F})$	Rademacher complexity $\mathbb{E} \hat{\mathcal{R}}\left(\mathcal{F}\left(Z_{1: n}\right)\right)$
$s(\mathcal{H}, n)$	Shattering coefficient $\max _{x_{1: n} \in \mathcal{X}^{n}}\left\|\mathcal{H}\left(x_{1: n}\right)\right\|$
$\mathrm{VC}(\mathcal{H})$	VC dimension $\sup \left\{n \in \mathbb{N}: s(\mathcal{H}, n)=2^{n}\right\}$
$R_{\phi}(h)$	ϕ-risk $\mathbb{E} \phi(Y h(X))$ of h
$\hat{R}_{\phi}(h)$	Empirical ϕ-risk $\frac{1}{n} \sum_{i=1}^{n} \phi\left(Y_{i} h\left(X_{i}\right)\right)$ of h
conv S	Convex hull of set S
$\pi_{C}(x)$	Projection of x onto closed convex set C
$\partial f(x)$	Subdifferential of f at x

Review of least squares regression

Given $\Phi \in \mathbb{R}^{n \times d}$ of full column rank with i th row $\varphi_{i} \in \mathbb{R}^{d}$ and $y \in \mathbb{R}^{n}$, we have that

$$
\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\varphi_{i}^{\top} \beta\right)^{2}=\underset{\beta \in \mathbb{R}^{d}}{\arg \min }\|y-\Phi \beta\|_{2}^{2}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y .
$$

Indeed, we have that $\|\Phi z\|_{2}^{2}=z^{\top} \Phi^{\top} \Phi z=0$ if and only if $z=0$, so $\Phi^{\top} \Phi$ is invertible. Then $P:=\Phi\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top}$ is an orthogonal projection matrix onto the columns space of Φ (one can easily check that is is symmetric and $P^{2}=P$). Thus

$$
\begin{aligned}
\|y-\Phi \beta\|_{2}^{2} & =\|y-P Y+P y-\Phi \beta\|_{2}^{2} \\
& =\|(I-P) y\|_{2}^{2}+\|P y-\Phi \beta\|_{2}^{2}
\end{aligned}
$$

since the cross term

$$
\{(I-P) y\}^{\top}(P y-\Phi \beta)=y^{\top}(I-P)(P y-\Phi \beta)=0
$$

as $I-P$ sends everything in the column space of Φ to 0 . [Note that this is a generalisation of the decomposition

$$
\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}+n(\mu-\bar{y})^{2}
$$

where $\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$; see for example the first display in the proof of Theorem 2, or the alternative expression for Q_{m} on page 9 . To see the correspondence, take Φ to be a $n \times 1$ matrix of ones.] Thus to minimise the least squares term we require

$$
\Phi\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y=\Phi \beta
$$

which multiplying on the left by $\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top}$ gives that the minimiser is $\hat{\beta}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y$.
An alternative derivation involves differentiating the least squares objective with respect to β to give gradient vector

$$
\frac{\partial}{\partial \beta}\|y-\Phi \beta\|_{2}^{2}=-2 \Phi^{\top}(y-\Phi \beta)
$$

Setting this to 0 once more gives the minimiser $\hat{\beta}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} y$. Indeed, the objective is strictly convex as the Hessian matrix $2 \Phi^{\top} \Phi$ is positive definite, so this must be the unique minimiser of the objective.

