Table of notation

- ℓ Loss function
- $\mathcal{H}, \mathcal{F} \text{ or } \mathcal{B}$ Classes of functions
 - R(h) Risk $\mathbb{E}(\ell(h(X), Y))$ for fixed h
 - $\hat{R}(h)$ Empirical risk $\frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)$
 - h_0 Typically used to denote a minimiser of the risk over all functions h: $\mathcal{X} \to \mathcal{Y}$ e.g. a Bayes classifier in the classification setting or $\mathbb{E}(Y | X = \cdot)$ in a regression setting
 - h^* Minimiser of the risk R over \mathcal{H}
 - \hat{h} Minimiser of the empirical risk \hat{R} over \mathcal{H} ; this is random
 - $R(\hat{h}) \qquad \text{Risk } \mathbb{E}(\ell(\hat{h}(X), Y) \mid (X_i, Y_i)_{i=1}^n) \text{ for } random \ \hat{h}; \text{ this is a random quantity} \\ \text{depending on the data } (X_i, Y_i)_{i=1}^n \text{ used to train } \hat{h}$

$$U \stackrel{d}{=} V$$
 U has the same distribution as V

- ε_i Typically a Rademacher random variable which takes values 1, -1 each with probability 1/2
- $U \perp \!\!\!\perp V$ U is independent of V
- $z_{1:n}$ Shorthand for (z_1, \ldots, z_n)
- $\mathcal{F}(z_{1:n})$ Set of 'behaviours' of \mathcal{F} on $z_{1:n}$ i.e. $\{(f(z_1), \ldots, f(z_n)) : f \in \mathcal{F}\}$
- $\hat{\mathcal{R}}(\mathcal{F}(z_{1:n})) \quad \text{Empirical Rademacher complexity } \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(Z_{i}) \mid Z_{1:n} = z_{1:n}\right) = \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(z_{i})\right)$
 - $\mathcal{R}_n(\mathcal{F})$ Rademacher complexity $\mathbb{E}\hat{\mathcal{R}}(\mathcal{F}(Z_{1:n}))$
 - $s(\mathcal{H}, n)$ Shattering coefficient $\max_{x_{1:n} \in \mathcal{X}^n} |\mathcal{H}(x_{1:n})|$
 - $VC(\mathcal{H})$ VC dimension $\sup\{n \in \mathbb{N} : s(\mathcal{H}, n) = 2^n\}$
 - $R_{\phi}(h) \qquad \phi$ -risk $\mathbb{E}\phi(Yh(X))$ of h
 - $\hat{R}_{\phi}(h)$ Empirical ϕ -risk $\frac{1}{n} \sum_{i=1}^{n} \phi(Y_i h(X_i))$ of h
 - $\operatorname{conv} S$ Convex hull of set S
 - $\pi_C(x)$ Projection of x onto closed convex set C
 - $\partial f(x)$ Subdifferential of f at x

Review of least squares regression

Given $\Phi \in \mathbb{R}^{n \times d}$ of full column rank with *i*th row $\varphi_i \in \mathbb{R}^d$ and $y \in \mathbb{R}^n$, we have that

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n (y_i - \varphi_i^\top \beta)^2 = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \|y - \Phi\beta\|_2^2 = (\Phi^\top \Phi)^{-1} \Phi^\top y.$$

Indeed, we have that $\|\Phi z\|_2^2 = z^{\top} \Phi^{\top} \Phi z = 0$ if and only if z = 0, so $\Phi^{\top} \Phi$ is invertible. Then $P := \Phi(\Phi^{\top} \Phi)^{-1} \Phi^{\top}$ is an orthogonal projection matrix onto the columns space of Φ (one can easily check that is is symmetric and $P^2 = P$). Thus

$$\begin{aligned} \|y - \Phi\beta\|_2^2 &= \|y - PY + Py - \Phi\beta\|_2^2 \\ &= \|(I - P)y\|_2^2 + \|Py - \Phi\beta\|_2^2 \end{aligned}$$

since the cross term

$$\{(I-P)y\}^{\top}(Py-\Phi\beta) = y^{\top}(I-P)(Py-\Phi\beta) = 0$$

as I - P sends everything in the column space of Φ to 0. [Note that this is a generalisation of the decomposition

$$\sum_{i=1}^{n} (y_i - \mu)^2 = \sum_{i=1}^{n} (y_i - \mu)^2 + n(\mu - \bar{y})^2$$

where $\bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$; see for example the first display in the proof of Theorem 2, or the alternative expression for Q_m on page 9. To see the correspondence, take Φ to be a $n \times 1$ matrix of ones.] Thus to minimise the least squares term we require

$$\Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top}y = \Phi\beta$$

which multiplying on the left by $(\Phi^{\top}\Phi)^{-1}\Phi^{\top}$ gives that the minimiser is $\hat{\beta} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}y$.

An alternative derivation involves differentiating the least squares objective with respect to β to give gradient vector

$$\frac{\partial}{\partial \beta} \|y - \Phi\beta\|_2^2 = -2\Phi^\top (y - \Phi\beta)$$

Setting this to 0 once more gives the minimiser $\hat{\beta} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} y$. Indeed, the objective is strictly convex as the Hessian matrix $2\Phi^{\top} \Phi$ is positive definite, so this must be the unique minimiser of the objective.