STOCHASTIC CALCULUS AND APPLICATIONS

Roland Bauerschmidt (rb812@cam.ac.uk), Daniel Heydecker (dh489@cam.ac.uk)

Problem 1. Suppose that $(Z_t)_{t\geq 0}$ is a continuous local martingale which is strictly positive almost surely. Show that there is a unique continuous local martingale *M* such that $Z = \mathcal{E}(M)$, where

$$\mathcal{E}(M)_t = \exp(M_t - \frac{1}{2} \langle M \rangle_t).$$

Problem 2. Let *M* be a continuous local martingale with $M_0 = 0$. For any a, b > 0, show that

$$\mathbb{P}\left(\sup_{t\geq 0}M_t\geq a, \langle M\rangle_{\infty}\leq b\right)\leq \exp\left(-\frac{a^2}{2b}\right).$$

Problem 3. Let *B* be a standard Brownian motion and, for a, b > 0, let $\tau_{a,b} = \inf\{t \ge 0 : B_t + bt = a\}$. Use Girsanov's theorem to prove that the density of $\tau_{a,b}$ is given by

$$a(2\pi t^3)^{-1/2} \exp(-(a-bt)^2/2t).$$

Problem 4. Suppose that *M* is a continuous local martingale with $\langle M \rangle_t \to \infty$ almost surely as $t \to \infty$. Show that $M_t / \langle M \rangle_t \to 0$ as $t \to \infty$ and conclude that $\mathcal{E}(M)_t \to 0$ almost surely.

Problem 5. [Gronwall's lemma] Let T > 0 and let f be a non-negative, bounded, measurable function on [0, T]. Suppose that there exist $a, b \ge 0$ such that

$$f(t) \le a + b \int_0^t f(s) ds$$
 for all $t \in [0, T]$.

Show that $f(t) \le ae^{bt}$ for all $t \in [0, T]$.

Problem 6. Suppose that X is a continuous local martingale with quadratic variation

$$\langle X \rangle_t = \int_0^t A_s ds$$

for a non-negative, previsible process $(A_t)_{t\geq 0}$. Show that there exists a Brownian motion *B* (possibly defined on a larger probability space) such that

$$X_t = \int_0^t A_s^{1/2} dB_s.$$

Problem 7. Suppose that σ and *b* are Lipschitz. Explain why uniqueness in law holds for the SDE $dX_t = \sigma(X_t)dB_t + b(X_t)dt$.

Problem 8. Suppose that $\mathbb{Q} \ll \mathbb{P}$. Show that if $X_n \to X$ in probability with respect to \mathbb{P} , then $X_n \to X$ in probability with respect to \mathbb{Q} .

Problem 9. Suppose that σ , b and σ_n , b_n for $n \in \mathbb{N}$ are Lipschitz with constant K uniformly in n. Suppose that $\sigma_n \to \sigma$ and $b_n \to b$ uniformly. Suppose that X and X^n are defined by

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x \tag{1}$$

$$dX_t^n = \sigma_n(X_t^n) dB_t + b_n(X_t^n) dt, \quad X_0^n = x.$$
⁽²⁾

Show for each t > 0 that

$$\mathbb{E}\left(\sup_{0\leq s\leq t}|X_s^n-X_s|^2\right)\to 0\quad\text{as}\quad n\to\infty.$$

Bonus: Suppose that b_n , σ_n are continuous, and b, σ are Lipschitz. Suppose that X^n still satisfy (1). What happens now?

Problem 10. Let *b* be bounded and σ be bounded and continuous.

(*i*) Suppose that X is a weak solution of the SDE $dX_t = b(X_t)dt + \sigma(X_t)dW_t$. Show that the process

$$f(X_t) - \int_0^t \left(b(X_s) f'(X_s) - \frac{1}{2} \sigma^2(X_s) f''(X_s) \right) ds$$

is a local martingale for all $f \in C^2$.

(*ii*) Let X be a continuous, adapted process such that

$$f(X_t) - \int_0^t \left(b(X_s) f'(X_s) - \frac{1}{2}\sigma^2(X_s) f''(X_s) \right) ds$$

is a local martingale for each $f \in C^2$. Suppose that $\sigma(x) > 0$ for all x. Show that there exists a Brownian motion such that $dX_t = b(X_t)dt + \sigma(X_t)dW_t$. (Hint: use Problem 6.)

Problem 11. Let *W* be a standard Brownian motion.

(*i*) Let $B_t = W_t - tW_1$. Show that $(B_t)_{t \in [0,1]}$ is a continuous, mean-zero Gaussian process. What is the covariance $\mathbb{E}[B_s B_t]$?

(ii) Is B adapted to the filtration generated by W?

(iii) Let

$$dX_t = -\frac{X_t}{1-t}dt + dW_t, \quad X_0 = 0.$$

Verify that

$$X_t = (1-t) \int_0^t \frac{dW_s}{1-s}$$
 for $0 \le t < 1$.

Show that $X_t \to 0$ as $t \uparrow 1$.

(*iv*) Show that X is a continuous, mean-zero Gaussian process with the same covariance as B, i.e., X is a Brownian bridge.

Problem 12 (\star). Using the results of this course, give a *short* proof of the reflection principle: if *T* is a stopping time and *B* is a standard Brownian motion, then

$$W_t = \begin{cases} B_t & t \le T; \\ 2B_T - B_t & t > T. \end{cases}$$

is also a standard Brownian Motion.