STOCHASTIC CALCULUS AND APPLICATIONS

Roland Bauerschmidt (rb812@cam.ac.uk), Daniel Heydecker (dh489@cam.ac.uk)

EXAMPLE SHEET 2

Lent 2018

Problem 1. Suppose that *M* is a continuous local martingale with $M_0 = 0$. Show that *M* is an L^2 -bounded martingale if and only if $\mathbb{E}(\langle M \rangle_{\infty}) < \infty$.

Problem 2.

(*i*) Suppose that M, N are independent continuous local martingales. Show that $\langle M, N \rangle = 0$. In particular, if $B^{(1)}$ and $B^{(2)}$ are the coordinates of a standard Brownian motion in \mathbb{R}^2 , this shows that $\langle B^{(1)}, B^{(2)} \rangle_t = 0$ for all $t \ge 0$.

(*ii*) Let *B* be a standard Brownian motion in \mathbb{R} and let *T* be a stopping time which is a.s. not constant. By considering B^T and $B - B^T$, show that the converse to the previous part is false. Hint: show that *T* is measurable with respect to the σ -algebras generated by both B^T and $B - B^T$.

Problem 3. (Burkholder inequality) Fix $p \ge 2$ and let M be a continuous local martingale with $M_0 = 0$. Use Itô's formula, Doob's inequality, and Hölder's inequality to show that there exists a constant $C_p > 0$ such that

$$\mathbb{E}\left(\sup_{0\leq s\leq t}|M_s|^p\right)\leq C_p\mathbb{E}\big(\langle M\rangle_t^{p/2}\big).$$

Problem 4. Suppose that $f: [0, \infty) \to \mathbb{R}$ is a continuous function. Show that if f has finite variation then it has zero quadratic variation. Conversely, show that if f has finite and positive quadratic variation then it must be of infinite variation.

Problem 5. Let B be a standard Brownian motion. Use Itô's formula to show that the following are martingales with respect to the filtration generated by B.

(i)
$$X_t = \exp(\lambda^2 t/2) \sin(\lambda B_t)$$

- (*ii*) $X_t = (B_t + t) \exp(-B_t t/2)$
- (*iii*) $X_t = \exp(B_t t/2)$

Problem 6. Let $h: [0, \infty) \to \mathbb{R}$ be a measurable function which is square-integrable when restricted to [0, t] for each t > 0 and let *B* be a standard Brownian motion. Show that the process $H_t = \int_0^t h(s) dB_s$ is Gaussian and compute its covariance. (A real-valued process (X_t) is Gaussian if for any finite family $0 \le t_1 < t_2 < \cdots < t_n < \infty$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ is Gaussian).

Problem 7. Show that convergence in $(\mathcal{M}_c^2, \|\cdot\|)$ implies ucp convergence.

Problem 8. Show that the covariation $\langle \cdot, \cdot \rangle$ is symmetric and bilinear. That is, if M_1, M_2, M_3 are continuous local martingales and $a \in \mathbb{R}$, then

$$\langle aM_1 + M_2, M_3 \rangle = a \langle M_1, M_3 \rangle + \langle M_2, M_3 \rangle.$$

Problem 9. Let B be a standard Brownian motion and let

$$\widehat{B}_t = B_t - \int_0^t \frac{B_s}{s} ds.$$

(*i*) Show that \widehat{B} is not a martingale in the filtration generated by *B*.

(*ii*) Show that \widehat{B} is a martingale in its own filtration by showing that it is a Brownian motion. [Hint: show that \widehat{B} is a continuous Gaussian process and identify its mean and covariance.]

Problem 10. Fix $d \ge 3$ and let *B* be a Brownian motion in \mathbb{R}^d starting at $B_0 = \overline{x} = (x, 0, ..., 0) \in \mathbb{R}^d$ for some x > 0. Let $|\cdot|$ denote the Euclidean norm on \mathbb{R}^d . For each a > 0, let $\tau_a = \inf\{t > 0 : |B_t| = a\}$. (*i*) Let $D = \mathbb{R}^d \setminus \{0\}$ and let $h: D \to \mathbb{R}$ be defined by $h(x) = |x|^{2-d}$. Show that *h* is harmonic on *D*

and that $M_t = |B_t^{\tau_a}|^{2-d}$ is a local martingale for all $a \ge 0$. For which values of x is M a true martingale?

(*ii*) Use the previous part to show that for any a < b such that 0 < a < x < b,

$$\mathbb{P}_{\overline{x}}[\tau_a < \tau_b] = \frac{\phi(b) - \phi(x)}{\phi(b) - \phi(a)}$$

where $\phi(u) = u^{2-d}$. Conclude that if x > a > 0, then

$$\mathbb{P}_x[\tau_a < \infty] = (a/x)^{d-2}.$$

Problem 11.

(*i*) Let $f : \mathbb{C} \to \mathbb{C}$ be analytic and let $Z_t = X_t + iY_t$ where (X, Y) is a Brownian motion in \mathbb{R}^2 . Use Itô's formula to show that M = f(Z) is a local martingale in \mathbb{R}^2 . Show further that M is a time-change of Brownian motion in \mathbb{R}^2 .

(*ii*) Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and fix $z \in \mathbb{D}$. What is the hitting distribution for Z on ∂D in the case that $Z_0 = 0$? By applying a Möbius transformation $\mathbb{D} \to \mathbb{D}$ and using the previous part, determine the hitting distribution for Z on $\partial \mathbb{D}$.

Problem 12. (\star) Let $U \subset \mathbb{R}^d$ be an open set. We say that a function $u \in L^{\infty}_{loc}(U)$ satisfies the *mean value property* if, whenever $S(x, r) \subset U$, we have

$$u(x) = \int_{S(x,r)} u(y) \mu_{x,r}(dy)$$
(1)

where we write $\mu_{x,r}$ for the uniform distribution on the sphere $S(x, r) = \partial B(x, r)$.

(*i*) Suppose $u \in C^2(U)$ is harmonic. Show that u satisfies (1).

(*ii*) Suppose, conversely, that *u* satisfies (1). For any compact $K \subset U$, express $u|_K$ as a convolution, and deduce that $u \in C^{\infty}(U)$.

(*iii*) Suppose *u* satisfies (1). Fix $x \in U$ and r > 0 such that $\overline{B(x, r)} \subset U$. Let *B* be a *d*-dimensional Brownian Motion started at *x*, and let $\tau_r = \inf\{t > 0 : |x - B_t| = r\}$. Show that

$$\forall t \ge 0, \qquad \mathbb{E}\left(\int_0^{t \wedge \tau_r} \Delta u(B_s) ds\right) = 0.$$

Deduce that u is harmonic. Hence (1) is an equivalent characterisation of harmonic functions.

Problem 13. (*) (Liouville's Theorem.) Suppose $u : \mathbb{R}^d \to \mathbb{R}$ is bounded and harmonic. Let *B* be a Brownian motion starting at 0.

(*i*) Show that $M_t = u(B_t)$ is a bounded martingale. Conclude that M_t converges, almost surely and in L^1 , to a random variable M_{∞} .

(*ii*) Recall Blumenthal's 0 - 1 law. Deduce that the *tail* σ -algebra

$$\tau = \cap_{t \ge 0} \sigma(B_s : s \ge t)$$

contains only events of probability 0 and 1. Deduce that M_{∞} is almost surely constant.

(*iii*) Using the relationship between M_{∞} and M_1 , deduce that M_1 is almost surely constant. Conclude that u is constant.