1. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain. Show that, conditioned on $X_{m}=i, Z=\left(Z_{n}\right)_{n \geq 0}$ given by $Z_{n}=X_{n+m}$ is a Markov chain with starting state i.
2. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a sequence of independent random variables. Show that X is a Markov chain. Under what condition is this chain homogeneous?
3. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a sequence of fair coin tosses (with the two possible outcomes interpreted as 0 and 1) and set $M_{n}=\max _{k \leq n} X_{k}$. Show that $\left(M_{n}\right)_{n \geq 0}$ is a Markov chain and find the transition probabilities.
4. (Harder) Let $S=\left(S_{n}\right)_{n \geq 0}$ be a simple (possibly asymmetric) random walk on \mathbb{Z} with $S_{0}=0$. Show that $X_{n}=\left|S_{n}\right|$ defines a Markov chain and find its transition probabilities. Let $M_{n}=\max _{k \leq n} S_{k}$ and show that $Y_{n}=M_{n}-S_{n}$ defines a Markov chain.
5. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain and let $\left(n_{r}\right)_{r \geq 0}$ be an unbounded increasing sequence of positive integers. Show that $Y_{r}=X_{n_{r}}$ defines a (possibly inhomogeneous) Markov chain. Find the transition probabilities of Y when $n_{r}=2 r$ and X is a simple random walk.
6. Let $X=\left(X_{n}\right)_{n \geq 0}$ and $Y=\left(Y_{n}\right)_{n \geq 0}$ be Markov chains on the integers \mathbb{Z}. Is $Z_{n}=X_{n}+Y_{n}$ necessarily a Markov chain. Justify your answer.
7. A flea hops about at random on the vertices of a triangle where each hop is from the currently occupied vertex of one of the other two vertices each with probability $1 / 2$. Find the probability that after n hops the flea is back where it started.
Now suppose that the flea is twice as likely to jump clockwise as anticlockwise. What is the probability that after n hops the flea is back where it started now? [Hint: $1 / 2 \pm i /(2 \sqrt{3})=(1 / \sqrt{3}) e^{ \pm i \pi / 6}$.]
8. A die is 'fixed' so that when it is rolled the score cannot be the same as the previous score, all other scores having probability $1 / 5$. If the first score is 6 , what is the probability p that the nth score is 6 ? What is the probability that the nth score is j, where $j \neq 6$?

Suppose instead that the die cannot score one greater $(\bmod 6)$ than the previous score, all other five scores having equal probability. What is the new value of p ? [Hint: Think about the relationship between the two dice.]
9. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on $\{1,2,3\}$ with transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{2}{3} & \frac{1}{3} \\
p & 1-p & 0
\end{array}\right] .
$$

Find $\mathbb{P}\left[X_{n}=1 \mid X_{0}=1\right]$ in each of the following cases: (a) $p=1 / 16$, (b) $p=1 / 6$, (c) $)^{*} p=1 / 12$.
10. Identify the communicating classes of the transition matrix

$$
P=\left[\begin{array}{ccccc}
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right] .
$$

Which of the classes are closed?
11. Show that every transition matrix on a finite state space has at least one closed communicating class. Find an example of a transition matrix with no closed communicating class.
12. A gambler has $£ 2$ and needs to increase it to $£ 10$ in a hurry. She can play a game with the following rules: a fair coin is tossed; if a player bets on the side which actually turns up, she wins a sum equal to her stage, and her stake is returned; otherwise she loses her stake. The gambler decides to use a bold strategy in which she stakes all her money if she has $£ 5$ or less and otherwise stages just enough to increase her capital, if she wins, to $£ 10$.
Let $X_{0}=2$ and $X=\left(X_{n}\right)_{n \geq 0}$ be her capital after n throws. Prove that the gambler will achieve her aim with probabilty $1 / 5$. What is the expected number of tosses until she either achieves her aim or loses her capital?
13. (Optional) Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on $\{0,1, \ldots\}$ with transition probabilities given by

$$
p_{0,1}=1, \quad p_{i, i+1}+p_{i, i-1}=1, \quad p_{i, i+1}=\left(\frac{i+1}{i}\right)^{2} p_{i, i-1}, \quad(i \geq 1) .
$$

Show that if $X_{0}=0$ then the probability that $X_{n} \geq 1$ for all $n \geq 1$ is $6 / \pi^{2}$.
14. (Optional) Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables with $\mathbb{P}\left[Y_{1}=1\right]=\mathbb{P}\left[Y_{1}=-1\right]=1 / 2$ and set $X_{0}=1, X_{n}=X_{0}+Y_{1}+\ldots Y_{n}$ for $n \geq 1$. Define

$$
H_{0}=\inf \left\{n \geq 0: X_{n}=0\right\}
$$

Find the probability generating function $\phi(s)=\mathbb{E}\left[s^{H_{0}}\right]$.
Suppose the common distribution of the Y_{i} is changed to $\mathbb{P}\left[Y_{1}=2\right]=\mathbb{P}\left[Y_{1}=-1\right]=1 / 2$. Show that the probability generating function ϕ now satisfies

$$
s \phi^{3}-2 \phi+s=0
$$

