Applied Probability (Lent 2021)

1 Poisson and birth processes 2
1.1 Poisson process 2
1.2 Birth processes 7
2 Continuous-time Markov processes 14
2.1 Right-continuity and Markov property 14
2.2 Construction of Markov processes 18
2.3 Explosion 25
2.4 Kolmogorov equations - finite state space 28
2.5 Kolmogorov equations - countable state space 35
3 General properties of Markov processes 43
3.1 Communicating classes 43
3.2 Recurrence and transience 44
3.3 Hitting times 46
3.4 Invariant distributions 48
3.5 Positive recurrence and convergence to equilibrium 52
3.6 Reversibility 58
4 Birth-death processes and Markovian queues 63
4.1 Birth-death processes 63
4.2 M/M/k queues 69
4.3 Queues in tandem and Jackson networks 74
$4.4 \mathrm{M} / \mathrm{G} / 1$ queues 82
5 Renewal processes and non-Markovian queues 88
5.1 Renewal processes and size biased picking 88
5.2 Renewal processes - equilibrium 92
5.3 Renewal-reward processes 97
5.4 Little's formula 100
6 Spatial Poisson processes 103
6.1 Definition and superposition 103
6.2 Mapping and conditioning 108
6.3 Colouring 113
6.4 Rényiś and Campbell-Hardy theorem 117
6.5 Applications 123
Primary references:N. Berestycki and P. Sousi, Applied Probability, Lecture notes from previous yearsJ. Norris, Markov Chains, Cambridge University Press
G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press

Please report errors and comments to Roland Bauerschmidt (rb812@cam.ac.uk).

1. Poisson and birth processes
1.1. Poisson process

Geiger
counter
$N(t)$
Deft. A Poisson process with intensity (or rate) λ is a random process $N=(N(t)$: $t \geq(\theta)$ taking values in $\{0,1,2, \ldots\}$ such that
(a) $N(0)=0, N(s) \leq N(t)$ if $s<t$;
(b) $\mathbb{P}(N(t+h)=n+m \mid N(t)=n)= \begin{cases}\lambda h+0(h) & (m=1) \\ 0(h) & (m>1) \\ 1-\lambda h+0(h) & (m=0)\end{cases}$
(c) if $s<t$, then $\underbrace{N(t)-N(s)}$ is independent of $N(s)$ events in $(s, t]$ events in $[0,5]$
Existence: later
Thy. $N(t)$ has Poisson (λt) distribution:

$$
\begin{equation*}
\underbrace{\mathbb{P}(N(t)=n)}_{P_{n}(t)}=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} . \tag{+}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \begin{aligned}
& P_{n}(t+h)=\mathbb{P}(N(t+h)=n)= \sum_{m} \mathbb{P}(N(t+h)=n \mid N(t)=m) \\
& \mathbb{P}(N(t)=m)
\end{aligned} \\
& \\
& \text { We'll be more careful } \\
& \begin{array}{l}
\text { about the infinite sum } \\
\text { in the general setting } \\
\text { (Section 2) }
\end{array} \\
& \\
& \\
& +\mathbb{P}(\mathbb{P}(t)=n-1)(\lambda h+o(h)=n)(1-\lambda h+o(h))
\end{aligned}
$$

to (h)

$$
\Rightarrow \frac{p_{n}(t+h)-p_{n}(t)}{h}=p_{n-1}(t) \lambda-p_{n}(t) \lambda+o(1)
$$

$$
\begin{equation*}
\Rightarrow p_{n}^{\prime}(t)=\lambda\left(p_{n-1}(t)-p_{n}(t)\right) \quad \text { if } n \geq 1 \tag{x}
\end{equation*}
$$

$$
p_{0}^{\prime}(t)=-\lambda p_{0}(t)
$$

Together with $P_{n}(0)=\delta_{\text {no }}$ the system has a unique solution.
Method A: Induction

$$
P_{0}^{\prime}=-\lambda p_{0}, P_{0}(0)=1 \Rightarrow p_{0}(t)=e^{-\lambda t} \Rightarrow(t) \text { with } n=0
$$

Assume (t) holds for some n. Then

$$
\left.p_{n+1}^{\prime}=-\lambda\left(p_{n+1}-\frac{(\lambda t)^{n}}{n!e^{-\lambda t}}\right), \quad p_{n+1}(t) \quad 0\right)=0
$$

has unique solution $p_{n+1}(t)=\frac{(\lambda t)^{n+1}}{(n+1)!} e^{-\lambda t}$.
Method B : Generating function.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
G(s, t) & =\sum_{n=0}^{\infty} p_{n}(t) s^{n}
\end{aligned}=\mathbb{E}\left(s^{N(t)}\right), s \in[0,1) . \\
& \Rightarrow \frac{\partial}{\partial t} G(s, t)=\sum_{n=0}^{\infty} p_{n}^{\prime}(t) s^{n}
\end{aligned}=\sum_{n=0}^{\infty} \lambda\left(p_{n-1}(t)-p_{n}(t)\right) s^{n} .
$$

Let T_{0}, T_{1}, \ldots be the arrival times

$$
T_{0}=0, \quad T_{n}=\inf \{t: N(t)=n\}
$$

The inter arrival times are clefined as

$$
\begin{aligned}
U_{n} & =T_{n+1}-T_{n} \\
\Rightarrow T_{n} & =\sum_{i=0}^{n-1} U_{i}, \quad N(t)=\max \left\{n: T_{n} \leq t\right\} .
\end{aligned}
$$

Prop. The U_{0}, U_{1}, \ldots are independent and each have Exp (λ) distribution.
Proof.

$$
\begin{aligned}
& \mathbb{P}\left(U_{0}>t\right)=\mathbb{P}(N(t)=0)=e^{-\lambda t} \Rightarrow U_{0} \sim \operatorname{Exp}(\lambda t) \\
& \Rightarrow \mathbb{P}\left(U_{1}>t \mid U_{0}=t_{0}\right)=\mathbb{P}(\underbrace{N\left(t_{0}+t\right)-N\left(t_{0}\right)}=0) \\
&-N\left(t_{0}\right) \text { again Poisson } \\
& \text { process } \\
&=e^{-\lambda t \Rightarrow} \Rightarrow U_{1} \sim \operatorname{Exp}(\lambda) \\
& U_{1} \perp U_{0}
\end{aligned}
$$

The general case follows analogously by induction.
Exercise. Let U_{0}, U_{1}, \ldots be i.i.d. Exp (λ). Then

$$
T_{n}=\sum_{i=0}^{n-1} U_{i}, \quad N(t)=\max \left\{n: T_{n} \leq t\right\}
$$

defines a Poisson process of intensity λ.

Exercise. T_{n} is a $\Gamma(\lambda, n)$ random variable.

$$
\Rightarrow \mathbb{P}(N(t)=n)=\mathbb{P}\left(T_{n}<t<T_{n+1}\right)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} .
$$

Prop. The distribution of $\left(T_{1}, \ldots, T_{n}\right)$ conditional on $N(t)=n$ is the same as the order statistics of n uniform $[0, t]$ random variables.

Proof By rescaling, WLOG, $t=1$.
$U=\left(U_{0}, \ldots, U_{n-1}\right)$ has density function

$$
f(u)=\lambda^{n} \exp \left(-\lambda \sum_{i=0}^{n-1} u_{i}\right), \quad u \in[0, \infty)^{n} .
$$

$T=\left(T_{1}, \ldots, T_{n}\right)$ has density function

$$
g(t)=\lambda^{n} \exp \left(-\lambda t_{n}\right) \mathcal{1}\left\{0<t_{1}<\cdots t_{n}\right\}
$$

for any $A \in \mathbb{R}^{n}$, thus

$$
\begin{aligned}
\mathbb{P}(T \in A \mid N(1)=n) & =\frac{\mathbb{P}(N(1)=n, T \in A)}{\mathbb{P}(N(1)=n)} \\
\mathbb{P}(N(1)=n, T \in A) & =\int_{A} \frac{\mathbb{P}(N(1)=n \mid T=t)}{\mathbb{P}\left(N(1)=n \mid T_{n}=t_{n}\right)} g(t) d t \\
& =\mathbb{P}\left(U_{n}>1-t_{n}\right) 1_{t_{n} \leq 1} \\
& =e^{-\lambda\left(1-t_{n}\right)} 1_{t_{n} \leq 1}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathbb{P}(T \in A \mid N(1)=n) & =\frac{n!}{\lambda^{n}} e^{\lambda} \int_{A} e^{-\lambda\left(1-t_{n}\right)} \frac{1\left\{0<t_{<}<\cdots<t_{n}<1\right\}}{\lambda^{n} e^{-\lambda t_{n}}} \\
& =n!\int_{A} 1\left\{0<t_{,}<\cdots<t_{n} \leq 1\right\} .
\end{aligned}
$$

Exercise The last RHS is the density function of the order statistics of n i.i.d. uniform $[0,1] r, y$.
1.2. Birth processes

Def. A birth process with intensities (or rates) λ_{n} is a random process $N=(N(t): t \geq 0)$ taking values in $\{0,1,2, \ldots\}$ such that
(a) $N(s) \leq N(t)$ if $s<t$;
(b) $\mathbb{P}(N(t+h)=n+m \mid N(t)=n)= \begin{cases}\lambda h+0(h) & (m=1) \\ 0(h) & (m>1) \\ 1-\lambda h+0(h) & (m=0)\end{cases}$
(c) if $s<t$, then $N(t)-N(s)$ is independent of $N(s)$

Examples. (i) Poisson process: $\lambda_{n}=\lambda \not \forall n$.
(ii) Simple birth: $\lambda_{n}=n \lambda$

Motivation: $N(t)$ individuals each give birth at rate λ.

$$
\begin{aligned}
\Rightarrow & \mathbb{P}(\# \text { births in }(t, t+h)=m \mid N(t)=n) \\
& =\binom{n}{m}(\lambda h+o(h))^{m}(1-\lambda h+o(h))^{n-m} \\
& = \begin{cases}1-n \lambda h+o(h) & (m=0) \\
n \lambda h+o(h) & (m=1) \\
o(h) & (m>1)\end{cases}
\end{aligned}
$$

(iii) Simple birth with immigration: $\lambda_{n}=n \lambda+v$

Let T_{n} be the time of the n-th arrival.

$$
T_{\infty}=\lim _{n \rightarrow \infty} T_{n} \in[0,+\infty]
$$

Defy. The process N is non-explosive (or honest) if

$$
\mathbb{P}\left(T_{\infty}=+\infty\right)=1
$$

Thy. For a birth process with rates $\lambda_{n}>0$,

$$
\mathbb{P}\left(T_{\infty}=+\infty\right)= \begin{cases}1 & \text { if } \sum_{n=\infty}^{\infty} \frac{1}{\lambda_{n}}=+\infty \\ 0 & \text { if } \sum_{n=0}^{m} \frac{1}{\lambda_{n}}<\infty .\end{cases}
$$

Thus it is non-explosixe if $\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}}=+\infty$

Proof (i) Assume $\sum \frac{1}{\lambda_{n}}<\infty$.

$$
\begin{array}{r}
\Rightarrow \mathbb{E} T_{\infty}=\mathbb{E}\left(\sum_{i=0}^{\infty} U_{i}\right)=\sum_{i=0}^{\infty} \mathbb{E}\left(U_{i}\right)=\sum_{i=0}^{\infty} \frac{1}{\lambda_{i}}<\infty . \\
U_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)
\end{array}
$$

(analogous to Poisson, process).

$$
\Rightarrow \mathbb{P}\left(T_{\infty}=+\infty\right)=0
$$

(ii) Assume $\sum \frac{1}{\lambda_{n}}=\infty$.

Define $e^{-T_{\infty}}=\lim _{n \rightarrow \infty} e^{-T_{n}} \in[0,1]$.

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left(e^{-T_{\infty}}\right) & =\mathbb{E}\left(\prod_{i=0}^{\infty} e^{-u_{i}}\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{E}\left(\prod_{i=0}^{n} e^{-u_{i}}\right) \\
\text { monotonicity } & =\lim _{n \rightarrow \infty} \prod_{i=0}^{n} \underbrace{\mathbb{E}\left(e^{-u_{i}}\right)}_{\frac{1}{1+1 / \lambda_{i}}}=\prod_{i=0}^{\infty} \frac{1}{1+1 / \lambda_{i}}
\end{aligned}
$$

Since $\prod_{i=0}^{n}\left(1+\frac{1}{\lambda_{i}}\right) \geq 1+\sum_{i=0}^{n} \frac{1}{\lambda_{i}}$ (using $\lambda_{i} \geq 0 \not \forall_{i}$)

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left(e^{-T_{\infty}}\right)=0 \\
& \Rightarrow \mathbb{P}\left(T_{\infty}=+\infty\right)=\mathbb{P}\left(e^{-T_{\infty}}=0\right)=1 \quad\left(\text { since } e^{-T_{\infty}} \geq 0\right)
\end{aligned}
$$

Let $p_{n, m}(t)=\mathbb{P}(X(t)=m \mid X(0)=n)$.
Prop. For $m<n, P_{n, m}(t)=0$, and for $m \geq n$, $P_{n, m}(t)$ satisfies the following systems of ODES':
(forward) $p_{n, m}^{\prime}(t)=\lambda_{m-1} p_{n, m-1}(t)-\lambda_{m} p_{n, m}(t)$
(backward) $p_{0, m}^{1}(t)=\lambda_{n} p_{n+1, m}(t)-\lambda_{n} p_{n, m}(t)$.
Sketch. For (forward), start from

$$
\begin{aligned}
P_{n, m}(t+h)=\sum_{k} \underbrace{\mathbb{P}(X(t)=k \mid X(0)=n)}_{P_{n, k}(t)} & \underbrace{\mathbb{P}(X(t+h)=m \mid X(t)-k)}_{P_{k, m}(h)} \\
& =1_{k=m}\left(1-\lambda_{m} h\right) \\
& +1_{k=m-1} \lambda_{m-1} h \\
& +0(h)
\end{aligned}
$$

For (backward), start from

$$
\begin{aligned}
& P_{n, m}(t+h)=\sum_{k} \underbrace{\mathbb{P}(X(h)=k \mid X(0)}_{P_{n, k}(h)}=n) \underbrace{\mathbb{P}(X(t+h)=m \mid X(h)-k)}_{P_{k, m}(t)} \\
&=1_{k=n}\left(1-\lambda_{n} h\right) \\
&+1_{k=n+1} \lambda_{n} h+o(h)
\end{aligned}
$$

and proceed analogously.
The. (forward) has a unique solution which satisfies (backward).
Proof. Existence and uniqueness to (forward) can be shown by induction:

$$
\begin{aligned}
m<n: & P_{n, m}(t)=0 \\
m=n: & P_{n, n}^{\prime}(t)=-\lambda_{n} P_{n, n}(t), \quad P_{n, n}(0)=1 \\
& \Rightarrow P_{n, n}(t)=e^{-\lambda_{n} t}
\end{aligned}
$$

By induction, if the unique solution for $P_{n, m}(t)$ when $m=n+k$, substitute it into (forward) for $m=n+k+1$ to see that there is also a unique solution for $m=n+k+1$.
Alternatively, we could have studied the Laplace transform

$$
\tilde{p}_{n, m}(\theta)=\int_{0}^{\infty} e^{-\theta t} p_{n, m}(t) d t .
$$

(forward) $P_{n, m}^{\prime}(t)=\lambda_{m-1} P_{n, m-1}(t)-\lambda_{m} P_{n, m}(t)$

$$
\Rightarrow \underbrace{\int_{0}^{\infty} e^{-\theta t} p_{n, m}^{\prime}(t) d t}_{\theta \tilde{p}_{n, m}(t)-p_{n, m}(0)}=\lambda_{m-1} \tilde{p}_{n, m-1}(\theta)-\lambda_{m} \tilde{p}_{n, m}(\theta)
$$

$$
\begin{aligned}
& \Leftrightarrow\left(\theta+\lambda_{m}\right) \tilde{p}_{n, m}(\theta)=\delta_{n, m}+\lambda_{m-1} \tilde{p}_{n, m-1}(\theta) \\
& \Leftrightarrow \tilde{p}_{n, m}(\theta)=\frac{\lambda_{m-1}}{\theta+\lambda_{m}} \frac{\lambda_{m-2}}{\theta+\lambda_{m-1}} \cdots \frac{1}{\theta+\lambda_{n}} \cdot(m>n)
\end{aligned}
$$

In principle, $p_{n, m}(t)$ can now be recovered by inverse Laplace transform.
Let $\pi_{n, m}$ It) be a solution to (backward)

$$
\begin{aligned}
& \tilde{\pi}_{n, m}(t)=\int_{0}^{\infty} e^{-\theta t} \pi_{n, m}(t) d t \\
\Rightarrow & \left(\theta+\lambda_{n}\right) \tilde{\pi}_{n, m}(\theta)=\delta_{n, m}+\lambda_{n} \widetilde{\Pi}_{n+1, m}(\theta) .
\end{aligned}
$$

Now note that $\tilde{P}_{n, m}$ satisfies this equation. Inverting Laplace transforms, it follows that $p_{n, m}$ satisfies (backward).

Remark Uniqueness to (backward) may fail when there is explosion.
It is always true (without proof) that

$$
p_{n, m}(t) \leq \pi_{n, m}(t)
$$

for p the unique solution to (forward) and π any solution to (backward).

Now when $\sum_{m} P_{n, m}(t)=1$ this implies $p=\pi$. However, $\sum_{m} P_{n, m}(t)<1$ is a possibility that corresponds to explosion $\left(\mathbb{P}\left(T_{0}=\infty\right)<1\right)$.
See Section 2.5 for more details.
2. Continuous-time Markov processes

From now on:

- I denotes a countable (or finite) state space;
- $(\Omega, \vartheta, \mathbb{P})$ is the probability space on which all relevant random variables are defined.
2.1. Right-continuity and Markov property

Doth $X=(X(t): t \geq 0)$ is a (nigh t-continuous) random process with values in I if
(a) for every $t \geq 0, X(t)$ is a random variable $X(t)=X(t, \omega), \omega \in \Omega$, with values in I;
(b) for every $\omega \in \Omega, t+x(t, \omega)$ is night-continuous $\forall \omega \forall t 子 \varepsilon: X(t, \omega)=X(s, \omega)$ for $t \leq s \leq t+\varepsilon$.

Example. In the construction as

$$
N(t)=\max \left\{n: T_{n} \leq z\right\}
$$

the Poisson process is right-continuous.

Fact. (without proof). A inght-continuous random process is determined by its finite-dimensional distritarions:

$$
P\left(X\left(t_{0}\right)=i, \ldots, X\left(t_{n}\right)=i_{n}\right), n \geq 0, t_{k} \geq 0, i_{k} \in I .
$$

For a inght-continuous random process, we can define as before the jump times

$$
T_{0}=0, \quad T_{n+1}=\inf \left\{t \geq T_{n}: X(t) \neq X\left(T_{n}\right)\right\}
$$

and the holding times

$$
\begin{aligned}
U_{n}= & T_{n+1}-T_{n} & & \text { if } T_{n}<\infty \\
& +\infty & & \text { if } T_{n}=+\infty .
\end{aligned}
$$

By night-continuity, $u_{n}>0$ almost surely but a process might explode. The explosion time is

$$
T_{\infty}=\sup _{n} T_{n}=\sum_{n} U_{n} \in(0,+\infty]^{\prime}
$$

Defy. A random process is minimal if $X(t)=i_{\infty} \quad$ for $t>T_{\infty}$
for some $i_{\infty} \in I$ (that we may adjoin to I).
 i_{∞}

Defy. A random process X has the Markov property (and is then called a Markov process)

$$
\begin{aligned}
& \mathbb{P}\left(X\left(t_{n}\right)=i_{n} \mid X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n-1}\right)=i_{n-1}\right) \\
= & \mathbb{P}\left(X\left(t_{n}\right)=i_{n} \mid X\left(t_{n-1}\right)=i_{n-1}\right)
\end{aligned}
$$

for all $i_{1}, \ldots, i_{n} \in I$ and $t_{1}<\cdots<t_{n}$.
Re. For any $h>0, Y_{n}=X(h n)$ defines a discrete. time Markov process.

Defy. The transition probabilities are

$$
p_{i j}(s, t)=\mathbb{P}(X(t)=j \mid X(s)=i), \quad s \leq t, i j \in I .
$$

A Markov process is homogeneous if. $P_{i j}(s, t)=P_{i j}(0, t-s)$ and we then write $p_{i j}(t-s)$.
Also write: $\left.\mathbb{P}_{i}=\mathbb{P} \cdot \mid X(0)=i\right)$ and $\mathbb{F}_{i}=\mathbb{E}(\cdot \mid X(0)=i)$.

From now on, all Markov processes will be homogeneous and as in the case of discrete time Markov chain is then characterised by

- its initial distribution $\lambda_{i}=P(X(0)=i), i \in I$.
- its transition matrix $P(t)=\left(P_{i j}(t)\right)_{i, j \in I}$.

Thy. $(P(t): t \geq 0)$ is a Markov semigroup:
(a) $P(0)=I$ (identity)
(b) $P(t)$ is a stochastic matrix: $p_{i j}(t) \geq 0, \sum_{j \in I} p_{i j}(t)=1$.
(c) $P(t+s)=P(t) P(s), t, s \geq 0$

Chapman-Kolmogoroy equations.
Aloof. Identical to the discrete-time setting. Eg. (c)

$$
\begin{aligned}
P_{i j}(t+s) & =\mathbb{P}(X(t+s)=j \mid X(0)=i) \\
& =\sum_{k} \mathbb{P}(X(t+s)=j \mid X(X)=i, X(t)=k) \times \\
& \quad \mathbb{P}(X(t)=k \mid X(0)=i) \\
\text { Mropority } & =\sum_{k} P_{k j}(s) P_{i k}(t)
\end{aligned}
$$

2.2. Construction of Markov processes

Defn $Q=\left(q_{i j}\right)_{i, j \in I}$ is called a Q-matrix if
(a) $0 \leq-q_{i i}<\infty$ for all i;
(b) $\infty>a_{i j} \geq 0$ for all $i \neq j$;
(c) $\sum_{j \in I} a_{i j}=0$ for all i.

Write $q_{i}=-q_{i i}=+\sum_{j \neq i}^{+ \text {typo corrected }} q_{i j}$.
Example Let $x \in \mathbb{R}^{I}$. Then

$$
(Q x)_{i}=\sum_{j \in I} q_{i j}\left(x_{j}-x_{i}\right)
$$

Defn. Let Q be a Q-matrix. Then $\Pi=\left(\pi_{i j}\right)_{i, j \in I}$ where

$$
\pi_{i j}= \begin{cases}\frac{q_{i j}}{q_{i}} 1_{i \neq j} & \left(q_{i} \neq 0\right) \\ 1_{i=j} & \left(q_{i}=0\right)\end{cases}
$$

is culled the jump matrix associated with Q.
Note that π is a stochastic matrix.

Defy. Let Q be a Q-matrix. Then a (minimal) random process X is a Markov process with generator Q if
(a) $Y_{n}:=X\left(T_{n}\right)$ is a discrete- -time Markov chain with transition matrix Π
(b) conditional on Y_{0}, \ldots, Y_{n}, the holding time $u_{n}=T_{n+1}-T_{n}$ is independent with

$$
u_{n} \sim \operatorname{Exp}\left(q_{y_{n}}\right) .
$$

We write $X \sim \operatorname{Markov}(\lambda, Q)$ if $X(0) \sim \lambda$.
Example. Birth processes are Markox (λ, Q) with $I=\mathbb{N}$ and

$$
\begin{aligned}
q_{i j} & =\lambda_{i} 1_{j=i+1} \quad(j \neq i) \\
\Rightarrow \pi_{i j} & =1_{j=i+1} \Rightarrow \quad Y_{n}=Y_{0}+n
\end{aligned}
$$

The, Let X be $\operatorname{Markov}(\lambda, Q)$. Then X has the Markov property.
The proof requires measure theory \rightarrow Norms, Section 6.5).

The ingredients are:

- The Markov property (discrete-time) for the jump chain Y
- The memonyless property of the exponential distribution?

$$
\mathbb{P}(E>t+s \mid E>s)=\mathbb{P}(E>t) \quad \forall s, t \geq 0
$$

iff $E \sim \operatorname{Exp}(\lambda)$ for some $\lambda \geq 0$.
Example. (Poisson process). $I=\mathbb{Z}, q_{i j}=\lambda 1_{j=i+1}$.
Condition on $X(s)=m$ and $\tilde{X}(t)=X(s+t)-X(s)$ We will show that X is again a Poisson process independent of ($\left.X\left(t^{\circ}\right): t<s\right)$ and thus the Markov properly holds.
indeed,

$$
\begin{aligned}
\left\{X_{s}=m\right\} & =\left\{T_{m} \leq s<T_{m+1}\right\} \\
& =\left\{T_{m} \leq s \mid \cap\left\{U_{m}>s-T_{m}\right\}\right.
\end{aligned}
$$

The interarrival times for X are

$$
\begin{aligned}
& \tilde{U}_{0}=U_{m}-\left(s-T_{m}\right) \\
& \tilde{U}_{n}=U_{n+m}
\end{aligned}
$$

Condition on T_{1}, \ldots, T_{m} and $\{X(s)=m\}$. Then $\left(U_{n}\right)$ are i.i.d $\operatorname{Exp}(\lambda) \underset{\vec{\varphi}}{\Rightarrow}\left(\tilde{U}_{n}\right)$ are i.i.d Exp (λ) memoryless properly and independent for \widetilde{U}_{0} of U_{0}, \ldots, U_{m-1}.
Condition only on $\{X \mid s)=m\}$. Then $\left(\tilde{U}_{n}\right)$ are still Exp (λ) and independent of U_{0}, \ldots, U_{m-1}.
Thus conditional on $\{X(s)=m\}$,

$$
\tilde{x}(t)=\max \left\{n: \tilde{T_{n}} \leq t\right\}
$$

is again a Poisson process independent of ($x(t)$) ts).

Deft. A random variable T with values in $[0,+\infty]$ is a stopping time for X if $\{T \leq t\}$ depends only on $(X(s): s \leq t)$.
Thu. (Strong Markov property). Let X be $\operatorname{Markov}(\lambda, Q)$ and T a stopping time for X. Then conditional on $T<T_{\infty}$ and $X(T)=i$ the process $X=(X(T+t): t \geq 0)$ is $\operatorname{Markov}(\delta ; Q)$ and independent of $(X(s): s \leq T)$.
Constructions of a Markov (λ, Q) process: Construction 1. Start with
$\left(Y_{n}\right)$ a discrete-fime Markov chain with transition propabilities $\Pi, Y_{0} \sim \lambda$
(En) i.i.d. $\operatorname{Exp}(1)$
Then set $U_{n}=E_{n} / q_{Y_{n}}, T_{n}=\sum_{i=0}^{n-1} U_{i}$

$$
\begin{aligned}
& N(t)=\max \left\{n: T_{n} \leq t\right\} \\
& X(t)=Y_{N(t)}
\end{aligned}
$$

Construction 2. Start with
($\left.E_{n}, i\right)_{n \geq 0, i \in I}$ i.i.cl. $E_{x p}(1)$

$$
Y_{0} \sim \lambda, \quad T_{0}=0
$$

Inductively, given $\left(Y_{n}, T_{n}\right)$ define

$$
\begin{aligned}
& T_{n+1}=T_{n}+\underbrace{\inf _{j \neq Y_{n}} \underbrace{E_{n, j}}_{\sim E_{x p}}}\left(q_{Y_{n, j}, j}\right) \\
& \sim \operatorname{Exp}\left(\sum_{j \neq \eta_{n}} q_{n, j}\right)=\operatorname{Exp}\left(q_{\varphi_{n}}\right) \\
& Y_{n+1}=\operatorname{argmin}\left\{j \neq Y_{n}: \frac{E_{n, j}}{q_{Y_{n}, j}}\right\} \text { if } q_{Y_{n}}>0 \\
& Y_{n+1}=Y_{n} \text { if } q_{\varphi_{n}}=0 \text {. }
\end{aligned}
$$

Exercise (Example sheet). Let (U_{k}) be a sequence of independent Exp $\left(g_{k}\right)$ random variables, where $0<\sum q_{k}<\infty$. Then
(a) $U=\inf _{k} U_{k} \sim \operatorname{Exp}\left(\Sigma q_{k}\right)$
(b) The infimum is attained at a unique K almost surly, $\mathbb{P}(K=k)=q_{k} / \sum q_{k}$.
(c) U and K are independent.

Construction 3. Start with
$\left(N_{i j}\right)_{i \neq j}$ are independent Poisson processes
$N_{i j}=\left(N_{i j}(t): t \geq 0\right)$ with rate $q_{i j}$

$$
Y_{0} \sim \lambda
$$

Then define inductively

$$
\begin{aligned}
& T_{n+1}= \operatorname{inf\{ t>T_{n}:N_{Yjj}(t)\neq N_{Y_{nj}}(T_{n})} \\
&\left.\qquad \text { for some } j \neq Y_{n}\right\} . \\
& Y_{n+1}=j \text { if } T_{n+1}<\infty \text { and } N_{Y_{n j} j}\left(T_{n}\right) \neq N_{Y_{n} j}\left(T_{n+1}\right) \\
&= Y_{n} \text { if } T_{n+1}=\infty .
\end{aligned}
$$

2.3. Explosion

For birth chains, we characterised when non-explosions happens. In general, the next theorem gives sufficient conditions.
Thu. Let X be $\operatorname{Markov}(\lambda, Q)$. Then $P\left(T_{\infty}=\alpha_{\infty}\right)=1$ if any of the following conditions holds:
(a) I is finite;
(b) $\sup _{i \in I} q_{i}<\infty$;
(c) $X_{0}=i$ and i is recurrent for the jump chain Y.

Proof. (b) Assume sup $q_{i}=q<\infty$.
$\Rightarrow U_{n} \geq E_{n} / g$ where $\left(E_{n}\right)$ are i.i.d. $\operatorname{Exp}(1)$
By the strong law of large numbers (SLLN),

$$
\begin{aligned}
T_{\infty}=\sum_{n=0}^{\infty} U_{n} \geq \frac{1}{9} \sum_{n=0}^{\infty} E_{n} & =\lim _{N \rightarrow \infty}(\frac{N}{9} \underbrace{\sum_{n}-S .}_{\underset{n}{N} \frac{1}{N-1} E_{n}} \\
& =+\infty \text { ass. }
\end{aligned}
$$

(c) Assume that $X(0)=i$ and that i is recurrent for Y. Let S_{n} be the discrete time of the n-th return of Y to i.
By the SLLN,

$$
T_{\infty}=\sum_{n=0}^{\infty} U_{S_{n}} \geq \frac{1}{q_{i}} \sum_{n=0}^{\infty} E_{S_{n}}=+\infty \text { ass. }
$$

Example $I=\mathbb{Z} \quad 2^{|i|} 2^{|i|} \quad q_{i, i+1}=q_{i, i-1}=2^{|i|}$
$\Rightarrow Y$ is a symmetric SRW
$\Rightarrow Y$ is recurrent
\Rightarrow no explosion

$\Rightarrow Y$ is a biased random walk with

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n+1}-Y_{n}=+1\right)=\frac{2}{3}=\left(\frac{2^{1 i l+1}}{2^{i i l}+2^{i l+1}}\right) \\
& \Rightarrow \mathbb{E} T_{\infty}=\mathbb{E}\left(\sum_{i=0}^{\infty} U_{i}\right)=\sum_{j \in Z} \mathbb{E}\left(\sum_{k=1}^{V_{i}} U_{\text {sike }}\right)
\end{aligned}
$$

$$
\begin{aligned}
=\sum_{j \in \mathbb{Z}} \frac{1}{2^{1 j 1}} \cdot 3 & \underbrace{\mathbb{E} V_{j}} \leq C \sum_{j \in \mathbb{Z}} \frac{1}{2^{1 j 1} \cdot 3} 2 \infty \\
& \leq 1+\mathbb{E}_{j} V_{j} \\
& =1+\mathbb{E}_{0} V_{0}<C
\end{aligned}
$$

Y is transient

$$
\Rightarrow \mathbb{P}\left(T_{\infty}<+\infty\right)=1 .
$$

\Rightarrow explosion.
2.4. Kolmogorov equation - finite state space Assume I is finite. Let $M=\left(m_{i j}\right)_{i, j \in I}$ be a matrix. Then the matrix exponential is defined by

$$
e^{M}=\sum_{n=0}^{\infty} \frac{1}{n!} M^{n}
$$

Exercise. If M_{1} and M_{2} are $I \times I$ matrices that commute. Then

$$
e^{M_{1}+M_{2}}=e^{M_{1}} e^{M_{2}}
$$

Exercise. $P(t)=e^{t M}$ is the unique solution to

$$
P^{\prime}(t)=M P(t), \quad P(0)=I
$$

or

$$
P^{\prime}(t)=P(t) M, \quad P(0)=I .
$$

$\frac{\text { Prop. }}{\text { stochastic }} M$ is a Q-matrix iff $e^{t M}$ is a stochastic matrix for all $t \geq 0$.
Poof Assume $e^{t M}$ is a stochastic matrix for all $t \geq 0$. Then

$$
e^{t M}=I+t M+O\left(t^{2}\right)
$$

implies:

$$
\begin{aligned}
& \text { Using } \sum_{j}\left(e^{t M}\right)_{i j}=1, \\
& 1=\sum_{j}\left(e^{t M}\right)_{i j}=\underbrace{\sum_{j} \delta_{i j}}_{1}+\sum_{j} m_{i j} t+O\left(t^{2}\right), t \rightarrow 0 \\
& \Rightarrow \sum_{j} m_{i j}=O(t) \Rightarrow \sum_{j} m_{i j}=0
\end{aligned}
$$

Using $\left(e^{t M}\right)_{i j} \geq 0$,

$$
\begin{aligned}
& \Rightarrow m_{i j} \geq 0 \text { for } i \neq j \\
& \Rightarrow m_{i i}=-\sum_{j \neq i} m_{i j} \leq 0
\end{aligned}
$$

$\Rightarrow M$ is a Q-matrix.
Conversely, assume M is a Q-matrix. Then

$$
\begin{aligned}
& \sum_{j} m_{i j}=0 \\
\Rightarrow & \sum_{j}\left(M^{n}\right)_{i j}=\sum_{j, k}\left(M^{n-1}\right)_{i k} m_{k j}=0 \\
\Rightarrow & \sum_{j}\left(e^{t M}\right)_{i j}=\sum_{j}\left(\delta_{i j}+\sum_{n=1}^{\infty} \frac{1}{n!}\left(M^{n}\right)_{i j}\right)=1 .
\end{aligned}
$$

Finally, since $e^{t M}=\left(e^{(t / k) M}\right)^{k}$, if suffices to show that $\left(e^{t M}\right)_{i j} \geq 0$ for t small enough.

If $m_{i j}>0$ for all $i \neq j$, this follows from

$$
e^{t M}=I+t M+O\left(t^{2}\right)
$$

In general, let $J_{i j}=-\delta_{i j}+\frac{1}{N}$. Then the above applies to $M+\delta\}, \delta>0$, and thus also

$$
\left.\left(e^{t M}\right)_{i j}=\lim _{\delta i 0}\left(e^{t\left(M+\delta^{\prime} J\right.}\right)\right)_{i j} \geq 0
$$

Inn. Assume I is finite. Let X be a random process with values in I, and let Q be a Q-matrix. Then equivalently:
(a) X is $\operatorname{Markov}(\lambda, Q)$.
(b) for all $t, h \geq 0$, conditional on $X(t)=i$, $X(t+h)$ is independent of $(X(s): S \leq t)$ and

$$
\mathbb{P}(X(t+h)=j|X| t)=i)=\delta_{i j}+q_{i j} h+o(h)
$$

(c) X has the Markov property with transition semigroup $P(t)$ given by $P(t)=e^{t Q}$:

$$
\begin{aligned}
& \mathbb{P}\left(X\left(t_{n}\right)=i_{n} \mid X\left(t_{n-1}\right)=i_{n-1}, \ldots, X\left(t_{1}\right)=i_{1}\right) \\
& \left.=p_{i n-1}\right)\left(t_{n}-t_{n-1}\right) \\
& \text { for all } n \geq 0, t_{n} \geq \ldots \geq t_{1}, i_{1}, \ldots, i_{n} \in I .
\end{aligned}
$$

Proof (a) $\Rightarrow(b)$. The conditional independence follows from the Markov properly \rightarrow Section 2.2).

It suffices to consider $t=0$.

$$
\begin{aligned}
& \mathbb{P}_{i}(X(h)=i) \geq \mathbb{P}_{i}\left(T_{1}>h\right)=e^{-q_{i} h}=1+q_{i i} h+o(h) \\
& \mathbb{P}_{i}(X(h)=j) \geq \mathbb{P}_{i}\left(T_{1}<h, T_{2}>h, Y_{1}=j\right) \\
&(i \neq j) \geq \mathbb{P}_{i}\left(T_{1}<h, U_{1}>h, Y_{1}=j\right) \\
& \uparrow_{U_{0}} T_{2}-T_{1} \\
&=\left(1-e^{-q_{i} h}\right) e^{-q_{j} h} \pi_{i j}=\underbrace{q_{i} \pi_{i j}}_{q_{i j}} h+d h) \\
& \Rightarrow \mathbb{P}_{i}(X(h)=j) \geq \delta_{i j}+q_{i j} h+o(h)
\end{aligned}
$$

In fact, using $\sum_{j} P_{i}(X(h)=j)=1$ and $\sum_{j} q_{i j}=0$, and that I is finite, the ' \geq ' are actually' $=$ ':

$$
\begin{aligned}
& \sum_{j \neq i} \mathbb{P}_{i}(X(h)=j) \geq q_{i} h+o(h) \\
& \Rightarrow \mathbb{P}_{i}(X(h)=i)=1-\underbrace{\sum_{j \neq i} \mathbb{P}_{i}(X(h)=j) \leq 1+q_{i i} h+o(h)}_{\geq q_{i} h+0(h)} \\
& \text { Analogously, } \quad
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}_{i}(X(h)=j) & =1-\sum_{k \neq j} \mathbb{P}_{i}(X(h)=k) \\
& \leq 1-\sum_{k+j}\left(\delta_{i k}+q_{i k} h+o(h)\right) \\
& =\sum_{k \neq j}\left(-q_{i k} h\right)+0(h)
\end{aligned}
$$

$$
\underbrace{}_{+9_{i j} h}
$$

\Rightarrow (b) holds.
$(b) \Rightarrow(c)$.

$$
\begin{aligned}
& p_{i j}(t+h)
\end{aligned}=\sum_{k} p_{i k}(t) p_{k j}(h) ~=\sum_{k} p_{i k}(t)\left(\delta_{k j}+q_{k j} h+o(h)\right) .
$$

uniform in t
Taking hl, we see that $p_{i j}$ is right-differentiable. Replacing t by $t-h$,

$$
\frac{p_{i j}(t)-p_{i j}(t-h)}{h}=\sum_{k} p_{i k}(t-h) q_{k j}+0(1)
$$

$\Rightarrow P_{i j}$ is left-continuous (since the RHS is
$\Rightarrow P_{i j}$ is left-differentiable
Together, $P_{i j}$ is differentiable and

$$
P_{i j}^{\prime}(t)=\sum_{k} P_{i k}(t) q_{k j}, \quad P_{i j}(6)=\delta_{i j} .
$$

$$
\begin{aligned}
& \Rightarrow P^{\prime}(t)=P(t) Q, \quad P(0)=I \\
& \Rightarrow P(t)=e^{t Q} \quad \text { (since } I \text { is finite). }
\end{aligned}
$$

Also, the conditional independence given by (b) implies

$$
\begin{aligned}
& \mathbb{P}\left(X\left(t_{n}\right)=i_{n} \mid X\left(t_{n-1}\right)=i_{n-1}, \ldots, X\left(t_{1}\right)=i_{1}\right) \\
& =\mathbb{P}\left(X\left(t_{n}\right)=i_{n} \mid X\left(t_{n-1}\right)=i_{n-1}\right) \\
& =P_{\text {in- }} i_{n}\left|t_{n}-t_{n-1}\right| .
\end{aligned}
$$

$(c) \Rightarrow(a):$ later (for countable I).
Example.

$$
\begin{aligned}
Q & =\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -1 & 0 \\
2 & 1 & -3
\end{array}\right)=U(\underbrace{0} \begin{array}{ll}
\left.\begin{array}{ll}
1 & -2 \\
& \\
\hline
\end{array}\right) U^{-1} \\
\Rightarrow e^{t Q} & =\sum_{n=0}^{\infty} \frac{(t Q)^{n}}{n!}
\end{array}=U(\underbrace{\left(\sum_{n=0}^{\infty} \frac{(t D)^{n}}{n!}\right.}_{e^{2 t D}}) u^{-1} \\
& =U\left(\begin{array}{ll}
1 & e^{-2 t} \\
& e^{-4 t}
\end{array}\right) U^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p_{11}(t)=a+b e^{-2 t}+c e^{-4 t} \\
& P_{11}(0)=1, \quad p_{11}^{\prime}(0)=q_{11}=-2, \quad p_{11}^{\prime \prime}(0)=\left(q^{2}\right)_{11}=8
\end{aligned}
$$

fix a, b, c.
2.5. Kolmogorov equations - countable state space Thm. Let I now be countable. Assume that X is $\operatorname{Markov}(\lambda, Q)$ with associated transition semigroup $(P(t): t \geq 0)$. Then
(a) $(P(t))$ is the minimal non-negative solution
to

$$
P^{\prime}(t)=Q P(t), P(0)=I
$$

(backward)
(b) $(P(t))$ is the minimal non-negative solution to

$$
P(t)=P(t) Q, P(0)=I \quad \text { (forward) }
$$

In particular, solutions to both equations exist.
$\frac{\text { Rh }}{\text { and }}$. If X explodes, then $X(t)=i_{\infty}$ for all $t \geq I_{\infty}$ and then

$$
\begin{aligned}
& \sum_{j \neq i_{0}} p_{i j}(t)<1 \\
& \sum_{j} p_{i j}^{\prime \prime}(t)
\end{aligned}
$$

On the other hand, if X is non-explosive, then $\sum_{j} P_{i j}(t)=1$.

Since P is also the minimal solution to (forward) and (backward), it is the actually the unique solution to these equation.

Pk. If X is a minimal random process with values in I (countable) that X satisfies the Markov property and the associated transition semigroup is the minimal solution to (backward) or (forward) then X is $\operatorname{Markov}(\lambda, Q)$.
This follows from the theorem and the fact that the transition semigroup characterises the finite-dimensional clistriations (exercise).

Pk. If $X(O) \sim \lambda$ then $X(t) \sim \lambda(t)$ where $\bar{\lambda}(t)=\lambda P(t)$ satisfies

$$
\lambda^{\prime}(t)=\lambda(t) Q .
$$

Proof. (a) We first show that $P^{\prime}(t)=Q P(t)$.

$$
\begin{aligned}
P_{i j}(t)= & \mathbb{P}_{i}(X(t)=j)=\mathbb{P}_{i}\left(X(t)=j, T_{1}>t\right) \\
& \delta_{i j} e^{-q i t}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k \neq i} \mathbb{P}_{i}\left(X(t)=j, T_{1} \leq t, X\left(T_{1}\right)=k\right) \\
= & \sum_{k \neq i} \frac{q_{i k}}{q_{i}} \int_{0}^{t} g_{i} e^{-q_{i} s} P_{k j}(t-s) d s \\
\Rightarrow P_{i j}(t)= & \delta_{i j} e^{-q_{i} t}+\int_{0}^{t} \sum_{k \neq i} q_{i k} P_{k j}(\underbrace{t-s)}_{u} e^{-q_{i} s} d s \\
\Leftrightarrow e^{q_{i} t} P_{i j}(t)= & \delta_{i j}+\int_{0}^{t} \sum_{k \neq i} q_{i k} P_{k j}(u) e^{+q_{i} u} d u
\end{aligned}
$$

This implies:

- $p_{i j}(t)$ is continuous in t
- $\sum_{k: k \neq i} q_{i k} \underbrace{P_{k j}(u)}_{\leq 1}$ is a uniformly convergent sum of continuous functions, so also continuous.
$\Rightarrow P_{i j}$ is differentiable.
Thus the integral equation may be differentiated
and

$$
\begin{aligned}
& e^{g_{i}^{*}}\left(q_{i} p_{i j}(t)+p_{i j}^{\prime}(t)\right)=e^{9} t \sum_{k \neq i} q_{i k} p_{k j}(t) \\
\Leftrightarrow & p_{i j}^{\prime}(t)=\sum_{k \neq i} q_{i k} p_{k j}(t)-q_{i} \sum p_{i j}(t)=\sum_{k} q_{i k} p_{k j}(t) \\
\Leftrightarrow & p^{\prime}(t)=Q P(t)
\end{aligned}
$$

To see that P is the minimal solution to (backward), assume \tilde{P} is another (non-negative) solution to (backward)

$$
\Rightarrow \tilde{p}_{i j}(t)=\delta_{i j} e^{-q_{i} t}+\int_{0}^{t} e^{-q_{i} s} \sum_{k \neq i} q_{i k} \tilde{P}_{k j}(t-s) d s
$$

We will show by induction that

$$
\mathbb{P}_{i}\left(X(t)=j, \quad t<T_{n}\right) \leq \tilde{p}_{i j}(t) \quad \forall n .
$$

Indeed:

$$
n=1: \mathbb{P}_{i}\left(X(t)=j, t<T_{1}\right)=\delta_{i j} e^{-q_{i} t}
$$

$n \rightarrow n+1$: follows from

$$
\begin{aligned}
& \mathbb{P}_{l}\left(X(t)=j, t<T_{n+1}\right)=\delta_{i j} e^{-q i t} \\
& +\int_{0}^{t} e^{-q i} \sum_{k \neq i} q_{i k} \mathbb{P}_{k}\left(X(t-s)=j, t-s<T_{n}\right) d s \\
& \Rightarrow P_{i j}(t) \equiv \mathbb{P}_{i}\left(X(t)=j, t<T_{\infty}\right) \\
& X \text { is minimal }=\lim _{n \rightarrow \infty} \mathbb{P}_{i}\left(X(t)=j, t<T_{n}\right) \leq \tilde{P}_{i j}(t) \\
& \Rightarrow P \text { is minimal. }
\end{aligned}
$$

(b) To see that P also satisfies (forward), we will proceed similarly.

$$
P_{i j}(t)=\mathbb{P}_{i}(X(t)=j)=\sum_{\substack{n=0}}^{\infty} \frac{P_{i}\left(X(t)=j, T_{n} \leq t<T_{n+1}\right)}{(t)}
$$

$n \geq 2$ (assume $q>0$ - the case $q_{j} p$ is similar)

$$
\begin{aligned}
(*) & \stackrel{D}{=} \sum_{i_{i}+i} \cdots \sum_{i_{n}+i} \mathbb{i}_{n-2}\left(T_{n} \leq t<T_{n+1}, Y_{1}=i, \ldots, Y_{n-1}=i_{n-1}, Y_{n}=j\right) \\
= & \sum_{i_{n-i}, i_{n-1}} \mathbb{P}_{i}\left(T_{n} \leq t<T_{n+1} \mid Y_{1}=i_{1}, \ldots, Y_{n-1}=i_{n-1}, Y_{n}=j\right) \\
& \mathbb{P}\left(Y_{1}=i_{1}, \ldots, Y_{n-1}=i_{n-1}\right) \frac{q_{i_{n-1}} j}{q_{i n-1}}
\end{aligned}
$$

Lemma: $\quad q_{i n} P\left(T_{n} \leq t<T_{n+1} \mid Y_{0}=i_{0}, \ldots, Y_{n}=i_{n}\right)$
(time reversal) $\quad=q_{i_{0}} \mathbb{P}\left(T_{n} \leq t<T_{n+1} \mid Y_{0}=i_{n}, \ldots, Y_{0}=i_{0}\right)$

$$
(*)=\sum_{i_{1},-, i_{n-1}} \frac{q_{i}}{q_{j}} \mathbb{P}_{j}\left(T_{n} s t<T_{n+1}\left(Y_{1}=i_{n-1}, \ldots, Y_{n-1}=i_{1}, v_{n}=i\right)\right.
$$

Markov poop.

$$
\stackrel{\text { toy pop. }}{=} \sum_{i_{1}, \ldots, i_{n-1}} \frac{q_{i}}{q_{i}} \int_{0}^{t} d s q_{j} e^{-q ;} \mathbb{q}_{i_{n-1}}
$$

$$
\mathbb{P}\left(Y_{1}=\dot{1}, \ldots, Y_{n-1}=i_{n-1}\right) \frac{q_{n-1} j}{q_{n_{n-1}}}
$$

$$
\left.\cdots, y_{n-1}=i\right)
$$

time reversal

$$
\begin{aligned}
& \text { e reversal } \mathbb{P}\left(Y_{1}=i_{1}, \ldots, Y_{n-i}=i_{n-1}\right) \frac{\left(i_{n-1}\right)}{q_{n-1}} \\
& \stackrel{\downarrow}{=} \sum_{i_{1,1}, i, i i_{n-1}} q_{i n-1} \int_{0} d s e^{-q ; s} \mathbb{P}_{i}\left(T_{n-1} \leq t-s<T_{n} \mid Y_{1}, i_{1}, \ldots, Y_{n-1}=i_{n-1}\right) \\
& \mathbb{P}\left(Y_{1}=i_{1}, \ldots, Y_{n-1}=i_{n-1}\right) \frac{9 i_{n-1}}{q_{i n-1}}
\end{aligned}
$$

Undoing the conditioning of Y_{1}, \ldots, Y_{n-2}, and renaming i_{n-1} to k,

$$
\begin{aligned}
& (x)=\sum_{k \neq j} q_{k j} \int_{0}^{t} d s e^{-q_{j} s \mathbb{P}_{i}\left(X(t)=k, T_{n-1} \leq t-s<T_{n}\right) .} \begin{aligned}
& \Rightarrow P_{i j}(t)=\delta_{i j} e^{-q_{i} t}+\sum_{n=1}^{\infty} \int_{0}^{t} d s \sum_{k \neq j} \mathbb{P}_{i}\left(X(t)=k, T_{n-1} \leq t-s<T_{n}\right) \\
& q_{k j} e^{-q_{j} s} \\
&=\delta_{i j} e^{-q_{i} t}+\int_{0}^{t} d s \sum_{k \neq j} P_{i k}(\underbrace{t-s}_{u}) q_{k j} e^{-q_{j} s} \\
& \quad=\delta_{i j} e^{-q_{j} t}+\int_{0}^{t} d u \sum_{k \neq j} p_{i k}(u) q_{k j} e^{-q_{j}(t-u)} \\
& \Rightarrow P_{i j}(t) e^{q_{j} t}=\delta_{i j}+\int_{0}^{t} d u \sum_{k \neq j} P_{i k}(u) q_{k j} e^{q_{j} u}
\end{aligned}
\end{aligned}
$$

Since $e^{q_{i} t} p_{i j}(t)$ is increasing in t,
$\sum_{k \neq j} p_{i k}(u) q_{k j}$ converges uniformly on $[0, t]$
Since we already know from the study of the backward equator that P ii (t) is continuous, it again follows that the integrand is continuous. $\left.\Rightarrow\left(p_{i j}^{\prime} \mid t\right)+q_{j} p_{i j}(t)\right) e^{g j t}=\sum_{k \neq j} p_{i k}(t) q_{k j} e^{g j t}$

$$
\begin{aligned}
\Leftrightarrow p_{i j}^{\prime}(t) & =\sum_{k+j} p_{i k}(t) q_{k j}-q_{j} p_{i j}(t) \\
& =\sum_{k} p_{i k}(t) q_{k j} \\
\Leftrightarrow p^{\prime}(t) & =P(t) Q .
\end{aligned}
$$

The proof that P is minimal among solutions to (forward) is omitted; see Norms.

Lemming.

$$
\begin{aligned}
& q_{i_{n}} \mathbb{P}\left(T_{n} \leq t<T_{n+1} \mid Y_{0}=i_{0}, \ldots, Y_{n}=i_{n}\right) \\
= & q_{i_{0}} \mathbb{P}\left(T_{n} \leq t<T_{n+1} \mid Y_{0}=i_{n}, \ldots, Y_{n}=i_{0}\right)
\end{aligned}
$$

Proof. Conditional on $Y_{0,}, \ldots Y_{n}$, the holding time U_{0}, \ldots, U_{n} are independent with

$$
\begin{aligned}
& U_{k} \sim \operatorname{Exp}\left(q_{Y_{k}}\right)=\operatorname{Exp}\left(q_{i_{k}}\right) . \\
& \Rightarrow L H S=q_{i n} \mathbb{P}\left(u_{n}>t-u_{0}-\cdots-u_{n-1} \geq 0\right) \\
&=q_{i_{n}} \int_{\Delta(t)} e^{-q_{i n}\left(t-u_{0}-\cdots-u_{n-1}\right)} \prod_{k=0}^{n-1} q_{i_{k}} e^{-q_{i k} u_{k g} d u_{k}} \\
& \quad \Delta(t)=\left\{u_{0, \ldots}, u_{n-1} \geq 0: u_{0}+\cdots+u_{n-1} \leq t\right\}
\end{aligned}
$$

Now change variables: $\tilde{u}_{0}=t-u_{0} \cdots-u_{n-1}$

$$
\begin{aligned}
& \tilde{u}_{k}=u_{n-k} \quad(k=1, \ldots, n-1) \\
& \tilde{\Delta}(t)=\left\{\tilde{u}_{0}+\cdots+\tilde{u}_{n-1} \leq t\right\} \\
& \Rightarrow L H S=\underbrace{\left.q_{i n} e^{-q_{i n}} \tilde{u}_{0} \prod_{k=1}^{n} q_{i_{i 0}} e^{-q_{i 0}\left(t-e^{-} e_{n-k} \tilde{u}_{k}\right.} d \tilde{u}_{0} \cdots-\tilde{u}_{n-1}\right)}_{\prod_{k=0}^{n-1} q_{i_{n-k}} e^{-q_{n-k}} \tilde{u}_{k}} d \tilde{u}_{n-1} \\
&=\text { RHS } .
\end{aligned}
$$

RE. We could assume WLOG that $q_{0}, \ldots, a_{i n}>0$ - otherwise both sides are 0 .

However if $a_{i n}=0$, then one can find a similar statement that replaces the application of the lemma. E.g.

$$
\begin{aligned}
& \mathbb{P}_{i}\left(T_{n} \leq t<T_{n+1} \mid Y_{1}=i_{1}, \ldots, Y_{n-1}=i_{n-1}, Y_{n}=i_{n}\right) \\
& =q_{i i_{0}}^{t} d s \mathbb{P}_{i_{n-1}}\left(T_{n-1} \leq t-s<T_{n} \mid Y_{1}=i_{n-2}, \cdots, Y_{n-1}=i_{0}\right) .
\end{aligned}
$$

3. General properties of Markov processes
3.1. Communicating classes

Defy. For states $i, j \in I$, write $i \rightarrow j$ (i leads to j) if $\mathbb{P}_{i}(X(t)=j$ for some $t>0)>0$ and $i \leftrightarrow j$ (i communicates with j) if $i \rightarrow j$ and $j \rightarrow i$.
Also define communicating classes, irreducibility, closed classes, and absorbing states exactly as in the discrete-time setting.
Prop. Let X be $\operatorname{Markov}(Q)$. Then equivalently:
(a) $i \rightarrow j j$
(b) $i \rightarrow j$ for the jump chain;
(c) $q_{i_{0}}, \cdots q_{i_{n-1}} i_{n}>0$ for some $i_{0}=i_{,}, \ldots, i_{n}=j$;
(d) $P_{i j}(t)>0$ for all $t>0$;
(e) $p_{i j}(t)>0$ for some $t>0$.

Proof. (d) $\Rightarrow(e) \Rightarrow(a) \Rightarrow(b)$
$(b) \Rightarrow(c): i \rightarrow j$ for the jump chain

$$
\Rightarrow \exists i_{0}=i, \ldots, i_{n}=j!\pi_{i_{0} i_{1}} \cdots \pi_{i_{n-1}} i_{n}>0
$$

$$
\underbrace{}_{\frac{q_{i_{0} u}}{q_{i_{0}}}}\left(q_{i_{0}} \neq 0\right) \text { or } 1_{i_{0}}\left(q_{i_{0}}=0\right)
$$

since product >0

$$
\Rightarrow q_{i_{0} i_{1}} \cdots q_{i_{n-1} i_{n}}>0 \Rightarrow(c)
$$

$(c) \Rightarrow(d)$: for any $k \neq l \in I, t>0$,

$$
\begin{aligned}
q_{k e}>0 \Rightarrow P_{k e}(t) & \geq \mathbb{P}_{k}\left(T_{1}<t, Y_{1}=l, U_{1}>t\right) \\
& =\left(1-e^{-q_{k} t}\right) \frac{q_{k e}}{q_{k}} e^{-q e t}>0
\end{aligned}
$$

Since $P(t)=P(t / n)^{n},(c)$ implies

$$
p_{i j}(t) \geq p_{i_{0} i_{1}}(t / n) \cdots p_{i_{n-1} i_{n}}(t / n)>0 .
$$

3.2. Recurrence and transience

Defy. The state i is
recurrent for X if $\mathbb{P}_{i}(\{t \geq 0: X(t)=i\}$ is unbounded $)=1$
transient for X if $\mathbb{P}_{i}(\{t \geq 0: X(t)=i\}$ is unbounded $)=0$.
Chm. Let X be $\operatorname{Markov}(Q)$ with jump chain Y.
(a) If $q_{i}=0$ then i is recurrent for X.
(b) If $a_{i}>0$ then i is recurrent for X iff it is for Y.
and the same holds for transience.
Proof. (a) If $a_{i}=0$, then $X(t)=i$ for all $t \geq 0$ if $X(0)=i$. So recurrence is trivial.
(b) Assume i is transient for Y. Then almost surely there is a last visit to i :

$$
N=\sup \left\{n: Y_{n}=i\right\}<\infty
$$

and $T_{N+1}<\infty$. Since $t \in\{s: X(s)=i\}$ implies $t \leq T_{N+1}$, and the set $\{s: X(s)=i\}$ must be bounded.
Assume i is recurrent for Y. Then X cannot explode (as seen before): $\mathbb{P}(\underbrace{T_{\infty}=\infty}_{T_{n} \rightarrow \infty})=1$.
Since $X\left(T_{n}\right)=Y_{n}$ and Y_{n} visits i infinitely many times, the set $\{t: X(t)=i\}$ must be unbouneled.

Cor. Assume $q_{i}>0$. Then
i is recurrent $\Leftrightarrow \int_{0}^{\infty} p_{i u}(t) d t=+\infty$
i is transient $\Leftrightarrow \int_{0}^{\infty} p_{i i}(t) d t<\infty$

Proof.

$$
\begin{aligned}
\int_{0}^{\infty} p_{i i}(t) d t & =\int_{0}^{\infty} \mathbb{E}_{i}(1 x(t)=i) d t \\
& =\mathbb{E}_{i}\left(\int_{0}^{\infty} 1 X_{X}(t)=i d t\right) \\
& =\mathbb{E}_{i}\left(\sum_{n=0}^{\infty} u_{n} 1 Y_{n}=i\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{a_{i}} \underbrace{\pi_{i n}}_{\left(\pi_{i i}\right)_{i i}}=\frac{1}{a_{i}} \sum_{n=0}^{\infty} \pi_{i i}(n)
\end{aligned}
$$

By the corresponding result for dis aete-time Markov chains, the RHS is finite iffy Y is transient.
3.3. Hitting times

For $A \subset I$, set $H_{A}=\inf \{t \geq 0: X(t) \in A\}$

$$
\begin{aligned}
& h_{i}^{A}=\mathbb{P}_{i}\left(H_{A}<\infty\right) \\
& K_{i}^{A}=\mathbb{E}_{i} H_{A}
\end{aligned}
$$

Tm $\left(h_{i}^{A}\right)_{i \in I}$ and $\left(K_{i}^{A}\right)_{i \in I}$ are the minimal solutions to
$(h) \begin{cases}h_{i}^{A}=1 & (i \in A) \\ \left(Q h^{A}\right)_{i}=0 & (i \notin A)\end{cases}$
respectively

$$
(k) \begin{cases}k_{i}^{A}=0 & (i \in A) \\ \left(Q k^{A}\right)=-1 & (i \notin A)\end{cases}
$$

Proof, (h) The hitting probabilities are the same as those for the jump chain. For i\& A, these satisfy

$$
h_{i}^{A}=\sum_{j \neq i} \pi_{i j} h_{j}^{A} \Leftrightarrow \sum_{j} q_{i j} h_{j}^{A}=0
$$

(k) Clearly, $k_{i}^{A}=0$ if $i \in A$. Let $i \notin A$. Then $H_{A} \geq T_{1}$ and

$$
\begin{aligned}
k_{i}^{A}=\mathbb{E}_{i} H_{A} & =\mathbb{E}_{i} T_{1}+\sum_{j \neq i} \mathbb{E}_{i}\left(H_{A}-T_{1} \mid Y_{1}=j\right) \pi_{i j} \\
& =\frac{1}{q_{i}}+\sum_{j \neq i} \frac{q_{i j}}{q_{i}} k_{j}^{A} \\
\Leftrightarrow \sum_{j} q_{i j} k_{j}^{A}+1 & =0
\end{aligned}
$$

Re. The ecus (h) are the same as for the jump chain. The ens (k) are similar to those for the jump chain but in general not the same.
3.4 Invariant distributions

If X is $\operatorname{Markov}(Q)$ with $X(0) \sim \lambda$ then $X(t) \sim \lambda P(t)$.
Defy. Suppose X is irreducible and non-explos ive with transition semigroup $P(P)$) and generator Q.
Then a measure $\lambda=\left(\lambda_{i}\right)_{i \in I}$ is

- invariant if $\lambda P(t)=\lambda$ for all $t \geq 0$;
- infinitesimally invariant if $\lambda Q=0$.

It is called an (infinitesimally) invariant distribution if in addition $\sum_{i} \lambda_{i}=1$.
Exercise: If I is finite, show that λ is invariant iff it is infinitesimally invariant.
Lemma. Let Q be a Q-matrix with jump matrix TI.
For any measure λ,

$$
\lambda Q=0 \Leftrightarrow \mu \Pi=\mu \text { where } \mu_{i}=\lambda_{i} q_{i} \text {. }
$$

Proof. By definition, $\left(\pi_{i j}-\delta_{i j}\right) q_{i}=q_{i j}$, so

$$
(\mu \Pi-\mu)_{j}=\sum_{i} \mu_{i}\left(\pi_{i j}-\delta_{i j}\right)=\sum_{i} \lambda_{i} q_{i j}=(\lambda Q)_{j} \text {. }
$$

Lemma. Assume X is irreducible and recurent.
(a) There is a unique (np to multiplication by scalars) measure λ sit. $\lambda Q=0$.
(b) There is at most one (u s to multiplication by scalars) invariant measwe.
Proof. (a) Assume $\mathbb{H}\rangle$ (. Then $q_{i}>0$ for all it I by irreducibility. Thus also Π is irreducible and recurrent. By a result from Markov Chains, there exists a unique μ (up to multiplication) s.t.

$$
\mu \Pi=\mu \Leftrightarrow \lambda Q=0 \text { for } \lambda_{i}=\frac{\mu_{i}}{q_{i}}
$$

(b) The discrete time chain $Z_{n}^{h}=X(h n)$ for any fixed $h>0$ is recurrent indeed,

Since $\left(2_{n}^{h}\right)$ is recurrent for any $h>0$, there is a unique measure λ st.

$$
\lambda P\left(2^{-m} n\right)=\lambda \quad \text { for all } m, n \geq 0
$$

Uniqueness follows immediately. Existence can be obtained from

$$
\lambda P(t)=\lambda \text { for all } t \geq 0, t \text { dyadic.] }
$$

Lemma. Let Q be irreducible. Assume λ is a measure with $\sum \lambda_{i} \neq 0$ st. $\lambda Q=0$. Then $\lambda_{j}>0$ for all j.
Proof. If $\lambda_{j}=0$ for some j then

$$
\begin{aligned}
& q_{j} \lambda_{j}=\sum_{i: i \neq j} \lambda_{i} q_{i j} \Rightarrow \lambda_{i}=0 \text { for all is.t. } q_{i j}>0 \\
& 1-a_{i j} \text { minducion } \Rightarrow \lambda_{k}=0 \text { for all } k \text { set. there } \\
& \text { are ie with } q_{k k_{i}} q_{i i_{2}} \cdots q_{m_{j}}>0 \\
& \text { reducibility } \Rightarrow \lambda_{k}=0 \text { for all } k
\end{aligned}
$$

Lemma. Assume X is $\operatorname{Markov}(Q)$ and irreducible and recurrent. Let $i \in I$ and set.

$$
\mu_{j}^{i}=\mathbb{E}_{i}\left(\int_{0}^{R_{i}} 1_{X(s)=j} d s\right)=\frac{\gamma_{j}^{i}}{q_{j}}
$$

where $R_{i}=\inf \left\{t>T_{1}!X(t)=i\right\}$. Then $\mu^{i} Q=0$ and $\mu^{i} P(t)=\mu^{i}$ for all t.

Proof. (a) Since X is irreducible and recurrent, it is non-explosive. Moreover,

$$
\sum_{j \in I} \mu_{j}^{i}=\mathbb{E}_{i}\left(R_{i}\right)
$$

$$
\begin{aligned}
& \mu_{j}^{i}=\mathbb{E}_{i}\left(\sum_{n=0}^{\infty} U_{n} 1_{Y_{n}}=j 1_{n<N_{i}}\right) \begin{array}{c}
N_{i}=\# \text { of seps to } \\
\begin{array}{c}
\text { rehurs fo to } \\
\text { coneded }
\end{array}
\end{array} \\
& =\sum_{n=0}^{\infty} \underbrace{\mathbb{E}\left(U_{n} \mid Y_{n}=j\right)}_{\frac{1}{q_{j}}} \underbrace{\mathbb{P}\left(Y_{h}=j, n<N_{i}\right)}_{\mathbb{E}_{i}\left(1_{Y_{n}}=j 1_{n \leq N_{i}-1}\right)} \\
& =\frac{1}{q_{j}} \underbrace{N_{n}}_{X_{i}\left(\sum_{n=0}^{N_{i}-1} 1_{Y_{n}}=j\right)}=\frac{\gamma_{j}^{i}}{q_{j}} \\
& \gamma_{j}^{i}=\underset{\text { expe }}{ } \# \text { \# of sepss spent at } j \\
& \text { between visits to } i
\end{aligned}
$$

Since $\gamma^{i} \pi=\gamma^{i}$ by a Markor Chains resutt, we see $\mu^{i} Q=0$.
To see that dso $\mu^{i} P(t)=\mu^{i}$ for all $t>0$:

$$
\begin{aligned}
\mu_{j}^{i} & =\mathbb{E}_{i}\left(\int_{0}^{R_{i}} 1_{X(s)=j} d s\right) \\
& =\underbrace{R_{i}}_{\mathbb{E}_{i}\left(\int_{0}^{t} \int_{X(s)}^{\mathbb{E}_{i}}\left(\int_{i+t} d s\right)\right.} 1_{X(s)=j} d s) \text { by strong Markoy }\left(\int_{t}^{R_{i}} 1_{X(s)=j} d s\right) \\
& \left.=\mathbb{E}_{i}^{\left(\int_{t} \int_{t} t\right.} 1_{X(s)=j} d s\right)
\end{aligned}
$$

Markov at

$$
\operatorname{lime}^{\text {Markov at }}=\sum_{k \in I} \mu_{k}^{i} P_{k j}(t)
$$

$$
\Rightarrow \mu^{i}=\mu^{i} P(t) \text { for any } t>0 .
$$

3.5. Positive recurrence and convergence to equilibrium
Deft. The state $i \in I$ is positive recurent if $m_{i}=\mathbb{F}_{i} R_{i}<\infty$ or $q_{i}=0$ where $R_{i}=\inf \left\{t>T_{1}: X(t)=i\right\}$.

$$
\begin{aligned}
& =\mathbb{E}_{1}(\int_{t}^{\infty} 1_{X(s)}=j \underbrace{\left.1_{s-t \leq R_{i}} d s\right)}_{u} \\
& =\mathbb{E}_{i}\left(\int_{0}^{\infty} 1_{X(u+t)=j} 1_{u \leq R_{i}} d u\right) \\
& =\bar{\infty} \int_{0}^{\infty} \sum_{k \in I} \mathbb{P}_{i}\left(X(u)=k, u \leq R_{i}\right) P_{k_{j}}(t)
\end{aligned}
$$

Thy . Let be $\operatorname{Markov}(Q)$, irreducible, and non-explosive. Then:
(a) If some state is positive recurrent then all states are positive recurrent and

$$
\lambda_{i}=\frac{1}{m_{i} q_{i}} \text { for } i \in I
$$

is the lunique) invariant distribution and also the (unique) distribution with $\lambda Q=0$.
(b) If there is a distribution λ with $\lambda Q=0$ then all states are positive recurrent.
(c) If there is an invariant distribution λ, then again all states are positive recurrent.'
Proof. By irreducibility, $q_{i}>0$ for all $i \in I$.
(a) Assume i is positive recurrent.
$\Rightarrow \sum_{j} \mu_{j}^{i}=\mathbb{E}_{i} R_{i}=m_{i}<\infty$
Let $\lambda_{j}=\frac{\mu_{j}^{i}}{m_{i}}$. Thus λ is a distribution.
By one of the lemmas, $\lambda Q=0$ and λ is inv. By another lemma, using recurrence, λ is in fact
the unique measure st. $\lambda Q=0$ and also the unique invanant measure.
Also

$$
\begin{aligned}
& \mu_{i}^{i}=\mathbb{H}_{i}^{(\underbrace{R_{i}}_{0} 1_{X(s)}=i d s})=\mathbb{E}_{i} U_{0}=\frac{1}{q_{i}} \\
& \Rightarrow \lambda_{i} \\
&=\frac{\mu_{i}^{i}}{m_{i}}=\frac{1}{m_{i} q_{i}} .
\end{aligned}
$$

By uniqueness of invariant measure, for any $k \in I$,

$$
\begin{aligned}
& \mu_{j}^{k}=C_{k} \mu_{j}^{i} \text { where } C_{k} \in(O \rho) \\
\Rightarrow & m_{k}=\sum_{j} \mu_{j}^{k}=C_{k} \sum_{j} \mu_{j}^{i}=C_{k} m_{i}<\infty
\end{aligned}
$$

$\Rightarrow k$ is positive recurrent, for every $k \in I$.
(b) Assume $\lambda Q=0$ and $\Sigma \lambda_{i}=1$. Let $i \in I$ and set

$$
\nu_{j}=\frac{\lambda_{j} q_{j}}{\lambda_{i} q_{i}}
$$

$\Rightarrow v_{i}=1$ and $v \Pi=v$ where Π is the jump
matrix by the first of the teminas matrix, by the first of the teminas.

By a discrete-fime Markov chains result,

$$
\begin{aligned}
& \nu_{j}
\end{aligned} \geq \gamma_{j}^{i}\left(=\sum_{n} \mathbb{E}_{i}\left(1_{v_{n}}=j 1_{n<N_{i}}\right)\right), ~(m_{i}=\sum_{j} \mu_{j}^{i}=\sum_{j} \frac{\partial_{j}^{i}}{q_{j}} \leq \sum_{j} \frac{\nu_{j}}{q_{j}}=\frac{1}{q_{i} \lambda_{i}} \underbrace{\sum_{j} \lambda_{j}}_{=1} .
$$

$\Rightarrow i$ is positive recurrent.
(c) Assume λ is an invanant distribution.
$\Rightarrow Z_{n}=X(n)$ is a recurrent discrete-time Markov chain
$\Rightarrow X$ is recurrent
Thus μ_{j}^{i} is an invariant measure for X
By uniqueness of invariant measures (for X irred, rec)

$$
\lambda_{j}=C_{i} \mu_{j}^{i} \text { for some } C_{i} t(0, \infty)
$$

Since λ is distribution,

$$
1=\sum_{j} \lambda_{j}=C_{i} \sum_{j} \mu_{j}^{i}=C_{i} m_{i}
$$

$\Rightarrow m_{i}<\infty \Rightarrow i$ is positive recurrent.

The. Let X be $\operatorname{Markov}(Q)$, irreducible, and non-explosive.
(a) If there is an (inf.) invariant distribution λ, then

$$
p_{i j}(t) \xrightarrow{(t-\infty)} \lambda_{j} \text { for all } i_{i j} \in I \text {. }
$$

(b) If there is no (inf.) invariant distribution, then $p_{i j}(t) \xrightarrow{(t \rightarrow 0)} 0$ for all $i, j \in I$.

Lemma. Let X be $\operatorname{Markov}(Q)$. Then

$$
\left|p_{i j}(t+h)-p_{i j}\right| t\left|\mid \leq q_{i} h\right.
$$

Proof.

$$
\begin{aligned}
\left|p_{i j}(t+h)-p_{i j}(t)\right| & =\left|\sum_{k} p_{i k}(h) p_{k j}(t)-p_{i j}(t)\right| \\
& =\left\lvert\, \begin{array}{l}
\left.\mid \sum_{k \neq i} p_{i k}(h)\right) p_{k j}(t) \\
\geq 0 \\
\\
\leq 1-p_{i j}(h)
\end{array} \underbrace{\left(1-p_{i j}(h)\right) p_{i j}(t) \mid}_{\geq 0}\right. \\
& =1-p_{i}\left(T_{1} \leq h\right) \\
& \leq q_{i} h .
\end{aligned}
$$

Proof of theorem. By irred., $q_{i}>0$ for all i. (a) If λ is an invariant distribution, it is. also one for the discrete-fime Markov chain $Z_{n}^{h}=X(h n)$ for an arbitrary $h>0$.
$\Rightarrow p_{i j}(h n) \xrightarrow{n \rightarrow \infty} \lambda_{j}$ (by discrete -time M.C. result)
$\Rightarrow\left|p_{i j}(h n)-\lambda_{j}\right| \leq \varepsilon$ for $n \geq n_{0}(h, \varepsilon)$

$$
\begin{gathered}
\Rightarrow\left|p_{i j}(t)-\lambda_{j}\right| \leq \underbrace{\leq q_{i}|t-n h|} \\
\left.\leq p_{i j} h n\right)-p_{i j}(t) \mid
\end{gathered} \underbrace{\left|p_{i j}\left(h_{n}\right)-\lambda_{j}\right|}_{\substack{\leq \\
\text { for } n \geq n_{0}}}
$$

for n such that $|t-n h| \leq h$

$$
\Rightarrow \lim _{t \rightarrow \infty} \sup ^{2}\left|p_{i j}(t)-\lambda_{j}\right| \leq q_{i} h+\varepsilon
$$

Since $h>0$ and $\varepsilon>0$ wee arbitrary, thus

$$
\lim _{t \rightarrow \infty} p_{i j}(t)=\lambda_{j} .
$$

(b) Essentially the same argument with $\lambda=0$.
3.6. Reversibility

The . Let X be $\operatorname{Markov}(\lambda, Q)$, irreducible, and non-explosive, with invanant distribution λ. For any fixed $T>0$, set $\hat{X}(t)=X(T-t)$ for $t \leq T$. Then X is $\operatorname{Markov}(\lambda, \widehat{Q})$ where

$$
\hat{q}_{i j}=q_{i i} \frac{\lambda_{j}}{\lambda_{i}} \text { positive (strictly) because } \lambda Q=0
$$

and \hat{X} is also irreducible and non-explosive.
Proof. \hat{Q} is a Q-matrix: clearly $\hat{q}_{i j} \geqslant 0$ for $i \neq j$,

$$
\sum_{j} \hat{q}_{i j}=\sum_{j} \frac{\lambda_{i}}{\lambda_{i}} q_{j i}=\frac{1}{\lambda_{i}}(\lambda Q)_{i}=0_{i \text { corroded }}
$$

lireducibility of \hat{Q} is also clear (noting that $\lambda_{i}>0$ for all i by irreducibility of Q) and $X Q=0$.
Define $\hat{P}_{i j}(t)=\frac{\lambda_{j}}{\lambda_{i}} p_{j i}(t)$. Then

$$
\begin{aligned}
& \hat{P}_{i j}^{\prime}(t)=\frac{\lambda_{j}}{\lambda_{i}} P_{j i}^{\prime}(t)=\frac{\lambda_{j}}{\lambda_{i}} \sum_{k} p_{j k}(t) q_{k i} \\
& \begin{array}{l}
\text { forward eqn. } \\
\text { for PIt) }
\end{array}=\sum_{k} \underbrace{\frac{\lambda_{j}}{\lambda_{k}} p_{j k}(t)}_{\hat{p}_{k j}(t)} \underbrace{\frac{\lambda_{k}}{\lambda_{i}} q_{k i}}_{\hat{q}_{i k}}
\end{aligned}
$$

$$
=\sum_{k} \hat{q}_{i k} \hat{P}_{k j}(t)=(\hat{Q} \hat{P}(t))_{i j}
$$

$\Rightarrow \hat{P}$ satisfies the backward equation for \hat{Q}.
Claim: \hat{P} is the minimal solution to $\hat{P}^{\prime}=\hat{Q} \hat{P}$.
Let \hat{T} be another be another solution: $\hat{T}^{\prime}=\hat{Q} \hat{T}$.
Then set

$$
T_{1 j}(t)=\frac{\lambda_{j}}{\lambda_{i}} \hat{T_{j i}}(t)
$$

$\Rightarrow T$ satisfies the forward equation for Q
$\Rightarrow T_{i j}(t) \geq P_{i j}(t)$ for all i_{j}, t.

$$
\Rightarrow \hat{T}_{i j}(t) \geq \hat{P}_{i j}(t) \text { for all } i, j, t \text {. }
$$

Finally, note

$$
\begin{aligned}
& \mathbb{P}\left(\hat{X}\left(t_{0}\right)=i_{0}, \ldots, \hat{X}\left(t_{n}\right)=i_{n}\right) \\
& =\mathbb{P}\left(X\left(T-t_{0}\right)=i_{0}, \ldots, X\left(T-t_{n}\right)=i_{n}\right) \\
& = \\
& =\lambda_{i_{n}} \underbrace{}_{i_{n} i_{n-1}}\left(t_{n}-t_{n-1}\right) \cdots P_{i, i_{0}}\left(t_{1}-t_{0}\right) \\
& \quad \frac{\lambda_{i-1} \hat{P}_{n-1} i_{n}\left(t_{n}-t_{n-1}\right)}{\lambda_{i n}}
\end{aligned}
$$

$$
=\lambda_{i_{0}} \hat{p}_{i_{0} i_{1}}\left(t_{1}-t_{0}\right) \cdots \hat{p}_{i_{n-1}} i_{n}\left(t_{n}-t_{n-1}\right)
$$

$\Rightarrow \hat{X}$ has transition semigroup \hat{P}
That \hat{X} does not explode follows from $\sum_{j} \hat{p}_{i j}=1$.
Den. Let Q be a Q-matrix and λ a measure. Then Q and λ are in detailed balance if $\lambda_{i} a_{i j}=\lambda_{j} a_{j i}$ for all i, j.
Prop. If λ and Q are in detailed balance,

$$
\begin{array}{ll}
& \lambda Q=0 . \\
\text { Proof. } \sum_{i} \lambda_{i} q_{i j}=\sum_{i} \lambda_{j} q_{j i}=\lambda_{j} \sum_{i=0}^{q_{j i}}=0 .
\end{array}
$$

Deft. Let X be $\operatorname{Markov}(Q)$. Then X is reversible if for all $T>0,\left(X_{t}\right)_{t \leq T}$, and $\left(X_{T-t}\right)_{t \leq T}$ have the same distribution.
Pron. Let X be $\operatorname{Markov}(\lambda, Q$, irreducible, and non-explosive. Then X is reversible iff λ and Q are in detailed balance.

Proof. Q and λ are in detailed balance

$$
\begin{aligned}
& \Leftrightarrow \hat{Q}=Q \\
& \begin{array}{l}
\text { (note that } \quad \Rightarrow \hat{X} \\
\lambda Q=0 \text { so } \\
\left.\lambda_{i}=0\right) \\
\text { ineduciblility) }
\end{array} \quad \Rightarrow \text { theorem }
\end{aligned}
$$

For the reverse direction, assume X is reversible. Then λ is invariant, so $\lambda_{i}>0$ for all i, and

$$
\hat{Q}=Q
$$

again by the theorem.
Example. A birth-death process is a Markov process on $I=\{0,1,2, \ldots\}$ with

$$
q_{i j}= \begin{cases}\lambda_{i} & (j=i+1) \\ \mu_{i} & (j=i-1) \\ 0 & (i-j \mid>1)\end{cases}
$$

for some $\lambda_{i}, \mu_{i} \geq 0$. For such a process, π satisfies $T Q=0$ iff π and Q are in detailed balance, i.e.,

$$
\pi_{j+1} \mu_{j+1}=\pi_{j} \lambda_{j} \text { for all } j \not \geqslant 0 \text {. }
$$

Proof. Clearly, detailed balance implies $\pi Q=0$. Suppose $\sum_{i} \pi_{i} q_{i j}=0$ for all $j 20$.

$$
\begin{aligned}
(j \geq 1) \sum_{i} \pi_{i} q_{i j}=0 & \Leftrightarrow \pi_{j-1} \lambda_{j-1}+\pi_{j+1} \mu_{j+1}=\pi_{j} \frac{-q_{i i}}{\left(\lambda_{j}+\mu_{j}\right)} \\
& \Leftrightarrow \pi_{j+1} \mu_{j+1}-\pi_{i} \lambda_{j}=\pi_{j} \mu_{j}-\pi_{j-1} \lambda_{j-1} \\
(j=0) \sum_{i} \pi_{i} q_{i j}=0 & \Leftrightarrow \pi_{j+1} \mu_{j+1}=\pi_{j} \lambda_{j} \\
& \pi_{1} \mu_{1}=\pi_{0} \lambda_{0}
\end{aligned}
$$

By induction, $\pi_{i+1} \mu_{j+1}=\pi_{j} \lambda_{j}$ for all $j \geq 0$. These are the detailed balance equations.
4. Birth-death processes and Markovian queues
4. Birth-death processes

Defn. A birth-death process is a Markov proofs on $I=\{0,1, d, \ldots\}$ with

$$
q_{i j}= \begin{cases}\lambda_{i} & (j=i+1) \\ \mu_{i} & (j=i-1) \\ 0 & (|i-j|>1)\end{cases}
$$

for some $\lambda_{i} \geq 0$ and $\mu_{i} \geq 0$.
Last lecture, we showed that $\pi Q=0$ iff
$\pi_{j+1} \mu_{j+1}=\pi_{j} \lambda_{j}$ for all $j \geq 0$.
so $\pi_{j}=\pi_{0} \frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}}$
Thu. Let X be a birth-death process.
(a) There is a distribution π st. $\pi Q=0$ iff

$$
0<\sum_{j=0}^{\infty} \underbrace{\frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}}}_{=1}<\infty
$$ (finite-time Sense)

(provided all $\mu_{j}>0$ and $\lambda_{j}>0$).
(b) The process X is non-explosive, and hence π from (a) is invanant if in addition

$$
0<\sum_{j=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}}\left(\lambda_{j}+\mu_{j}\right)<\infty .
$$

Proof. (a) By the discussion above the statement, we have shown that

$$
\pi_{j}=\frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}} \pi_{0}, \quad \pi_{0}=\frac{1}{\sum_{j=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}}}
$$

is the unique distribution with $\pi Q=0$.
(b) To show that X is non-explosive, it suffices to show that the jump chain is recurrent. But for this, it suffices to show that $v_{j}=\pi_{j} q_{j}$ is normalisable, i.e. $0<\sum v_{j}<\infty$. Then ν is is an invariant distribution (after normalisation) for the jump chain. But since

$$
\nu_{j}=\underbrace{\frac{\lambda_{0} \cdots \lambda_{j-1}}{\mu_{1} \cdots \mu_{j}} \pi_{0}}_{\pi_{j}} \cdot \underbrace{\left(\lambda_{j}+\mu_{j}\right)}_{q_{j}}
$$

this is exactly what we have assumed.

Example. Assume $q_{i}>0$ and $\lambda_{i}=\lambda q_{i}$ and $\mu_{i}=\mu q_{i}$ with $\lambda+\mu=$!. Then

$$
\pi_{j}=\left(\frac{\lambda}{\mu}\right)^{j} \frac{1}{q_{j}}
$$

satisfies. $\pi Q=0$. It is normalisable if

$$
\sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu}\right) \frac{1}{q_{j}}<\infty .
$$

But the theorem only implies that π is actually invariant, (ie., X is non-explosire) if

$$
\sum_{j=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{j}<\infty .
$$

For example, it $a_{j}=1$ for all j, both conditions hold iff $x<\mu$.
On the other hand, consider the case $q_{j}=2 j$ and assume that $\lambda / \mu \in(1,2)$.
In this case, the first condition holds, but the second does not. And indeed, the jump, chain is a biased random walk on $\{0,1, \ldots\}$ and thus it is transient, and thus X is also transient.

Thus X is transient but it does have an infinitesimally invariant distribution, Ie. $\pi Q=0$ If X was non-explosive, then actually π would be invariant and thus positive reappent. This a contradiction, so we conclude that X has to explode.
Example (Simple death with immigration).

$$
\lambda_{n}^{\prime}=\lambda, \quad \mu_{n}=n \mu .
$$

Then with $\rho=\lambda / \mu$, for all $n=0,1, \ldots$,

$$
\mathbb{P}(X(t)=n) \longrightarrow \frac{9^{n}}{\underbrace{n!} e^{-\rho}}
$$

Indeed, X is non-explosive with invariant distr.

$$
\pi_{n}=\frac{9^{n}}{n!} e^{-9}
$$

Thus $p_{i j}(t) \longrightarrow \frac{\Omega^{n}}{n!} e^{-s}$ by the limit theorem.
Example (Simple birth-death).

$$
\lambda_{n}=n \lambda, \quad \mu_{n}=n \mu
$$

Note that 0 is an absorbing state and thus
we assume that $X(0)=i>0$.
Also, since $\lambda_{0}=0$, we cannot use the theorem to see that X is non-explosive.
Let $\begin{aligned} & G(s, t)=\mathbb{E}_{i}(s X(t))=\mathbb{E}_{i}(s X(t) \\ & \text { where } s \in[0,1], t \geq 0,\underbrace{}_{X(t) * \dot{i}_{\infty}}) \text {. } \\ &=1_{t<T_{\infty}}\end{aligned}$
Then $\frac{\partial G}{\partial t}=(\lambda s-\mu)(s-1) \frac{\partial G}{\partial s}, G(s, 0)=s^{i}$.
Indeed,

$$
G(s, t)=\sum_{j=0}^{\infty} p_{i j}(t) s^{j},
$$

so by the forward equation,

$$
\begin{aligned}
\frac{\partial G}{\partial t} & =\sum_{j=0}^{\infty}\left[p_{i, j-1}(t) \lambda(j-1)+p_{i, j r r}(t) \frac{\mu(j+1)}{q_{j+1, j}}-p_{i, j}(t)(\mu+\lambda) j\right] j^{j} \\
& =\lambda s^{2} \frac{\partial G}{\partial s}+\mu \frac{\partial G}{\partial s}-s(\mu+\lambda) \frac{\partial G}{\partial s} .
\end{aligned}
$$

The unique solution (wit hat proof) given by

$$
G(s, t)= \begin{cases}\left(\frac{\lambda t(1-s)+s}{\lambda t(1-s)+1}\right)^{i} & (\mu=\lambda) \\ \left(\frac{\mu(1-s)-(\mu-\lambda s) e^{-(\lambda-\mu) t}}{\left.\lambda(1-s)-(\mu-\lambda s) e^{-\lambda}-\lambda\right) t}\right)^{i} & (\mu \neq \lambda) .\end{cases}
$$

Conclusions:

- $G(1, t)=\lim _{s \uparrow 1} G(s, t)=1$ for all t (and λ, μ) $\Rightarrow X$ is non-explosixe (for all $\lambda \mu$).
- $\mathbb{E}_{i} X(t)=i e^{(\lambda-\mu) t}$
indeed,

$$
\begin{aligned}
\mathbb{E}_{i} X(t) & =\lim _{S \Uparrow 1} \frac{\partial}{\partial S} G(S, t) \\
& =\lim _{S \uparrow 1}\left[i(\cdots)^{i-1} \frac{\partial}{\partial S}(\cdots)\right] \\
& =i e^{(\lambda-\mu) t}
\end{aligned}
$$

In particular, $\mathbb{E}_{i} X(t) \rightarrow \begin{cases}0 & (\lambda / \mu<1) \\ \infty & (\lambda / \mu>1)\end{cases}$

- $\operatorname{Var}_{i} X(t)= \begin{cases}2 i \lambda t & (\mu=\lambda) \\ i \frac{\lambda+\mu}{\lambda-\mu} e^{(\lambda-\mu) t}\left(e^{(\lambda-\mu) t}-1\right) & (\mu \neq \lambda)\end{cases}$
- $\underbrace{\mathbb{P}_{i}(X(t)=0)}=G(0, t) \longrightarrow \begin{cases}1 & (\lambda / \mu<1) \\ \mu / \lambda & (\lambda / \mu>1)\end{cases}$
extinction probability
4.2. $M / M / K$ queues

M/M/k:

- 'Markovian arrival': customers arrive according to a Poisson process of rate λ
- 'Markovian service': service times are i.i.d. Exp (a)
- There are k servers.

Let $X(t)$ denote the queue length, a Markov process on $\{0,1,2, \ldots\}$ with Q-matrix:

$$
\begin{array}{lll}
M / M \mid: & q_{i, i+1}=\lambda, & q_{i, i-1}=\mu \\
\mid M / M / \infty: & q_{i, i+1}=\lambda, & q_{i, i-1}=i \mu
\end{array}
$$

The. The length of an $M / M / I$ queue is transient $\Leftrightarrow \rho>1$ where $\rho=\lambda / \mu$ recurrent $\Leftrightarrow \rho \leq 1$ positive recurrent $\Leftrightarrow \rho<1$
In the pos. rec. case, the invariant distribution is $\pi_{n}=(1-\varrho) \rho^{n}$ and if $X(0) \sim \pi$ then the wait time for a customer is $\operatorname{Exp}(\mu-\lambda)$.

Proof. The jump chain Y is a biased random walk on $\{0,1,2, \ldots\}$ with reflection at 0 :

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n+1}-Y_{n}=+1 \mid Y_{n}>0\right)=\lambda /(\lambda+\mu) \\
& \mathbb{P}\left(Y_{n+1}-Y_{n}=-1 \mid Y_{n}>0\right)=\mu(\lambda+\mu) \\
& P\left(Y_{n-1}-Y_{n}=+1 \mid Y_{n}>0\right)=1
\end{aligned}
$$

Thus Y (and hence X) is transient iff $\lambda>\mu$.
Since $\sup _{i} q_{i}=\lambda+\mu<\infty$ there is no explosion.
Thus positive recurrence is equivalent to the existence of a distribution π with $\pi Q=0$, ie,

$$
\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n}<1 \Leftrightarrow \rho=\lambda / \mu<1 .
$$

So suppose $g_{1}<1$ and $X(0) \sim \pi$. Then $X(t) \sim \pi$ and the wait time is

$$
W=\sum_{i=1}^{X(\mid t)+1} T_{i}
$$

with $T_{i} \sim \operatorname{Exp}(\mu)$ and i.i.d. and independent of $X(t)$ by the Markov property. Also

$$
x(t)+1 \sim \operatorname{Geom}(\rho) .
$$

Exercise (Example sheet): $W \sim \operatorname{Exp}(\mu(1-g))$.

Re. Similarly, $\mathbb{E X}(t)=\frac{1}{1-\rho}-1=\frac{\lambda}{\mu-\lambda}$
$\operatorname{since} X(t)+1 \sim$ Geom ($\rho)$.
Thy The length of an $M / M / \infty$ queue is positive recurrent for all $\mu>0$ and $\lambda>0$, with invariant distribution Poisson(ρ), $\rho=\lambda / \mu$.

Proof. There is a distribution π with $\pi Q=0$ iff

$$
\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}=\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right) \frac{1}{n!}<\infty
$$

and

$$
\sum_{n=0}^{\infty} \frac{\lambda_{0} \cdots \lambda_{n-1}}{\mu_{1} \cdots \mu_{n}}\left(\mu_{n}+\lambda_{n}\right)=\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right) \frac{1}{n!}(\lambda+n \mu)<\infty
$$

so π is an invariant distribution and X nonexplosive (by the theorem from last lecture). As o:

$$
\pi_{n}=\left(\frac{\lambda}{\mu}\right)^{n} \frac{1}{n!} \Rightarrow \pi \sim \operatorname{Poisson}(\rho) .
$$

Let A and D denote the anival and departure processes associated with a queue, i.e, A increases by +1 if x does, but does not decrease, and D increases by +1 if X decreases So

$$
X(t)=X(0)+A(t)-D(t) .
$$

Re. A is a Poisson process of rate λ. The easiest way to see this is by using 'Constriction 3 ' when we constructed Markov processes.)
But in general D is not a Poisson process.
Pk. A Poisson process does not have an invariant distribution. Still it has the following time reversal property:
If N is a Poisson process, then for any $T>0$,

$$
\hat{N}(t)=N(T)-N(T-t)
$$

is again a Poisson process on $[0, T]$. Indeed, conditioned on $N(T)=n$, the distribution ordered jump times is

$$
\frac{n!}{T^{n}} 1\left\{0 \leq t_{1}<\cdots<t_{n} \leq T\right\}
$$

Ohm (Burke's theorem). Consider an MJMK queue with invariant distribution (so egg. the $M / M /$ I queue with $\mu>\lambda$). At equilisnim, ie. with $X(0) \sim \pi, D$ is a Poisson process of rate λ and $X(t)$ is independent of $(D(s): s \leq t)$.
Proof. The invariant distribution π satisfies cletaited balance because X is a birth-death process. Thus X is reversible:
if $\hat{X}(t)=X(T-t)$
then $(\hat{X}(t): t \leq T) \stackrel{D}{=}(X(t): t \leq T)$.
\Rightarrow Arrival process \hat{A} of \hat{X} is Poisson (λ).
But $\hat{A}(t)=D(T)-D(T-t)$.
Since the time reversal of a Poisson process on $[0, T]$ is a Poisson process on $[0, T]$, this shows that $(D(t)!t \leq T)$ is a Poisson process. Since $T>0$ is arbitrary, this determines the finite-dimensional distributions of D (and thus D). So D is a Poisson process.
4.3 Quewos in tandem and Jackson networks

Queues in tandem: Suppose there is an $M / M / I$ queue with parameters λ and μ_{1}. After a customer is served, they ionmediately join a second queue with service rate μ_{2}.
Let X_{1} and X_{2} denote the lengths of the two queues. Thus $I=\{0,1, \ldots .\}^{2}$ and

$$
\begin{array}{ll}
q_{(m, n),(m+1, n)}=\lambda & \\
q_{(m, n),(m-1, n+1)}=\mu_{1} & (m \geq 1) \\
q_{(m, n),(m, n-1)}=\mu_{2} & (n \geq 1)
\end{array}
$$

The. $\left(X_{1}, X_{2}\right)$ is positive recurrent ff $\lambda<\mu_{1}$ and $\lambda<\mu_{2}$ and the invanant distribution is then

$$
\pi_{m, n}=\left(1-\rho_{1}\right) \rho_{1}^{m}\left(1-\rho_{2}\right) \rho_{2}^{n} \quad\left(\rho_{i}=\lambda / \mu_{i}\right) .
$$

Thus $X(t)$ and $X_{2}(t)$ are independent in equilibnum.
Proof 1 The rates are bounded, so $\left(X_{1}, X_{2}\right)$ is non-explosive. Thus it suffices to check

$$
\pi Q=0
$$

which is the case.
Proof 2. Note the marginal X_{1} is an $M / M / 1$ queue. Thus X_{1} is positive recurrent if $\lambda<\mu$, with invanaut distribution

$$
\pi^{\prime}(m)=\left(1-g_{1}\right) \Omega_{1}^{m} .
$$

By Burke's theorem, the departure process of X, is Poisson of rate λ. But the departure process of X_{1} is the arrival process of X_{2}. So the marginal X_{2} is also an M/MI! queue with parameters λ and μ_{2} and invariant distribution

$$
\pi^{2}(n)=\left(1-\rho_{2}\right) \rho_{2}^{n}
$$

Independence: if $X_{1}(0) \sim \pi^{1}$ and $X_{2}(0) v \pi^{2}$ are independent then $X_{1}(t)$ and $X_{2}(t)$ are independent by Burke's theorem.
Careful: $X_{1}(t)$ and $X_{2}(t)$ at a fixed time t are independent at equilibrium, but the processes $\left(X_{1}(t): t \geq 0\right)$ and $\left(x_{2}(t): t \geq 0\right)$ we not.

Jackson notworks: Consider N single server queues with rates λ_{k} and μ_{k} where $k=1_{,-,}, N$. After service, each customer in queue k moves to queue is with probability $P_{k j}$ and exits with probability $P_{k o}=1-\sum_{j \neq k} P_{k j}$.
We assume $P_{k k}=0$ and $P_{k j}>0$ for all $k \neq j$.
Thus $I=\{0,1,2, \ldots\}^{N}$ and \quad (inducing $j=0$).

$$
\begin{array}{ll}
q_{n, n+e_{k}}=\lambda_{k} & e_{k}=(0, \\
q_{n, n-e_{k}+e_{j}}=\mu_{k} P_{k j} & \left(n_{k} \geq 1\right) \\
q_{n, n-e_{k}}=\mu_{k} P_{k 0} & \left(n_{k} \geq 1\right)
\end{array}
$$

$$
e_{k}=(0, \ldots, 0,1,0, \ldots, 0)
$$

Traffic equations: $\bar{\lambda}=\left(\lambda_{1}, \ldots, \bar{\lambda}_{N}\right) \in[0, \infty)^{N}$ satisfies

$$
\begin{equation*}
\bar{\lambda}_{k}=\lambda_{k}+\sum_{j \neq k} \bar{\lambda}_{j} \rho_{j k} \tag{T}
\end{equation*}
$$

Lemma. There is a (unique) solution to (T). Proof. Let $P_{00}=1$. Then $P=\left(p_{k j}\right)_{k i=0}^{N}$ is a stochastic matrix. The cures bonding Maukoy Chain $Z_{\text {, }}=\left(Z_{n}\right)$ is arbsorbing at 0 . Thus the communicating class of $\{1, \ldots, N\}$ is transient

Thus $V_{k}=\sum_{n_{n}} 1_{Z_{n}}=k$ has $\mathbb{E} V_{k}<\infty$ for all $k \in\left\{1, \ldots, N Y^{n}\right.$.
Assume $\mathbb{P}\left(Z_{0}=k\right)=\frac{\lambda_{k}}{\lambda}, \lambda=\sum_{i=1}^{N} \lambda_{i}$. Then

$$
\begin{aligned}
\mathbb{E} X_{k} & =\underbrace{\mathbb{P}\left(Z_{0}=k\right)}_{\frac{\lambda_{k}}{\lambda}}+\sum_{n=0}^{\infty} \underset{\sum_{j=1}^{\infty} \mathbb{P}\left(Z_{n+1}=k\right)}{\mathbb{P}\left(Z_{n}=j, Z_{n+1}=k\right)} \\
& =\sum_{j=1}^{N} \mathbb{P}\left(Z_{n}=j\right) p_{j k} \\
& =\frac{\lambda_{k}}{\lambda}+\sum_{j=1}^{N}\left(\mathbb{E} V_{j}\right) p_{j k}
\end{aligned}
$$

Thus if $\bar{\lambda}_{k}=\lambda \mathbb{E} V_{k}$ then $\bar{\lambda}$ satisfies (T).
Uniqueness: Example sheet.
Ihm. (Jackson) Assume (T) has a solution with $\bar{\lambda}_{k}<\mu_{k}$ for all $k=1, \ldots, N$. Then the Jackson network is positive recurrent with invanant distribution

$$
\pi(n)=\prod_{k=1}^{N}\left(1-\bar{g}_{k}\right) \bar{\varphi}_{k}^{n_{k}}, \quad \bar{\rho}_{k}=\frac{\bar{\lambda}_{k}}{\mu_{k}} .
$$

At equibrilium, the departure processes (to
outside from each queue are independent Poisson processes of rates $\lambda_{i} p_{i o}$.

Lemma. (Partial detailed balance). Let X be a Markov process on I and let π be a measure on I. Assume that for each $i \in I$ there is a partition

$$
I \backslash\left\{i \mid=I_{1}^{i} \cup I_{2}^{i} \cup \cdots\right.
$$

such that for all k

$$
\sum_{j \in I_{k}^{i}} \pi_{i} q_{i j}=\sum_{j \in I_{k}} \pi_{j} q_{j i}
$$

(PB).
Then π satisfies $\pi Q=0$.
Proof.

$$
\begin{aligned}
& \sum_{i} \pi_{i} q_{i j}=\sum_{i \in T i=1 ;} \pi_{i j}+\pi_{j} q_{i j} \\
& =\sum_{k} \sum_{\sum_{i \in \in_{k}^{-}}^{j} \pi_{k} \pi_{i} q_{i j}}^{q_{j i}}+\pi_{j} q_{i j} \\
& =\pi_{j} \sum_{i \neq j} q_{j i}+\pi_{j} q_{j j}=0
\end{aligned}
$$

Proof of theorem. Let

$$
\pi_{n}=\prod_{i=1}^{N} \bar{S}_{i}^{n_{i}} .
$$

well check (POB). Let

$$
\begin{aligned}
& I_{A}=\left\{e_{i}: i=I_{j} \ldots, N\right\} \\
& I_{D_{j}}=\left\{e_{i}-e_{j}: i \neq j\right\} \cup\left\{-e_{j}\right\} .
\end{aligned}
$$

Thus: - when a customer arrives: $n \rightarrow n+m$ $m \in I_{A}$

- when a customer departs from j :

$$
n \rightarrow n+m, m \in I_{D_{j}}
$$

It suffices to show:

$$
\begin{align*}
& \sum_{m \in I_{A}} \pi_{n} q_{n, n+m}=\sum_{m \in I_{A}} \frac{\pi_{n+m}}{\pi_{n}} q_{n+m, n} \tag{A}\\
& \sum_{m \in I_{0 j}} \pi_{n} q_{n, n+m}=\sum_{m \in I_{j}} \frac{\pi_{n+m}}{\pi_{n}} q_{n+m} n \tag{D}
\end{align*}
$$

(D) $m \in I_{D_{j}} \Rightarrow q_{n, n+m}=\mu_{j} P_{j 0}$ if $m=-e_{j}$

$$
q_{n, n+m}=\mu_{j} p_{j i} \text { if } m=e_{i}-e_{j}
$$

$$
\begin{aligned}
& \Rightarrow \sum_{m \in I_{j j}} q_{n, n+m}=\mu_{j} P_{j o}+\sum_{i \neq j} \mu_{j} P_{j i}=\mu_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \neq} \frac{\lambda_{i}}{\overline{\bar{S}}_{j}} p_{i j}+\frac{1}{\rho_{j}} \lambda_{j}^{(T)}=\frac{\lambda_{j}}{\overline{\bar{S}}_{j}}=\mu_{j}
\end{aligned}
$$

(A)

$$
\begin{aligned}
& \sum_{m \in I_{A}} q_{n, n+m}=\sum_{i=1}^{N} \lambda_{i}^{i+j} \\
& \sum_{m \in I_{A}} \frac{\pi_{n+m}}{\pi_{n}} q_{n+m, n}=\sum_{i=1}^{N} \underbrace{\frac{\pi_{n}+e_{i}}{\pi_{n}}}_{\bar{S}_{i}=\frac{\Gamma_{i}}{\mu_{i}}} \underbrace{q_{n+e_{i} n}}_{\mu_{i} P_{i o}} \\
& =\sum_{i} \bar{\lambda}_{i} p_{i o} \\
& =\sum_{i} \bar{\lambda}_{i}\left(1-\sum_{j} p_{i j}\right)
\end{aligned}
$$

Thus (PDB) holds and $\pi Q=0$.
The rates are bounded, so there is no explosion. Hence if $\bar{S}_{i}<$ tor all i we car normalise π. and it then is an invariant distribution.
Claim about departure process: Example sheet.
4.4. $M / G / 1$ queue

- Customers arrive according to a Poisson process with rate λ.
- Service times of the n-th customer is ξ_{n} where the ξ_{n} are i.i.d. with $\mathbb{E} \xi_{n}=1 / \mu$.
- There is one server.

Note $(X(t): t \geq 0)$, the process of the number of customers in the queue, is in general not a Markov process.
Let D_{n} be the departure time of the n-th customer.

Prop. $Z_{n}=X\left(D_{n}\right), n=0,1,2, \ldots$, is a discrete-time Markov chain on $\{0,1,2, \ldots\}$ with transition probabilities

$$
\left.\begin{array}{l}
\left(\begin{array}{lllll}
P_{0} & p_{1} & p_{2} & \cdots & \\
P_{0} & P_{1} & P_{2} & \cdots & \\
0 & p_{0} & p_{1} & P_{2} & \cdots \\
0 & 0 & p_{0} & P_{1} & p_{2}
\end{array} \cdots\right. \\
\\
\vdots
\end{array}\right)
$$

Poof. Let A_{n+1} be the number of customers arriving after D_{n} during the service time ξ_{n+1}. The A_{n} are i.i.d, and given ξ_{n},

$$
\begin{aligned}
& A_{n} \sim \operatorname{Poisson}\left(\lambda \xi_{n}\right) . \\
\Rightarrow & \mathbb{P}\left(A_{n}=k\right)=\mathbb{E}(\underbrace{\mathbb{P}\left(A_{n}=k \mid \xi_{n}\right)}_{e^{-\lambda\left(\xi_{n}\right.} \frac{\left(\lambda \xi_{n}\right)}{k!}})=P_{k}
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
X\left(D_{n+1}\right)=A_{n+1} & \left(X\left(D_{n}\right)=0\right) \\
X\left(D_{n+1}\right)=A_{n+1}+X\left(D_{n}\right)-1 & \left(X\left(D_{n}\right)>0\right)
\end{array}
$$

This gives the claim.
Thu. Let $\rho=\lambda / \mu$. If $\rho \leq 1$ the queue is recurrent in the sense will empty out almost surety. If $\rho>1$, the queue is transient in the sense that it will not empty out, with positive probability.

Lemma. Let $\left(Y_{i}\right)$ be i.i.d. Z-valued random variables. Let $S_{n}=Y_{1}+\cdots+Y_{n}$. If $\mathbb{E}\left|Y_{i}\right|<\infty$ then S is recurrent iff $\mathbb{E} Y_{i}=0$. We will assume for convenience that $\mathbb{E}\left|Y_{i}\right|^{3}<\infty$.

Proof. $E Y_{i}>0 \stackrel{\text { SUN }}{=} S_{n} \rightarrow+\infty$ ass.

$$
<0 \quad S_{n} \rightarrow-\infty \text { ass. }
$$

So we will consider the case $\mathbb{E} Y_{i}=O$ now. It suffices to prove that

$$
\begin{aligned}
& G_{\lambda}(0)=\sum_{n=0}^{\infty} \lambda^{n} \mathbb{P}_{0}\left(S_{n}=0\right) \\
& \lim _{x \uparrow} G_{\lambda}(0)=+\infty,
\end{aligned}
$$

Now: $\mathbb{P}_{0}\left[S_{n}=0\right]=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(k)^{n} e^{i k \cdot 0} d k$
where $f(k)=\mathbb{E}\left(e^{i Y k}\right)=\sum_{x \in \mathbb{I}}^{\mathbb{P}}[Y=x] \underbrace{e^{i k x}}$

$$
\begin{aligned}
& f(f(k) \leq 1 \\
& 1+i k x-\frac{1}{2} k^{2} x^{2}+O\left(l k x^{3}\right) \\
& f(k)=1-\underbrace{\frac{1}{2}\left(\mathbb{E}^{Y^{2}}\right)}_{c} k^{2}+O\left(k \beta^{\beta}\right) \\
& \begin{aligned}
\Rightarrow G_{\lambda}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \underbrace{}_{\frac{1}{\sum_{n=0}^{n}(\lambda f(k))^{n}} d k=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d k}{1-\lambda+\lambda(k)}=\frac{1}{1-\lambda\left(1-c k^{2}+0\left(k^{3}\right)\right) \text { as } \lambda \uparrow 1 .}} \begin{aligned}
& \text { as }
\end{aligned} .
\end{aligned}
\end{aligned}
$$

Proof 1 of the.
X transient/recurrent $\Leftrightarrow X\left(D_{n}\right)$ transient/recurnent While $X\left(D_{n}\right)>0$, $X\left(D_{p}\right)$ has the steps of a random walk on \mathbb{Z} with step distribution $Y=A-1$.

$$
\begin{aligned}
\mathbb{E} Y & =\mathbb{E A}-1 \\
& =\sum_{m} \mathbb{E}(A \mid \xi=m) \mathbb{P}(\xi=m)-1 \\
& =\sum_{m} \lambda m \mathbb{P}(\xi=m)-1 \\
& =\lambda \mathbb{E}\}-1=\rho^{-1}
\end{aligned}
$$

If $g=1$, then X is recurrent.
If $\rho<1$, then X is drifted to the left, x is than in fad positive recurrent. It $\rho>1, X$ is trans. The second proof uses a hidden branching. structure. A customer C_{2} is an offspring of C_{1} if C_{2} arrives during the service time of C_{1}. This defines a tree t.

The offspring distribution is ii..d. A. So this is a branching process.
Proof 2 of the. Recurrence \Leftrightarrow tree finite. (emptying out)
By branching process results, this happens iff $\mathbb{E} A \leq 1$, i.e., $\rho^{\leq 1}$.

Busy period: time between a customer joins. an emply queue and another customer" leaving behind an empty queue.
Hop. For the $M / G / I$ queue with $\lambda<\mu$, the busy period B statistics

$$
\mathbb{E} B=\frac{1}{\mu-\lambda}
$$

Proof. Assume for now that $E B<\infty$. Since $B=\xi_{1}+\sum_{i=1}^{A} B_{i}$ busy period of i-th subtree
A_{1} depends on ξ_{1}, but the B_{i} are conditionally independent and have the same distribution os B.

$$
\begin{aligned}
\Rightarrow \mathbb{E} B & \left.=\mathbb{E} \xi+\mathbb{E} \mathbb{E}\left(\sum_{i=1}^{A_{i}} B_{i} \mid A_{1}, \xi_{1}\right)\right) \\
& =\mathbb{E} \xi+\mathbb{E} A \mathbb{E} B
\end{aligned}
$$

If $E B<\infty$ then this implies that

$$
\mathbb{E} B=\frac{\mathbb{E} \xi}{1-\mathbb{E} A}=\frac{\mathbb{E} \xi}{1-\rho}=\frac{1}{\mu-\lambda} .
$$

Since $g<1$, we have seen that $X\left(D_{n}\right)$ is in fact positive recurrent. If N is the length of an excursion of $X\left(D_{n}\right)$.

$$
\begin{aligned}
\Rightarrow \mathbb{E B} & =\mathbb{E}\left(D_{N}-D_{0}\right) \\
& =\mathbb{E}\left(\sum_{n=1}^{N} D_{n}-D_{n-1}\right) \quad 0 \cdots \cdots \cdots
\end{aligned}
$$

By independence,

$$
\mathbb{E B} \leq \mathbb{E N} \underbrace{\mathbb{\xi}}_{\mathbb{E} D_{n}-D_{n-1}}<\infty .
$$

5. Renewal processes and non-Markovian queues 5.1. Renewal processes and size biased picking Suppose busses arrive "exey 10 minutes" according to the following two models:
(a) Busses always arrive exactly 10 minutes after the previous one.
(b) According to a Poisson process of rate 10 , i.e. the next bus arrives after on independ. mean 10 exponential time.
How long do you have to wait on avenge?
(a) 5 minutes
(b) 10 minutes

Den Let $\left(\xi_{i}\right)$ be i.i.d. non negative random variables with $\mathbb{P}(\xi>0)>0$. Set

$$
T_{n}=\sum_{i=1}^{n} \xi_{i}, \quad N(t)=\max \left\{n \geq 0: T_{n} \leq t\right\}
$$

Prop if $\lambda=1 / \mathbb{E} \xi$ then

$$
\frac{N(t)}{t} \longrightarrow \lambda \text { a.s., } \mathbb{E} \frac{N(t)}{t} \longrightarrow \lambda .
$$

We will only prove the first claim.
Poof. First note that $N(t)<\infty$ a.s. and that $N(t) \longrightarrow \infty$ ass. Then

$$
\begin{aligned}
& T_{N(t)} \leq t \leq T_{N(t)+1} \\
\Rightarrow & \frac{T_{N(t)}}{N(t)} \leq \frac{t}{N(t)} \leq \frac{T_{N(t)+1}}{N(t)}
\end{aligned}
$$

By the $L N, \frac{T_{n}}{n} \longrightarrow \mathbb{E} \xi=\frac{1}{\lambda}$ ass. Since $N(t) \rightarrow \infty$, therefore

$$
\begin{aligned}
& \frac{T_{N(t)}}{N(t)} \longrightarrow \frac{1}{\lambda}, \frac{T_{N}(t)+1}{N(t)} \longrightarrow \frac{1}{\lambda} \\
\Rightarrow & \frac{N(t)}{t} \longrightarrow \lambda .
\end{aligned}
$$

Now suppose $\mathbb{P}\left(\xi_{i}>0\right)=1$. Let

$$
S_{i}=\xi_{1}+\cdots+\xi_{n}
$$

$\Rightarrow \frac{S_{i}}{S_{n}} \in[0,1]$ partition $[0,1]$:

$$
0=\underbrace{\cdots}_{Y_{1}=\frac{S_{1}}{S_{n}} \frac{S_{1}}{S_{n}} \underbrace{}_{Y_{2}} \frac{S_{2}}{\frac{S_{2}}{S_{n}}}} \cdot \underline{S_{n}}
$$

Let $U \sim U n i f[0,1]$ and \hat{Y} be the length of the interval containing U.
What is the dishibution of \hat{Y} ? One might it is the same as that of Y, bi this is not so because U tends to fall in bigger intervals:
size biased picking.
Prop. $\mathbb{P}(\hat{Y} \in d y)=n y \mathbb{P}(Y, \in d y)$
Proof $\mathbb{P}(\hat{Y} \in d y)=\sum_{i=1}^{n} \mathbb{P}\left(\hat{Y} \in d y, \frac{S_{i-1}}{S_{n}} \leq u \leq \frac{s_{i}}{s_{n}}\right)$

$$
\begin{aligned}
= & \sum_{i=1}^{n} \mathbb{E}\left(1 \left\{\frac{\xi_{i}}{S_{n}}\right.\right. \\
= & \left.\sum_{i=1}^{n} y \mathbb{F}\left(\frac{\xi_{n}}{S_{n}} \in d y\right\} \frac{\xi_{i}}{S_{n}}\right)
\end{aligned}
$$

$$
=n y \mathbb{P}\left(Y_{1} \in d y\right) .
$$

Defn. Let X be a nonnegative random variable with distribution μ and $\mathbb{E X}=m$. Then the size biased distribution is

$$
\hat{\mu}(d y)=\frac{y}{m} \mu(d y) .
$$

We will wite \hat{x} for a random variable with distribution μ.

Re. $\int \hat{\mu}(d y)=\frac{1}{m} \underbrace{\int y \mu(d y)}_{m}=1$.
Example, If $X \sim$ Unit $[0,1]$. Then \hat{X} has distribution

$$
\hat{\mu}(d x)=2 x d x
$$

Example If $x \sim \operatorname{Exp}(\lambda)$. Then \hat{X} has distr.

$$
\begin{aligned}
\hat{\mu}(d x) & =\frac{x}{1 / \lambda} \lambda e^{-\lambda x} d x \\
& =\lambda^{2} x e^{-\lambda x} d x
\end{aligned}
$$

So $\hat{X} \sim \operatorname{Gamma}(2, \lambda)$ ie., \hat{X} has the same distribution as $X_{1}+X_{2}$ where X_{1} and X_{2} are independent Exp (λ) random variables.
52. Renewal processes: equilibrium Given a renewal process, set

$$
\left.\begin{array}{rlrl}
A(t) & =t-T_{N(t)} & & \text { age (time since } \\
\text { last renewal }
\end{array}\right)
$$

For simplicity, assume ξ is \mathbb{Z}-valued in the following.
Int. Assume ξ is Z-valued and non-arithmetic: $\forall k>1: \mathbb{P}(\xi \in k \mathbb{Z})<1$.
Then $\mathbb{P}(L(t) \leq x, E(t) \leq y) \rightarrow \mathbb{P}(\hat{\xi} \leq x, U \hat{\xi} \leq y)$
$(x, y \in \mathbb{N}) P(L(t) \leq x, A(t) \leq y) \longrightarrow P(\hat{\xi} \leq x, U \hat{3} \leq y)$
where $U \sim$ Unif $[0, I]$ and independent of $\hat{\xi}$.
R. $P(U \hat{\xi} \leq x)=\begin{aligned} & \lambda \int_{1}^{x} \mathbb{P}(\xi>y) d y \\ & \frac{1}{2}=E \xi\end{aligned}$

Indeed, $\mathbb{P}(u \hat{\xi} \leq x)=\int_{0}^{1} \mathbb{P}(\hat{\xi} \leq x / u) d u$

$$
\begin{aligned}
& -\int_{0}^{1}\left(\int_{0}^{x u} \lambda y \mathbb{P}(\xi \in d y)\right) d u \\
& =\int_{0}^{\infty} \lambda y \mathbb{P}(\xi \in d y \underbrace{\int_{y}^{x}}_{\left.\ln ()^{x / n}\right)} d u \\
& =\lambda \int_{0}^{\infty}(x x y) \mathbb{P}(\xi \in d y) \\
& \lambda \int_{0}^{x} P(\xi>y) d y=\lambda \int_{\int}^{x} \int_{j}^{\infty} P(\xi \in d z) d y \\
& =\lambda \int_{0}^{\infty} \mathbb{P}(\xi \epsilon d z \underbrace{x \wedge z}_{x \wedge z} \int_{\infty}^{\infty} d y \\
& =\lambda \int_{0}^{\infty}(x \wedge y) P(z t d z)
\end{aligned}
$$

Example. If $\xi \sim$ Uni $[0,1]$ and $y \in[0,1]$,

$$
\begin{gathered}
\mathbb{P}\left(F_{\infty} \leq y\right)=\lambda \int_{0}^{y} \mathbb{P}(\xi>u) d u \quad \lambda=V_{\text {mean }} \text { of } \xi \\
1 u \hat{\xi}=\lambda \int_{0}^{y}(1-u) d u=2^{b}\left(y-\frac{y^{2}}{2}\right)
\end{gathered}
$$

Proof (of the theorem). Since ξ is \mathbb{Z}-valued, $F(t)$, $t=0,1,2, \ldots$ is a discrete-fime Markov chain with

$$
\begin{align*}
& P_{i, i-1}=1 \quad(i \geq 2) \\
& P_{1, n}=\mathbb{P}(\xi=n+1)
\end{align*}
$$

Since $\mathbb{P}[\xi \in k \mathbb{Z}]<|\forall k\rangle \mid$, this Markov Chain is aperiodic. (on $(1, \ldots, N j$ for suitable N)
It is also irreducible and recurrent, and $\pi=\pi P$ is

$$
\begin{aligned}
\pi_{n} & =\pi_{n+1}+\pi_{0} \mathbb{P}(\xi=n+1) \\
\Rightarrow \pi_{n} & =\underbrace{\sum_{m+1} \mathbb{P}(\xi=m), \quad \pi_{0}=1}_{\mathbb{P}(\xi>n)} \text { is an invanant measure }
\end{aligned}
$$

Since $\mathbb{E} \xi=\sum_{n} \mathbb{P}(\xi>n)$, this measure can be normalised if $\mathbb{E} \xi=\lambda_{\lambda}<\infty$ and thus

$$
\pi_{n}=\lambda \mathbb{P}(\xi>n)
$$

is an invanaut distribution.
Since we have already noticed that the chain
is aperiodic, by convergence to the invanant distribution, for y integer,

$$
\begin{array}{r}
\mathbb{P}(E(t) \leq y) \longrightarrow \sum_{n \leq y} \pi_{n}=\lambda \sum_{n=0}^{|y|} \mathbb{P}(\xi>n) \\
=\lambda \int_{0}^{|y|} \mathbb{P}(\xi>|x|) d x \\
=\lambda \int_{0}^{y} \mathbb{P}(\xi>x) d x
\end{array}
$$

Now $(L(t), E(t)), t=0,1,2, \ldots$ is also a Markov chain with state space

$$
I=\{(n, k): 1 \leq k \leq n\} \subset \mathbb{N} \times \mathbb{N}
$$

and transition probabilities

$$
\begin{align*}
& P_{(n, k) \rightarrow(n, k-1)}=1 \quad(k \geq 2) \\
& P_{(n, 1) \rightarrow(k, k-1)}=\mathbb{P}(\xi=k) \leftarrow \text { indep. of } n
\end{align*}
$$

This is again an aperiodic irreducible Markov chain and the invariant measure equation is

$$
\begin{aligned}
& \pi_{(n, k-1)}=\pi_{(n, k)} \quad(1 \leq k \leq n) \\
& \pi_{(k, k-1)}=\sum_{n=1}^{\infty} \pi_{(m, 1)} \mathbb{P}(\xi=k) . \\
& \text { indef. of } k
\end{aligned}
$$

Take

$$
\pi_{(n, k)}=\frac{\mathbb{P}(\xi=n)}{\mathbb{E} \xi}=\underbrace{\begin{array}{l}
\text { Given } L=n, \\
E \text { is uniform } \\
\text { on }\{1, \ldots, n\} .
\end{array}}_{\begin{array}{l}
\mathbb{E}(\hat{\xi}=n) \\
\mathbb{E} \xi
\end{array}}
$$

Again by the Markov chain limit theorem,

$$
\begin{aligned}
\mathbb{P}(L(t) \leq x, E(t) \leq y) \longrightarrow & \sum_{n \leq x} \sum_{k \leq y} \Pi_{n, k} \\
& \sim(\hat{\xi}, U \hat{\xi})
\end{aligned}
$$

This completes the proof of convergence for $(L(t), E(t))$. The one for $(L(t), A(t))$ is analogous.
5.3. Renewal -reward processes

Let $\left(\xi_{i}, R_{i}\right)$ be i.i.d. pairs of random, vanables. (Here ξ_{i} and R_{i} need not be independent.) Assume ξ_{i} is nonnegative and $\mathbb{E} \xi_{i}=1 / \lambda<\infty$.
Let $(N(t): t \geq 0)$ be the renewal process associated with the (ξ_{i}) and

$$
R(t)=\sum_{i=1}^{N(t)+1} R_{i} \quad \text { (total reward up to time } t \text {) }
$$

Prop. If ARil $<\infty$ then

$$
\begin{aligned}
& \frac{R(t)}{t} \longrightarrow \lambda \mathbb{E} R_{i} \text { ass. } \\
& \mathbb{E} \frac{R(t)}{t} \longrightarrow \lambda \mathbb{E} R_{i} .
\end{aligned}
$$

Thy. The expected current reward $r(t)=\mathbb{E} R_{N(t)+1}$ satisfies

$$
H(t) \longrightarrow \lambda \mathbb{E}(R \xi)
$$

Example: Alternating renewal process A machine breaks after time X_{i} then it takes time Y_{i} for it to get fixed. Thus $\xi_{i}=X_{i}+Y_{i}$ is the length of a cycle and the ξ_{i} define a renewal process (if we assume that the X_{i} and Yo are i.i.d).
What is the fraction of time that the machine runs in the long nun?
Let $R_{i}=X_{i}$ be the amount of time the machine was on during cycle i. Then $\left(\xi_{i}, R_{i}\right)$ is a renewal-reward process.
Thus the last proposition suggests that

$$
\begin{aligned}
\frac{R(t)}{t} & \longrightarrow \frac{\mathbb{E} X_{1}}{\mathbb{E} X_{1}+\mathbb{E} Y_{1}} \\
\mathbb{E}(-1-) & \longrightarrow-1-.
\end{aligned}
$$

Now R(t)/t is not precisely the fraction of time that the machine is on because the rewards gre always awarded at the end of the cycles.

What is the probability pit) that the machine is on at time t ?

$$
\mathbb{E} R(t)=\int_{0}^{ \pm} p(s) d s
$$

so we expect (and it is true under suit. ass.)

$$
p(t) \longrightarrow \frac{\mathbb{E} X_{1}}{\mathbb{E} X_{1}+\mathbb{E} Y_{1}}
$$

Example Busy periods of $M / G / I$ queue Assume $\rho<1$. Let I_{n} and B_{n} denote the lengths of the $n-t h$ idle and busy periods.
Then $\left(B_{n}, I_{n}\right)$ is an alternating renewal process.

$$
\Rightarrow p(t) \longrightarrow \frac{\mathbb{E} I_{n}}{\mathbb{E} B_{n}+\mathbb{E} I_{n}} .
$$

By the Markov property, $I_{n} \sim \operatorname{Exp}(\lambda)$

$$
E I_{n}=Y_{\lambda}
$$

Earlier we saw that $\mathbb{E} B_{n}=\frac{1}{\mu-\lambda}$.
Thus

$$
p(t) \longrightarrow \frac{1 / \lambda}{\frac{1}{\mu-\lambda}+\frac{1}{\lambda}}=\frac{\mu-\lambda}{\mu}=1-\frac{\lambda}{\mu} .
$$

5.4. Little's formula

Dean. A process $(X(t): t \geq 0)$ is regenerative if there exist random times τ_{n} such that the law of $\left(X\left(t+\tau_{n}\right): t \geq 0\right)$ is the same as that of $(X(t): t \geq 0)$ and independent of $\left(X(t): t \leq t_{n}\right)$. Also assume that $\tau_{0}=0$, that $\tau_{n+1}>\tau_{n}$ and that τ_{n+1} depends only on $\left(X\left(t+\tau_{n}\right): t \geq 0\right)$ (so that $\left(\tau_{n+1}-\tau_{n}\right)_{n \geq 0}$ is lind.).

RE. An $M / G / 1$ queue is regenerative with τ_{n} the end time of the r th busy period.
Thy (Little's formula). Let X be a queue that is regenerative with regeneration times τ_{n}. Let N be the arrival process of X and let w_{i} the waiting time of the $i-t$ th customer (inclucling the service time).
Assume $\mathbb{E} \tau_{1}<\infty$ and $\mathbb{E} N\left(\tau_{1}\right)<\infty$. Then the following limits exist almost surely and are deterministic:
(a) Long-nun mean queue size:

$$
\underline{L}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X(s) d s
$$

(b) Long-nen average waiting time:

$$
W=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} W_{i}
$$

(c) Long-nun average arrival rate

$$
\lambda=\lim _{t \rightarrow \infty} \frac{N(t)^{\prime}}{t}
$$

Moreover, $L=\lambda W$. In fact, $L=\lambda W$ holds only assuming that the limits in (b) \&(c) exist and $X(t) / t \longrightarrow 0$.
Prot. Set $Y_{n}=\sum_{i=1}^{N\left(\tau_{n}\right)} W_{i}$. Since $X\left(\tau_{n}\right)=0$,
for any $\tau_{n} \leq t<\tau_{n+1}$,

$$
\frac{Y_{n}}{\tau_{n+1}} \leq \frac{1}{t} \int_{0}^{t} X(s) d s \leq \frac{Y_{n+1}}{\tau_{n}} .
$$

By the regeneration property, $Y_{i}-Y_{i-1}$ are lipid.
Ass $Y_{0}=O$. By the SLLN,

$$
\begin{aligned}
& \frac{Y_{n+1}}{\tau_{n+1}} \frac{\mathbb{E} Y_{1}}{\mathbb{E} \tau_{1}} \\
\Rightarrow & \frac{1}{t} \int_{0}^{t} X(s) d s \longrightarrow \frac{\mathbb{E} Y_{1}}{\mathbb{E} \tau_{1}} .
\end{aligned}
$$

Similarly, since $\mathbb{E N}\left(\tau_{1}\right)<\infty$,

$$
\frac{N(t)}{t} \longrightarrow \lambda
$$

Also, for $N\left(\tau_{n}\right) \leq k<N\left(\tau_{n+1}\right)$,

$$
\frac{Y_{n}}{N\left(\tau_{n+1}\right)} \leq \frac{1}{k} \sum_{i=1}^{k} W_{i} \leq \frac{Y_{n+1}}{N\left(\tau_{n}\right)}
$$

and $\frac{Y_{n+1}}{N\left(\tau_{n+1}\right)} \longrightarrow \frac{L}{\lambda}$
This conclucles the main statement.
That $L=\lambda W$ still holds under the stated assumption is also similar:

$$
\sum_{k=1}^{N(t)-X(t)} W_{k} \leq \int_{0}^{t} X(s) d s \leq \sum_{k=1}^{N(t)} W_{k}
$$

Since $N(t) / t \rightarrow \lambda>0$ and $X(t) / t \rightarrow 0$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X(s) d s=\lambda W
$$

6. Spatial Poisson processes
6.1. Definition and superposition

The standard Poisson process can be encoded by the set of arrival times

$$
\Pi=\left\{T_{1}, T_{2}, T_{3}, \ldots\right\} c[0, \infty)
$$

Π is a countable random subset of $[0, \infty)$. A spatial Poisson process is a random countable subset $\prod_{C} R^{d}$ (with certain properties) Let $\tilde{\mathbb{A}}\left(\mathbb{R}^{d}\right)=\left\{\prod_{i=1}^{d}\left(a_{i}, b_{i}\right]: a_{i}<b_{i}\right\}$ be the set of boxes in \mathbb{R}^{d}. For $A \in \widetilde{B}\left(\mathbb{R}^{d}\right)$, the volume is

$$
|A|=\prod_{i=1}^{d}\left|b_{i}-a_{i}\right|
$$

The Bored σ-algebra $B\left(\mathbb{R}^{d}\right)$ is obtained by countable unions and intersections of elements of $\mathscr{B}\left(R^{d}\right)$. for $A \in \mathbb{A}\left(R^{d}\right)$ the volume (Lebesgue measure) |A| is still defined.
Defn. A random countable subset $\Pi \subset \mathbb{R}^{d}$ is a Poisson process with constant intensity $\lambda>0$ if for all $A \in D\left(\mathbb{R}^{d}\right)$,
(a) $N(A):=\#(A \cap \square) \sim \operatorname{Poisson}(\lambda|A|)$
(b) For any $A_{1}, \ldots, A_{n} \in B\left(\mathbb{R}^{d}\right)$ disjoint, $N\left(A_{1}\right), \ldots, N\left(A_{n}\right)$ are independent. If $|A|=\infty$ we interpret (a) as $\mathbb{P}(N(A)=\infty)=1$.

Example If Π is a spatial Poisson process on \mathbb{R} then $N(t)=N([0, t])$ is a standard Poisson process.

Defn. Let $\lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non-negative (measurable) function such that

$$
\Lambda(A):=\int_{A} \lambda(x) d x<\infty
$$

for even bounded $A \in \mathscr{Z}\left(\mathbb{R}^{d}\right)$. Then π is a non-homogeneous Poisson process with intensity λ if
(a) $N(A):=\#(A \cap \square) \sim$ Poisson $(\wedge(A))$
(b) For any $A_{1}, \ldots, A_{n} \in B\left(\mathbb{R}^{d}\right)$ disjoint, $N\left(A_{1}\right), \ldots, N\left(A_{n}\right)$ are independent.
Λ is called the mean measure of the Poisson process.

Thy. (Superposition theorem). Let Π_{1} and Π_{2} be independent Poisson processes with intensity functions λ_{1} and λ_{2}. Then $\Pi_{1}=\Pi_{1} \cup \Pi_{2}$ is a Poisson process with intensity $\lambda^{2}=\lambda_{1}+\lambda_{2}$.
Proof. Let $N_{i}(A)=\#\left\{\prod_{i} \cap A\right\}$.
Since $N_{i}(A) \sim$ Poisson $\left(\wedge_{i}(A)\right)$ it follows that

$$
\begin{aligned}
S(A) & =N_{1}(A)+N_{2}(A) \\
& \left.\sim \text { Poisson } \frac{\left(\Lambda_{1}(A)+\Lambda_{2}(A)\right.}{\Lambda(\Lambda)}\right)
\end{aligned}
$$

Also if A_{1}, \ldots, A_{n} are disjoint, $\left.S\left(A_{1}\right)_{,}, S, S A_{n}\right)$ are independent.
To show that $S(A)=\#\{\square \cap A\}$ we need to show that $\prod_{1} \cap \Pi_{2} \cap A=\varnothing$ almost swell. he will assume A is bounded. Let

$$
\begin{aligned}
& Q_{k, n}=\prod_{i=1}^{1}\left(k_{i} 2^{-n},\left(k_{i}+1\right) 2^{-n}\right] \text { for } k \in \mathbb{Z}^{d}, n \in \mathbb{N} . \\
& \Rightarrow \mathbb{P}\left[\Pi_{1} \cap \Pi_{2} \cap A \neq \phi\right] \\
& \quad \leq \sum_{k \in \geq Z d} \mathbb{P}\left[N_{1}\left(Q_{k, n} \cap A\right) \geq 1, \quad N_{2}\left(Q_{k, n} \cap A\right) \geq 1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k \in \mathbb{Z}^{d}}(\frac{\left(-e^{-\Lambda_{1}\left(Q_{k, n} \cap A\right)}\right)}{\leq \Lambda_{1}\left(Q_{k, n} \cap A\right)}(\underbrace{\left.1-e^{-\Lambda_{2}\left(Q_{k, n} \cap A\right)}\right)}_{M_{n}(A)} \\
& \underbrace{\max _{k \in \mathbb{Z}^{d}} \Lambda_{1}\left(Q_{k, n} \cap A\right)}_{\Lambda_{2}\left(Q_{k, n} \cap A\right)} \times \underbrace{\sum_{k \in z^{d}} \Lambda_{2}\left(Q_{k, n} \cap A\right)}_{\Lambda_{k}(A)<\infty}
\end{aligned}
$$

Clearly, when λ is constant (or bounded) then

$$
M_{n}(A) \leq \lambda 2^{-n d} \longrightarrow 0 .
$$

Lemma. $\quad M_{n}(A) \rightarrow 0$ for any

non-negative measurable λ and $A \in B\left(\mathbb{R}^{c}\right)$ bounced.
Plot. $W L O G, A$ is a finite union of $Q_{k, 0}$. Clearly, $M_{n+1}(A) \leq M_{n}(A)$ and thus $M_{n}(A) \rightarrow \delta$ for some $\delta \geq 0$.
If $\delta>0$, then for every n there is $k_{n} \in \mathbb{Z}^{d}$ s.t.
$\wedge\left(Q_{k, n}\right) \geq \delta$.
Colour a cube $Q_{k, n}$ black if for any $m \geq n$ there is a cube $Q_{k_{m}, m} \subset Q_{k, n}$ st. $\wedge\left(Q_{k_{m}, m}\right) \geq \delta$.

Since A is a finite union of $Q_{k, 0}$, there is one of them such that $Q_{k, 0}$ contains infinitely many of the $Q_{k m, m}$. By moncton. $Q_{k, 0}$ is then black and we thus have a nested sequence of cubes

$$
\begin{aligned}
& Q_{0} \supset Q_{1} \supset Q_{2} \supset \cdots \\
& \text { s.t. } \wedge\left(Q_{n}\right) \geq \delta \text {. But } \\
& \\
& \lim _{n \rightarrow \infty} \wedge\left(Q_{n}\right)=\Lambda\left(\bigcap_{n} Q_{n}\right)=0 .
\end{aligned}
$$

monotone contains at most convergence one point

Re. The same proof applies to any measure Λ satisfying $\Lambda(\{k j)=0$ for any k.
6.2. Mapping and conditioning

Let $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{s}$ be measurable. For Π a Poisson process on \mathbb{R}^{d}, when is $f(\Pi)=\left\{f(x) \in \mathbb{R}^{s}: x \in \Pi\right\}$ again a Poisson process (on \mathbb{R}^{s})?
Thy. (Mapping theorem) Let Π be a nonhomogeneous Poisson process with intensity function λ. Assume $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ satisfies

$$
\begin{equation*}
\Lambda\left(f^{-1}(\{y\})\right)=0 \text { for all } y \in \mathbb{R}^{s} \tag{*}
\end{equation*}
$$

and

$$
\mu(B)=\Lambda\left(f^{-1}(B)\right)=\int_{f^{-1}(B)} \lambda(x) d x<\infty
$$

for all bounded $B \in \mathbb{D}\left(\mathbb{R}^{d}\right)$. Then $f(T)$ is a Poisson process on \mathbb{R}^{s} with mean measure μ.
Proof. Assume that the points in $f(\Pi)$ are ass. distinct, i.e., f is injective on Π.
Then

$$
\begin{aligned}
& M(B)=\#\{f(\Gamma) \cap B\} \\
& =\#\left\{\Pi \cap f^{-1}(B)\right\} \sim \text { Poisson } \frac{\left(\Lambda\left(f^{-1}(B)\right)\right.}{\mu(B)}
\end{aligned}
$$

If B_{1}, \ldots, B_{n} are disjoint, so are the $f^{-1}\left(B_{1}\right)$. $\Rightarrow M\left(B_{1}\right), \ldots, M\left(B_{n}\right)$ are independent Thus $f(\Gamma)$ is a Poisson process with mean measure μ.
Thus it suffices to show that the points in $f(\Gamma) \cap[0,)_{\text {are }}^{s}$ are distind ass.
Let $Q_{k, n}=\prod_{i=1}^{s}\left(k_{i} 2^{-n},\left(k_{i}+1\right) 2^{-n}\right] \subset \mathbb{R}^{s}$
Then $\underbrace{\#\left\{\sqcap \cap f^{-1}\left(Q_{k, n}\right)\right\}}_{N_{k}} \sim \operatorname{Poisson}(\underbrace{\mu\left(Q_{k, n}\right)}_{\mu_{k}})$

$$
\begin{aligned}
\Rightarrow \mathbb{P}\left(N_{k} \geq 2\right) & =1-1-e^{-\mu_{k}}-\mu_{k} e^{-\mu_{k}} \\
& =1-\underbrace{e^{-\mu_{k}}}\left(1+\mu_{k}\right) \leq \mu_{k}^{2} \\
\Rightarrow \sum_{k} \mu_{k}^{2} & \leq \underbrace{\max _{k} \mu_{k}}_{M_{n}} \underbrace{\sum_{k} \mu_{k}}_{=\mu\left([0,1)^{s}\right)<\infty}
\end{aligned}
$$

and $M_{n} \rightarrow 0$ by the lemma from last time using the assumption (*).

Example. Let Π be a Poisson process on \mathbb{R}^{2} with constant rate λ. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote Polar coordinates:

$$
\begin{aligned}
r=\sqrt{x^{2}+y^{2}}, & \theta=\arctan \left(\frac{x}{y}\right) \\
\text { and }(r, \theta)=0 & \text { if }(x, y)=(0,0) .
\end{aligned}
$$

Then $f(\square)$ is a Poisson process on \mathbb{R}^{2} with measure

$$
\begin{aligned}
& \mu(B)= \int_{f^{-r}(B)} \lambda d x d y= \\
& \text { where } S=\{(g, \theta): r \geq 0,0<\theta \leq 2 \pi\}
\end{aligned}
$$

Thus $f(17)$ is a Poisson process on S with intensity λ.

The (Conditioning property) Let 17 be a Poisson process on \mathbb{R}^{d} with intensity function
λ and $A \in \mathbb{B}\left(\mathbb{R}^{d}\right)$ such that $0<\wedge(A)<\infty$.
Conditional on $\#\{\sqcap \cap A\}=n$, the n points in $\sqcap \cap A$ have the same distribution as n points chosen independently, all from the probability distribution

$$
\begin{aligned}
\nu(B) & =\frac{\Lambda(B)}{\Lambda(A)}, \quad B \subseteq A \\
& =\int_{B} \frac{\lambda(x)}{\Lambda(A)} d x .
\end{aligned}
$$

In particular, if λ is constant, then the n points are uniform in A.
Proof. Write $N(B)=\#\{B \cap \Pi\}$.
Let A_{1}, \ldots, A_{k} be a partion of A.

$$
\begin{aligned}
& \Rightarrow \mathbb{P}\left(N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k} \mid N(A)=n\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\prod_{i} \frac{1}{n!\Lambda\left(A_{i}\right)^{n_{i}} e^{-\Lambda\left(A_{i}\right)}}}{\frac{1}{n!} \Lambda(\Lambda)^{n} e^{-\Lambda(A)}} \\
& =\frac{n!}{n_{1}!\cdots n_{k}!} \cup\left(A_{1}\right)^{n_{1}} \cdots \cup \cup\left(A_{k}\right)^{n_{k}}
\end{aligned}
$$

This multinomial distribution is the same as for n independent paints chosen from ν.

This holds for any A_{1}, A_{K}, and thus charaderises the distribution of $\Pi \cap A$.

Pk. One can simulate a Poisson process by using this property. Partion \mathbb{R}^{d} into say unit cubes A_{1}, A_{2}, \ldots. . For each i, simulate a random variable $N_{i} \sim \operatorname{Poisson}\left(\lambda\left(A_{i}\right)\right.$).
Then choose N_{i} points uniformly at random from A_{i}. The result is a Poisson process with constant intensity λ.
6.3. Colowing

Let M be a (non-homogeneous) Poisson process on \mathbb{R}^{d} with intensity function $\lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Colour the points $x \in \square$ independently as follows

- A point $x \in \Pi$ is red with probability $\gamma(x)$;
- a point $x \in \Pi$ is blue otherwise.

Let $\Gamma \subset \Pi$ be the set of red points and let $\sum C \Pi$ be the of blue points.
Ihm Γ and \sum are indepenclent Poisson processes on \mathbb{R}^{d} with intensity function $\gamma(x) \lambda(x)$ resp. $(1-\gamma(x)) \lambda(x)$.
Proof: Let $A \in B\left(\mathbb{R}^{d}\right)$ with $\Lambda(A)<\infty$. Then condition on \# $\{\square \cap A\}=n$: Then $\Pi \cap A$ consists of n points chosen independently from distribution v (as last time).
The probability that a point is red is

$$
\bar{\gamma}=\frac{1}{\Lambda(A)} \int_{A}^{0} \gamma(x) \lambda(x) d x .
$$

Let N_{r} and N_{b} be the number of red and blue points in A.

$$
\begin{aligned}
& \Rightarrow \mathbb{P}\left(N_{r}=n_{r}, N_{b}=n_{b} \mid N(A)=n\right)=\frac{n!}{n_{r}!n_{b}} \bar{\gamma}^{n}(1-\bar{\gamma})^{n_{b}} . \\
& \Rightarrow \mathbb{P}\left(N_{r}=n_{r}, N_{b}=n_{D}\right)=\frac{\left.\left(n_{r}+t_{b}\right)\right)^{!}}{n_{r}!n_{b}!} \bar{\gamma}^{n_{r}}(1-\bar{\gamma})^{n_{b}} \\
& \times \frac{\Lambda(A)^{n_{1}+n_{b}}}{\left(n_{f}+n_{b}\right)!} e^{-\lambda(A)} \\
& =\underbrace{\frac{(\bar{\gamma} \wedge(A))^{n_{r}} e^{-\bar{\gamma}} \wedge(A)}{n_{r}!}}_{\mathbb{P}\left(\text { Poisson }(\bar{\gamma} \wedge(A))=n_{r}\right)} \frac{((1-\bar{\gamma}) \wedge(A))^{n_{b}} e^{-(1-\bar{\gamma}) \wedge(A)}}{n_{b}!}
\end{aligned}
$$

Thus the number of red and blue points in A are independent and they are distributed as Poisson $(\bar{\gamma} \wedge(A))$ respectively Poisson $((l-\bar{\gamma}) \wedge(A))$.
The independence of the number of red / blue points in disjoint sets A_{1}, \ldots, An follows from the independence property of Π.
Example. A museum contains n different rooms that the visitors have to visit in sequence. Assume visitors arrive according to a Poisson
process (on R R_{+}) of (constant) rate λ.
The roth $^{\text {th }}$ visor spends time $X_{s, r}$ in room s where the $X_{t, s}$ are independent random variables and given, s the distribution of $X_{r, s}$ does not depend on r.
Let $Y_{s}(t)$ be the number of visitors in 100 m s at time.
Claim: For any fixed t, the $V_{s}(t), s=1, \ldots, n$, are independent and have Poisson distributions
Proof. Let $T_{1}<T_{2}<\cdots$ be the arrival times.

Colour the visitors according to which room they are in at time t. A point x in the Poisson process is coloured c_{3} if

$$
\begin{equation*}
x+\sum_{v=1}^{s-1} X_{v} \leq t<x+\sum_{v=1}^{3} X_{v} \tag{*}
\end{equation*}
$$

where the X_{y} are the times spent in room v by the visitor that arrived at time x.
If (x) does not hold for any $s=1, \ldots, n$, we
colour the point x by $\delta=$ gray. These are the visitors that hare not anvived get or that have already left the museum.
The colours of different points are index. Thus we have a (t-dependent) coloured Poisson process.
The (t-dependent) intensity measure for each colour that is not δ is a finite measure because if $x>t$ then x is δ.
So $V_{s}(t)=N_{s}([0, t])$.
6.4. Rengi's and Campbell-Hardy theorem

Inn. Let \square be a countable random subsef of \mathbb{R}^{d} and let $\lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a nonnegative measurable function with

$$
\Lambda(A)=\int_{A} \lambda(x) d x<\infty
$$

for all bounded $A \in B\left(R^{d}\right)$. If

$$
\mathbb{P}(\sqcap \cap A=\phi)=e^{-\Lambda(A)}
$$

for any A that is a finite union of dyadic boxes $Q_{k, n}=\prod_{i=1}^{0}\left(k_{i} 2^{-n},\left(k_{i}+1\right) 2^{-n}\right]$ then Π is a Poisson process ${ }^{i=1}$ with intensity function λ.
Proof Let $A C \mathbb{R}^{d}$ be bounded and open. Let

$$
I_{k, n}=1_{Q_{k, n} \cap A \neq \phi}
$$

Then

$$
N(A):=\#\{\cap \cap A\}=\lim _{n \rightarrow \infty} N_{n}(A)
$$

where $N_{n}(A)=\sum_{k: Q_{k n}} I_{A, n}$
The limit is monotone. for fixed n

Since the $I_{k, n}$ are inclependent (for fixed n),

$$
\begin{aligned}
& \mathbb{E}\left(S N_{n}(A)\right)=\prod_{k: Q_{k, n} C A} \underbrace{\mathbb{E}\left(S^{I_{k, n}}\right)} \\
& \text { assumption } \longrightarrow e^{-\Lambda\left(Q_{k, n}\right)}+S\left(1-e^{\left.-N Q_{k, n}\right)}\right) \\
&=\prod_{k: Q_{k n}(A}\left(S+(1-S) e^{\left.-N\left(Q_{k, n}\right)\right)}\right.
\end{aligned}
$$

By monotone convergence,

$$
\mathbb{E}(S N(A))=\lim _{n \rightarrow \infty} \prod_{k: Q_{k, n}}(A \underbrace{\left(s+(1-s) e^{-\Lambda\left(Q_{k, n}\right)}\right)}
$$

Also: $e^{-(1-s) \alpha} \leq s+(1-s) e^{-\alpha} \leq e^{-(1-s) \alpha+O\left(\alpha^{2}\right)}$

$$
\begin{aligned}
& \log \left(s+(1-s) e^{-\alpha}\right) \\
= & \log \left(e^{-\alpha}\left(\left(e^{\alpha}-1\right) s+1\right)\right) \\
= & -\alpha+\log \left(\left(e^{a}-1\right) s+1\right) \\
\leq & -a+\underbrace{\left(e^{\alpha}-1\right) s}_{a+0\left(a^{2}\right)} \\
= & -(1-s) a+0\left(a^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \lim _{n \rightarrow \infty} e^{-(1-S)} \sum_{k: Q_{k, n} \subset A} \wedge\left(Q_{k, n}\right) \leq \mathbb{E}\left(S^{N(A)}\right) \\
& \leq \lim _{n \rightarrow \infty} e^{-(1-S)} \sum_{k: Q_{k, n} n} \bigwedge_{(A}\left(Q_{k, n}\right)+O\left(\max _{k} \Lambda\left(Q_{k, n}\right)\right)
\end{aligned}
$$

Since Λ has a density λ,

$$
\Lambda(A)=\lim _{n \rightarrow \infty} \sum_{k: Q_{k, n} \subset A} \bigwedge_{k, n}\left(Q_{k}\right) .
$$

By the lemma from earlier: $\max _{k: Q_{k, n} \subset A} \wedge\left(Q_{k, n}\right) \rightarrow 0$.

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left(S^{N(A)}\right)=e^{-(1-S) \wedge(A)} \\
& \Rightarrow N(A) \sim \operatorname{Poisson}(\Lambda(A))
\end{aligned}
$$

Also, $N\left(A_{1}\right), \ldots, N\left(A_{k}\right)$ are independent for disjoint open sets $A_{1}, \ldots A_{k}$ because the $N_{n}\left(A_{i}\right)$ are and $N_{n}\left(A_{i}\right) \longrightarrow N_{n}(A)$.

Without proof: the statement can be extended from A_{k} bounded open to general A_{k}.

Example: Lottery.

- A player wins at the events of a standard Poisson process \cap on \mathbb{R} with rate λ.
- The amounts won are iii.d.
- The player spends gains at exponential rate a.

The gain at time t is

$$
\begin{aligned}
G(t) & =\sum_{x \in \Pi\lceil 0, t]} e^{-\alpha(t-x)} W_{x} \\
& =\sum_{x \in \Pi} r(t-x) W_{x}
\end{aligned}
$$

where $H(u)= \begin{cases}0 & \text { if } u \leq 0 \\ e^{-x} u & \text { if } u \geq 0 .\end{cases}$
Inv. Let \square be a Poisson process on \mathbb{R} with intensity λ, and let $r: R \rightarrow R$ be integrable over bounded interval with $H u)=0$ if $u \times O$, and let $\left(W_{x}\right)_{x \in T}$ be i.i.d. and independent of $(7$. Then

$$
\begin{equation*}
\mathbb{E}\left(e_{\substack{i \theta G(t)}}^{n}\right)=\exp \left(\lambda \int_{0}^{t}\left(\mathbb{E}\left(e^{i \theta r(s) w}\right)-1\right) d s\right) \tag{*}
\end{equation*}
$$

Also assume r is smooth.

In particular, if $\mathbb{E}(W)<\infty$,

$$
\left.\mathbb{E} G(t)=\lambda \mathbb{E} W \int_{0}^{t} A s\right) d s .
$$

Ploot. By definition,

$$
\begin{aligned}
& \Rightarrow F(t)=\mathbb{E}\left(e^{i \theta G(t)}\right) \\
& \quad=\mathbb{E}\left(e ^ { i \theta r (t - T _ { 1 }) W _ { 1 } } \mathbb { E } \left(e^{\left.i \theta\left(\sum_{n=2}^{N(t)} r\left(t-T_{n}\right) \omega_{n} \mid \omega_{1}, T_{1}\right)\right)} \begin{array}{l}
\text { cond } \\
\text { expedation }
\end{array} \quad t-T_{n}=t-T_{1}-\left(T_{n}-T_{1}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Markour }=\mathbb{E}\left(e^{i \theta r\left(t-T_{1}\right) W_{1}} F\left(t-T_{1}\right)\right) \\
& T_{1} \sigma_{\text {Fepp }}^{\text {Mark }}=\lambda \int_{0}^{t} E\left(e^{i \theta r(t-u) w_{1}}\right) F(t-u) e^{-\lambda u} d u \\
& s=t-\bar{\lambda}=\lambda \int_{0}^{t} \mathbb{E}\left(e^{i \theta H s)} W_{1}\right) F(s) e^{-\lambda(t-s)} d s
\end{aligned}
$$

The solution to this integral equation is (*).

Indeed,

$$
\begin{aligned}
\frac{\partial}{\partial t} F(t)= & \underbrace{\lambda \mathbb{E}\left(e^{i \theta r(t) w}\right) F(t)}_{-\lambda F(t)} \\
& -\lambda_{0}^{2} \int_{0}^{t} \mathbb{E}\left(e^{i \theta r(s) w}\right) F(s) e^{-\lambda(t-s)} d s \\
\Leftrightarrow F(t)= & \exp \left(\lambda \int_{0}^{t}\left(\mathbb{E}\left(e^{i \theta r(s) w}\right)-1\right) d s\right) .
\end{aligned}
$$

6.5. Applications

Olber's paradox. Suppose a star occurs at the points of a Poisson process Π on \mathbb{R}^{3} with constant intensity λ.
For $x \in \Pi$, let B_{x} be the brightness of the star at x, and assume that the B_{x} are i.i.d. with mean β.

The intensity of light striking an observer at the origin O of all stars within distance a is

$$
I_{a}=\sum_{\substack{x \in \rightarrow \\|x| \leq a}} \frac{B_{x}}{|x|^{2}}
$$

Let $N_{a}=\#\left\{\square \cap B_{a}(0)\right\}$. Then

$$
\mathbb{E}\left(I_{a} \mid N_{a}\right)=N_{a} \beta \frac{1}{\left|B_{a}(0)\right|} \int_{B_{a}(0)} \frac{1}{|x|^{2}} d x
$$

Since $\mathbb{E} N_{a}=\lambda\left|B_{a}(0)\right|$,

$$
\mathbb{E}\left(I_{a}\right)=\lambda \beta \int_{B_{a}(0)} \frac{1}{|x|^{2}} d x=\lambda \beta 4 \pi a .
$$

In particular, the expected intensity is unbounded as $a \rightarrow \infty$: Older's paradox.

Poisson line process Let $S=\left\{\right.$ lines in $\left.\mathbb{R}^{2}\right\}$ For $L \in S$, define coordinates $(\theta, p) \in[0, \pi) \times \mathbb{R}$ by letting L^{\top} be the line through 8 .perpendicular to L and θ be its angle and P. the signed distance of the inter section point Note $f: S \rightarrow[0, \pi) \times R$ is a bijection.
The Poisson line process on S is now defined via this identification in terms of a Poisson process on $[0, \pi) \times \mathbb{R} \subset \mathbb{R}^{2}$. We say that the Poisson line process has constant intensity λ if the Poisson process on \mathbb{R}^{2} has intensity

$$
\begin{aligned}
\lambda\left(\theta_{1} p\right) & =\lambda & & \text { for } \theta \in[0, \pi), p \in R \\
& =0 & & \text { other wise }
\end{aligned}
$$

This process on lines is translation and rotation invariant.
For given $\left(\theta_{1}, p\right) \in[0, \pi) \times \mathbb{R}$ the corresponding line is

$$
L_{\theta, p}=p\binom{\cos \theta}{\sin \theta}+\mathbb{R}\binom{-\sin \theta}{\cos \theta}
$$

How many lines hit a disk $D_{0}(0)$? Poisson (u)
with $\mu=\int_{0}^{\pi} \int_{-a}^{\alpha} \lambda d r d \theta=\lambda 2 \pi a$

$$
=\lambda \times \text { perimeter }\left(D_{a}(0)\right)
$$

How many lines hit a convex $D C R^{2}$? lines hitting D correspond to (θ, p) such that

$$
L_{\theta, p} \cap \partial D \neq \phi
$$

By convexity, for a.a. (p, θ),

$$
1\left\{L_{\theta, p} \cap \partial D\right\}=\frac{1}{2} \#\left\{L_{\theta, p} \cap \partial D\right\}
$$

$\begin{aligned} \Rightarrow & \text { The number of lines hitting } D \text { is Poisson with } \\ & \text { mean given by }\end{aligned}$

$$
\lambda \int_{0}^{\pi} \int_{-\infty}^{\infty} \frac{1}{2} \#\left\{L_{0, p} \cap \partial D\right\} d \theta d p .
$$

The function $C \mapsto \iint_{0}^{\pi} \int_{0}^{a} \frac{1}{2} \#\left\{L_{\theta, p} \cap C\{d \theta d p\right.$ is where C is a carve is additive under concatination, so proportional to arclength.

And from this one can deduce that the number of lines hitting D is Poisson with mean
$\lambda \times$ perimeter (D).
Bertrand's paradox

What is the probability that a random chord is longer than 13 ?
(1) Use a Poisson line process (conc. to intersect).
\Rightarrow angle is Unit $[0,2 \pi)$ radius is Unit $(0,1)$
The length of the chord is $L=2 \sqrt{1-r^{2}}$

$$
\begin{aligned}
\Rightarrow \mathbb{P}(L \geq \sqrt{3}) & =\mathbb{P}\left(2 \sqrt{1-R^{2}} \geq \sqrt{3}\right) \quad(R \sim \operatorname{Unif}[0,1]) \\
& =\mathbb{P}\left(R \leq \frac{1}{2}\right)=\frac{1}{2} .
\end{aligned}
$$

(2)

Random end points
$\theta \sim \ln i f(0,2 \pi)$
$\theta^{\prime} \sim$ Uni $i[0, \pi)$

$$
\begin{aligned}
& \Rightarrow L=2 \sin \left(\theta^{\prime} / 2\right) \\
& \Rightarrow \mathbb{P}(L \geq \sqrt{3})=\frac{1}{3}
\end{aligned}
$$

(3) Random midpoint

$$
\begin{aligned}
& x \cup \text { unif(D) } \\
& \Rightarrow L=2 \sqrt{1-|x|^{2}} \\
& \Rightarrow \mathbb{P}(L \geq \sqrt{3})=\frac{1}{4} .
\end{aligned}
$$

