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Hierarchy of evidence
When the goal is to infer causation...

Expert opinions, case reports, animal studies

Observational studies
(case-control and cohort design)
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Figure: (A rough) Hierarchy of evidence in medical studies.
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Fundamental challenge of observational studies
“Correlation does not imply causation”.

Observational studies = Enumerating confounders

I Idea: Conditioning on possible sources of spurious correlation.
I Example: Possible confounders between smoking and lung cancer:

I Age.
I Sex.
I Urban/Rural.
I Working environment.
I Socioeconomic class.
I . . .

I Fundamental challenge: We can never be sure this list is complete.

I The promise of instrumental variables: unbiased estimation of causal effect
without enumerating confounders.
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What is an instrument variable (IV)?

Instrument Z Exposure X Outcome Y

Confounder U

1

2
××

3
×

Core IV assumptions

1. Relevance: Z is associated with the exposure (X ).

2. Effective random assignment: Z is independent of unmeasured confounder (U).

3. Exclusion restriction: Z cannot have any direct effect on the outcome (Y ).

Wald’s estimator based on Intention-to-treat (ITT) analysis

Causal effect of X on Y ≈ ITT Effect of Z on Y

ITT Effect of Z on X
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IV in Economics: Effect of military service on earnings (Angrist, 1990)

Lottery number Z Military service X Earning Y

Confounder C

1

2
××

3
×

I In 1970, the U.S. government conducted draft lottery to determine priority of
conscription for the Vietnam war.

I Exercise: Justify the core IV assumptions.

I The draft lottery can be regarded as a “natural experiment” of military service.
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Results of the Vietnam-war lottery study
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IV in Public Health: Effectiveness of vaccine (Hirano et al., 2000)

Encouragement Z Vaccine X Infection Y

Confounder C

1

2
××

3
×

I This is also called randomized encouragement design.

I The same idea can be applied to RCTs with non-compliance.

7 / 15



Why IV and basics Examples of IVs Classical estimators Mendelian randomization (MR) References

IV in Human Genetics: Gene testing (Gamazon et al., 2015)

cis-SNPs Z Gene expression X Disease Y

Confounder C

1

2
××

3
×

I Compared to trans-SNPs, cis-SNPs are more likely to satisfy exclusion restriction
(criterion 3).

I This is a special case of “Mendelian randomization” where genetic variation is
used as IV and typically X is an epidemiological risk factor (more downstream).
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Linear IV model
I The Wald ratio estimator becomes inadequate when Z and X are multivariate.

I The most commonly used IV estimators are based on the following linear model:

Yi = XT
i β + ZT

i α + Ui ,

Xi = ZT
i γ + Vi .

IV assumptions in the linear model

1. Relevance: γ 6= 0;

2. Exogeneity: Zi ⊥⊥ (Ui , Vi );

3. Exclusion restriction: α = 0.

I The exposure variable Xi is called confounded or endogenous if it is correlated
with Ui (or equivalently, if Vi is correlated with Ui ).
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Identification of causal effect
Under the linear IV model, the causal effect β satisfies E[Z i (Yi − XT

i β)] = 0.

I Notice how this is different from the usual normal equation E[X i (Yi −XT
i β)] = 0.

I To identify β, we need dim(Zi ) ≥ dim(Xi ).

I Just-identified case: When dim(Zi ) = dim(Xi ), we can estimate β by solving

n∑
i=1

Zi (Yi − XT
i β) = 0.

The solution in matrix-form is

β̂ = (ZTX )−1ZTY .

I Over-identified case: When dim(Zi ) > dim(Xi ), we have some freedom to choose
which (linear combinations of) equations to solve.
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Two-stage least squares (TSLS)
I In the over-identified case, for any function f : Rdim(Zi ) → Rdim(Xi ), we have

E[f (Zi ) · (Yi − XT
i β)] = 0.

I The most efficient choice of f is f (Zi ) = E[Xi | Zi ] = ZT
i γ.

I The nuisance parameter γ is not known but can be estimated from the data. The
most common estimator is least squares:

γ̂ = (ZTZ )−1ZTX .

I This is called two-stage least squares, because (let X̂ = Z γ̂)

β̂ = lm(Y ∼ X̂ ) = lm(Y ∼ predict(lm(X ∼ Z )))

I However, standard error of β̂ cannot be obtained directly from lm because γ̂ is
estimated from the data.
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Limited information maximum likelihood (LIML)
I Recall the linear IV model:

Yi = XT
i β + Ui ,

Xi = ZT
i γ + Vi .

I The LIML estimator assumes the noise variables (Ui , Vi ) are jointly normal with
mean 0 and covariance Σ.

I LIML maximizes the log-likelihood of this problem:

l(β,γ,Σ) = −1

2

n∑
i=1

log |Σ−1|+
(
Yi − XT

i β
Xi − ZT

i γ

)T

Σ−1

(
Yi − XT

i β
Xi − ZT

i γ

)
.

I TSLS and LIML are asymptotically equivalent (when n→∞ and dim(Xi ) and
dim(Zi ) are fixed).

I LIML is more robust to weak instruments (small γ).
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MR = Using genetic variation as IV

Instrument Z Exposure X Outcome Y

Confounder U

1

2
××

3
×

Examine the core IV assumptions

Criterion 1 X Modern GWAS have identified many causal variants

Criterion 2 X
Almost Comes for free due to Mendel’s Second Law

Possible concern: population stratification

Criterion 3 ?
Problematic because of wide-spread pleiotropy

(multiple functions of genes).
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Summary-data Mendelian randomisation
I Suppose Z1, . . . ,Zp are independent SNPs.

I Γ̂j
ind .∼ N(Γj ,σ

2
1j): SNP effect on outcome Y , obtained from lm(Y ∼ Zj).

I γ̂j
ind .∼ N(γj ,σ

2
2j): SNP effect on treatment A, obtained from lm(A ∼ Zj).

I Model for pleiotropy:
Γj = βγj + αj ,

where β is causal effect of A on Y and αj ∼ N(0, τ2) is direct effect of Z on Y .
I Inverse-variance weighted (IVW) estimator:

β̂ =

∑p
j=1(1/σ2

1j)(Γ̂j/γ̂j)∑p
j=1(1/σ2

1j)
.

I Other methods: debiased IVW (Ye et al., 2021), weighted median, robust
adjusted profile score (Zhao et al., 2020), and many others.
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Mendelian randomisation: Example
I GWAS summary data from UK BioBank. Sample size around 500,000. 160 SNPs.
I Exposure is Body Mass Index (BMI); Outcome is systolic blood pressure (SBP).
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Figure: Left: Γ̂j vs γ̂j ; Right: Q-Q plot for α̂j = Γ̂j − β̂γ̂j after standardisation.

I Estimated β̂ = 0.402 (standard error = 0.106). BMI and SBP were standardised.
I Reference: Zhao et al. (2020, 2019).
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