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Chapter 1

Scope and approach

This course requires a good understanding of the Part IB course Statistics. This course
complements the Part II courses Principles of Statistics and Mathematics of Machine
Learning by providing a more applied and computational perspective.

This year we will take a slightly different approach to statistical modelling. On the
course website you will find the lecture notes from 2019, which take a more classical
approach. Additionally, you might find the following books useful:

• A. Agresti. Foundations of Linear and Generalized Linear Models. Wiley 2015.
(Especially Chapters 2, 3, 4, 7.)

• P. MuCullagh, J. A. Nelder. Generalized Linear Models. Chapman and Hall, 1989.
(A classic but lacks details and examples.)

• G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical
Learning (with Applications in R). Springer 2013. (Provides perspectives from
machine learning.)

• D. Freedman. Statistical Models: Theory and Practice. Cambridge University Press,
2009. (Provides perspecties from causal inference and scientific applications.)

For mathematics students, it might not be obvious that statistics is not a branch
of mathematics.1 There is no consensus on the definition of statistics (especially with
the rise of machine learning and data science), but the following definition in Wikipedia
cannot be too wrong:

• Statistics is the discipline that concerns the collection, organization, analysis, inter-
pretation, and presentation of data.

Compare this with the following definition of mathematical statistics:

• Mathematical statistics is the study of statistics from a mathematical standpoint,
using probability theory as well as other branches of mathematics such as linear
algebra and analysis.

1

https://idiscover.lib.cam.ac.uk/primo-explore/fulldisplay?docid=44CAM_ALMA51624112880003606&vid=44CAM_PROD&search_scope=SCOP_CAM_ALL&tab=cam_lib_coll&lang=en_US&context=L
https://idiscover.lib.cam.ac.uk/permalink/f/t9gok8/44CAM_ALMA21489301620003606
https://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf
https://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf
https://idiscover.lib.cam.ac.uk/permalink/f/1ii55o6/44CAM_ALMA51527574630003606


Another way to think about the difference is mathematics is mostly about deductive
reasoning from a set of axioms and assumptions, while statistics is mostly concerned
with inductive reasoning from empirical data.2 Through exploring different statistical
models and learning R, a great programming language for statistical computing, you will
be exposed to both the mathematical and non-mathematical elements of statistics.

To understand how statistics are used in practice, the following quote by G. Box3

may be illuminating:

Scientific research is usually an iterative process. The cycle: conjecture–
design–experiment–analysis leads to a new cycle of conjecture–design–experiment–
analysis and so on.... The experimental environment ... and techniques appro-
priate for design and analysis tend to change as the investigation proceeds.

At one point, the dominant view was that statistical modelling is a critical step of “analysis”
and the model is built after data are collected. However, modern statisticians (and in fact,
many pioneers like Box and Fisher) view statistical model as an essential component of
the scientific process that guides all steps of the cycle and is being continuously updated.

Another important realization in modern statistics is that statistical models may come
at different levels:

(i) Models for conditional moments. For example, a linear model for conditional
expectation assumes E[Y |X = x] = xTβ.

(ii) Models for joint or conditional distributions. For example, the classical normal linear
model assumes Y = XTβ + ε where the noise variable ε ⊥⊥X and ε ∼ N(0, σ2).

(iii) Structural or causal models that not only describe (associational) relationship for
the data at hand but also (causal) relationship under counterfactual interventions.
For example, the linear structural equation model assumes Y (x) = xTβ + ε, where
Y (x) is the counterfactual value of Y under the intervention that sets X to x and ε
is an independent noise variable.

This course will not consider the third type of statistical model; see Freedman’s book for
some good introduction to it.

This course will discuss the first two types of statistical models, which are often called
regression models.4 In particular, our focus will be on a class of models called generalized
linear models (GLM), which extends the classical linear model by using a beautiful theory
for exponential family distributions. In essence, a GLM assumes that the conditional
distribution of Y givenX is (almost) determined by the conditional expectation E[Y |X].

Why do we care about regression problems? One obvious reason is their nearly
ubiquitous presence in applications. Another reason is divide-and-conquer: the joint
distribution of some random variables can always be factorized as a product of conditional
distributions.

Why do we still care about (generalized) linear models, given the rise of machine
learning algorithms that almost always have better prediction accuracy? Because GLMs
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are simple, elegant, and interpretable. Moreover, more complex models are often consti-
tuted by GLMs. For example, a neural network is essentially the composition of numerous
GLMs (with the distributional assumptions stripped away).

Notation

Upper-case letters indicate matrices or random variables. Lower-case letters indicate fixed
quantities. We use Ip to denote the p×p identity matrix, 1p to denote the p-vector of ones,
and 0p the p-vector of zeros. Bolded symbols are vectors or matrices. Independent random
variables (or vectors) X and Y are denoted as X ⊥⊥ Y . As a convention, we usually
use subscript i in{1, . . . , n} to index observations and j ∈ {1, . . . , p} to index variables.
“Independent and identically distributed” is abbreviated as “i.i.d.”. The Euclidean norm of
a vector Y is denoted as ‖Y ‖. Convergence in distribution (weak convergence) is denoted
as d→.

Notes
1Perhaps this is true for any non-statistician. When I told my neighbours that I am a statistician,

most of their first reaction is that I do mathematics.
2Mathematics also involves induction, see G. Pólya’s book Mathematics and Plausible Reasoning, but

mathematical induction is a deductive method. Statistics also involves deductive reasoning (which is
basically mathematical statistics).

3Abstracts. (1957). Biometrics, 13 (2), 238–246.
4The terminology “regression” was derived from a statistical phenomenon called “regression toward

the mean” discovered by F. Galton. The original meaning of regression is no longer relevant today, but
the terminology was kept for historical reasons.
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Chapter 2

Linear models

Suppose our data are comprised of observations

(X1, Y1), (X2, Y2), . . . , (Xn, Yn).

For any observation i ∈ {1, . . . , n}, Xi ∈ Rp is a p-dimensional random vector whose
entries are often called the regressors, covariates, predictors, explanatory variables, or
independent variables. The random variable Yi ∈ R is often called the response, outcome,
target, or dependent variable. To emphasize that we are considering regression problems
(as opposed to causal problems or purely predictive tasks), we will refer to Xi as the
regressor and Yi as the response.1

Unless otherwise stated, we assume n > p throughout the course.

2.1 The normal linear model

The classical normal linear model assumes that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are inde-
pendent and the conditional distribution of Yi given Xi satisfies2

Yi =

p∑
j=1

Xijβj + εi, εi ⊥⊥Xi, εi ∼ N(0, σ2), i = 1, . . . , n. (2.1)

Equation (2.1) is rather cumbersome and can be simplified by introducing the following
vector/matrix notation:

Y =

Y1
...
Yn

 , X =

X
T
1
...
XT
n

 , β =

β1
...
βp

 , and ε =

ε1...
εn

 .

Now we can rewrite (2.1) as

Y = Xβ + ε, ε |X ∼ N(0, σ2Ip). (2.2)

The matrix X is known as the design matrix or model matrix. The former terminology
was derived from the classical setting in experimental design in which X is chosen by the
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experimenter. This is rarely the case in modern applications. For this reason, we will
refer to X as the model matrix in this course.

Example 2.1 (Normal measurements). This model assumes Yi
i.i.d.∼ N(µ, σ2), i = 1, . . . , n.

The model matrix X = 1n is a matrix with just one column and the regression coefficient
β = µ is one-dimensional.

Example 2.2 (ANOVA). Let Fi ∈ {1, . . . , l} be a categorical variable with l levels
(also called a factor). The classical ANalysis Of VAriance (ANOVA) assumes Yi =

βFi + εi, εi
i.i.d.∼ N(0, σ2) where β is a l-dimensional parameter vector. The ith row Xi of

the corresponding model matrix X is an indicator vector whose Fith entry is 1 and all
other entries are 0.

To distinguish (2.1) and (2.2) with models for the conditional expectation, let µi =
E[Yi |Xi]. Then (2.2) contains three different types of assumptions:

(i) The conditional expectation satisfies

µ =

µ1
...
µn

 = Xβ;

(ii) The noise ε = Y − µ satisfies ε ⊥⊥X;

(iii) The noise ε is distributed as N(0, σ2In).

You may have noticed that (2.1) does not make any assumptions on the distribution of
the regressors X. This is intentional, because we are only concerned with the conditional
distribution of Y given X. In most applications, the distribution of X is unknown.
However, this does not matter in the classical linear model because the assumption ε ⊥⊥X
allows us to factorize the likelihood function as

L(β) = f(x1, . . . , xn, y1, . . . , yn;β) = f(x1, . . . , xn) ·
n∏
i=1

f(yi | xi;β), (2.3)

where f is a generic symbol for density functions and f(yi | xi;β) is the density function
of a normal random variable:

f(yi | xi;β) =
1√

2πσ2
e−(yi−xTi β)2/(2σ2).

Because f(x1, . . . ,xn) does not depend on β, whether the distribution of X is known or
not does not affect the inference for β.3
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2.2 Ordinary least squares and its geometry

2.2.1 Derivation of ordinary least squares

Following (2.3), the log-likelihood function is given by

l(β, σ2) = log
n∏
i=1

f(Yi |Xi;β) + constant

= −n
2

log σ2 − 1

2σ2

n∑
i=1

(Yi −XT
i β)2 + constant

= −n
2

log σ2 − 1

2σ2
‖Y −Xβ‖2 + constant

Therefore, the maximum likelihood estimator (MLE) of β is given by the solution of the
ordinary least squares (OLS) problem

β̂ = arg min
β

‖Y −Xβ‖2. (2.4)

Notice that this holds regardless of whether σ2 is known or not.
We may obtain a closed-form solutionto (2.4) by using the following identities for

matrix calculus:
∂

∂β
(aTβ) = a, and

∂

∂β
(βTAβ) = (A+AT )β.

Therefore the OLS estimator satisfies

XT (Y −Xβ̂) = 0. (2.5)

Equation (2.5) is called the normal equations because it requires the vector of residuals
R = Y −Xβ̂ to be orthogonal to X.

The linear equations (2.5) have an unique solution ifXTX is invertible (or equivalently,
because n > p, X has full rank). In this case, we have

β̂ = (XTX)−1XTY .

Unless otherwise stated, we assume X has rank p throughout this course.
The maximum likelihood estimator of σ2 can be obtained by differentiating l(β, σ2)

with respect to σ2:
∂

∂σ2
l(β, σ2) = − n

2σ2
+

1

2σ4
‖Y −Xβ‖2.

By solving l(β̂, σ2), we obtain

σ̂2
MLE =

1

n
‖Y −Xβ̂‖2 =

1

n
‖R‖2.

The quantity ‖R‖2 is often referred to as the residual sum of squares (RSS). Because σ̂2
MLE

is biased (see Section 2.3), it is more common to use the following unbiased estimator of
σ2:

σ̂2 =
n

n− p
σ̂2
MLE =

1

n− p
‖Y −Xβ̂‖2 =

1

n− p
‖R‖2.
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2.2.2 Orthogonal projections

Before discussing the statistical properties of the OLS estimator, it is useful to get a
geometric understanding of what it does. By definition, the fitted values in the linear
model are given by

µ̂ = Xβ̂ = X(XTX)−1XTY ,

which is a linear transformation of the original response vector Y . LetH = X(XTX)−1XT ,
which is often called the hat matrix in statistics literature for the obvious reason. Geomet-
rically, the least squares problem (2.4) implies that the vector of fitted values µ̂ = HY is
the projection of the response vector Y onto the column space of X.

We briefly review some basic results about orthogonal projections. Two vectors
u,v ∈ Rn are orthogonal if uTv = 0. For a linear subspace W of Rn, its orthogonal
complement is defined as W⊥ = {v | vTu = 0 for all u ∈ W}. Any vector y ∈ Rn admits
a unique decomposition y = y1 + y2 where y1 ∈ W and y2 ∈ W⊥, and the Pythagoras
theorem says ‖y‖2 = ‖y1‖2 + ‖y2‖2. Moreover, dim(W) + dim(W⊥) = n.

Let C(X) = {Xβ | β ∈ Rp} denote the column space of X. Consider the decomposi-
tion

Y = Xβ̂︸ ︷︷ ︸
µ̂ (fitted values)

+ (Y −Xβ̂)︸ ︷︷ ︸
R (residuals)

Note that µ̂ = Xβ̂ ∈ C(X). Furthermore, the normal equations (2.5) can be written as
XTR = 0, so R ∈ C(X)⊥. Again we see that µ̂ is the projection of Y onto C(X) and
we have ‖Y ‖2 = ‖µ̂‖2 + ‖R‖2.

The hat matrix H is a projection matrix onto C(X) that satisfies the following
properties:

(i) Hu = u if u ∈ C(X); Hu = 0 if u ∈ C(X)⊥.

(ii) In −H is the projection matrix onto C(X)⊥.

(iii) H is symmetric (i.e. HT = H) and idempotent (i.e. H2 = H).

(iv) Orthonormal bases of C(X) and C(X)⊥ are eigenvectors of H with eigenvalues 1
and 0, respectively.

(v) tr(H) = rank(H) = rank(X) = p.

We can define the projection matrix P for an arbitrary subspaceW of Rn by replacing
C(X) with W in property (i). Moreover, P is a projection matrix for some subspace of
Rn if and only if property (iii) is satisfied. An immediate consequence of property (i) is
that HX = X.

2.2.3 Projection onto nested models

Consider a partition of the regressors:

X = (X0 X1), β =

(
β0

β1

)
,
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where X0 ∈ Rn×p0 , X1 ∈ Rn×(p−p0), β0 ∈ Rp0×1, and β1 ∈ R(p−p0)×1. We are often
interested in comparing the full model µ = Xβ with the submodel µ = X0β0 (possibly
under additional independence and distributional assumptions, see Section 2.1).

Let P denote the projection matrix onto C(X) (so P = H) and P0 denote the
projection matrix onto C(X0). They satisfy two important properties:

(i) PP0 = P0P = P0; see Figure 2.1.

(ii) P − P0 is also a projection matrix.

Exercise 2.3. Prove the second property. Which subspace does P − P0 project onto?

Figure 2.1: Nested model projections.

The first property implies the following identity. Let

β̂ =

(
β̂0

β̂1

)
be the partition of the OLS estimator β̂. Let X̃1 = (I − P0)X1 and Ỹ = (I − P0)Y be
the residuals of X1 and Y after projecting onto C(X0). Then β̂1 is equal to the OLS
estimator for a linear regression of Ỹ on X̃1:

β̂1 = (X̃T
1 X̃1)−1X̃T

1 Ỹ . (2.6)

This is a generalization of the Gram-Schmidt process in linear algebra.4 To prove this,
consider any X2 ∈ Rn×(n−p) such that (X0 X1 X2) is a full-rank n × n matrix. By
applying Gram-Schmidt, we obtain matricesX0, X̃1 = (P−P0)X1, and X̃2 = (I−P )X2

that are orthogonal to each other. In consequence, P − P0 = PX̃1
= X̃1(X̃T

1 X̃1)−1X̃T
1
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is the projection matrix onto the column space of X̃1. Correspondingly, Y can be
decomposed as

Y = X0β̂0 +X1β̂1 +R

= (X0β̂0 + P0X1β̂1︸ ︷︷ ︸
P0Y

) + (I − P0)X1β̂1︸ ︷︷ ︸
(P−P0)Y

+ R︸︷︷︸
(I−P )Y

.

Therefore,
X̃1β̂1 = (P − P0)Y = PX̃1

Y .

Because X̃1 has full rank, this shows (2.6).
An important special case is p0 = p− 1, where X1 is a single regressor. In this case,

some refer to β̂1 as the partial regression coefficient to distinguish from the marginal
regression coefficient in a regression of Y on just X1.

Example 2.4 (Simple linear regression). When p = 1, the OLS estimator is given by
the simple formula:

β̂ =
XTY

XTX
.

When p = 2 and the model matrix is

X =

1 X1
...

...
1 Xn

 ,

the coefficient β1 is called the intercept and β2 is called the slope. By treating the first
column of X as X0 in the above partition, we obtain

β̂2 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
,

where X̄ =
∑n

i=1Xi/n and Ȳ =
∑n

i=1 Yi/n.

2.3 Exact inference for the normal linear model

Besides motivating the OLS problem (2.4) as finding the MLE of β in the normal linear
model, the rest of (2.2) was entirely algebraic. In this section, we discuss statistical
properties of the OLS estimator and how to use it to make exact inference under the
normal linear model (2.1).

2.3.1 Multivariate normal and related distributions

We first review the properties of some common probability distributions.
A d-dimensional random vector Z is said to follow the multivariate normal distribution

with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, written as Z ∼ Nd(µ,Σ), if its
probability density function is given by

f(z) =
1

(2π)d/2|Σ|1/2
e−(z−µ)TΣ−1(z−µ)/2.

9



The multivariate normal distribution has two important properties:

(i) If Z ∼ Nd(µ,Σ), then for any fixed matrix A ∈ Rk×d and vector b ∈ Rk, AZ+b ∼
Nk(Aµ+ b,AΣAT ).

(ii) If Z1 and Z2 are two random vectors and
(
Z1

Z2

)
follows a multivariate normal

distribution, then Z1 ⊥⊥ Z2 if and only if Cov(Z1,Z2) = 0.

We often omit the subscript d in Nd(µ,Σ) if the dimension is clear from the context.
Let Z ∼ Nd(0, I). Then we say

‖Z‖2 =

d∑
i=1

Z2
i ∼ χ2

d

follows the chi-square distribution with d degrees of freedom. The following result will
be useful for us. Suppose P ∈ Rd×d be a projection matrix and rank(P ) = r, then
‖PZ‖2 ∼ χ2

r .

Exercise 2.5. Prove the last result.

Suppose Z ∼ N(0, 1), S ∼ χ2
d, and Z ⊥⊥ S. Then we say

Z√
S/d

∼ td

follows the (Student’s) t-distribution5 with d degrees of freedom.
Suppose S1 ∼ χ2

d1
, S2 ∼ χ2

d2
, and S1 ⊥⊥ S2. Then we say

S1/d1

S2/d2
∼ Fd1,d2

follows the F -distribution with degrees of freedom d1 and d2.
Informally, the above definitions can be summarized as follows:

χ2
d = N(0, 1)2 + · · ·+ N(0, 1)2︸ ︷︷ ︸

d times

;

td =
N(0, 1)√
χ2
d/d

;

Fd1,d2 =
χ2
d1
/d1

χ2
d2
/d2

.

In this informal notation, two random variables (as indicated by their distributions)
are independent whenever they appear in the same expression. It is obvious that t2d = F1,d.
Moreover, E[χ2

d] = d.

10



2.3.2 Distribution of β̂ and σ̂2

Since β̂ = (XTX)−1XTY is a linear transformation of Y , it has a multivariate normal
distribution conditional on X:

β̂ ∼ N
(
(XTX)−1XTµ, (XTX)−1XTσ2InX(XTX)−1

)
= N

(
β, σ2(XTX)−1

)
.

The estimator σ̂2 of the noise variance σ2 can be written as

σ̂2 =
1

n− p
‖Y −Xβ̂‖2 =

1

n− p
‖(In −H)Y ‖2.

Because In −H is also a projection matrix, this implies that

σ̂2 |X ∼ σ2χ2
n−p/(n− p).

This shows that E[σ̂2] = σ2 and thus σ̂2 is unbiased.6

Exercise 2.6. Show β̂ and σ̂2 are still unbiased without the normality assumption, that
is, by only assuming ε given X has mean 0 and covariance matrix σ2In.

Finally, β̂ and σ̂2 are independent under the normal linear model, because, given X,
(XTX)−1XTY and (In −H)Y are jointly normal and

Cov
(
(In −H)Y , (XTX)−1XTY

)
= (In −H)σ2InX(XTX)−1 = 0.

2.3.3 Confidence sets

For the rest of this section, we viewX as fixed (in other words, the inference is conditional
on X). The key to exact inference is to find pivotal quantities whose distribution does
not depend on unknown parameters. For example,

(n− p)σ̂2

σ2
∼ χ2

n−p (2.7)

is pivotal, but
β̂ − β ∼ N

(
0, σ2(XTX)−1

)
(2.8)

is not pivotal because the distribution depends on σ2. Instead, we can use the following
pitoval quantity

β̂ − β
σ̂
∼

N
(
0, (XTX)−1

)√
χ2
n−p/(n− p)

.

Element-wise, we have

β̂j − βj
σ̂

∼
N
(

0, (XTX)−1
jj

)
√
χ2
n−p/(n− p)

=
√

(XTX)−1
jj · tn−p, j = 1, . . . , p. (2.9)

11



By using (2.9), we can immediately construct a (1− α)-confidence interval for βj :

CIj(α) =

[
β̂j − σ̂

√
(XTX)−1

jj tn−p(α/2), β̂j + σ̂
√

(XTX)−1
jj tn−p(α/2)

]
,

where tn−p(α/2) is the upper (α/2)-quantile of tn−p. By (1− α)-confidence interval, we
mean the following probabilistic statement is true:

P (βj ∈ CIj(α)) = 1− α.

To construct a confidence region for the p-dimensional vector β, a simple approach is
to take the product of univariate confidence intervals

∏p
j=1 CIj(α/p). (Exercise: Show

that this set covers β with probability at least 1− α.)
However, this product set is usually quite conservative because it does not take into

account the dependence between the entries of β̂. A better solution is to use the following
pivotal quantity

(β̂ − β)T (XTX)(β̂ − β)

pσ̂2
∼ Fp,n−p. (2.10)

So the following ellipsoid is a (1− α)-confidence region of β:

CI(α) =

{
β ∈ Rp | (β̂ − β)T (XTX)(β̂ − β)

pσ̂2
≤ Fp,n−p(α)

}
,

where Fp,n−p(α) is the upper α-quantile of Fp,n−p.

Exercise 2.7. Use (2.7) to construct a (1− α)-confidence interval for σ2.

Exercise 2.8. Let (X∗, Y ∗) ∈ Rp×R be a new observation of the normal linear model.
That is, suppose Y ∗ = (X∗)Tβ + ε∗ where ε∗ ⊥⊥ (X, ε,X∗) and ε∗ ∼ N(0, σ2). Construct
a (1−α)-confidence interval for (X∗)Tβ and Y ∗. The latter is called a (1−α)-prediction
interval.

2.3.4 Hypothesis tests and analysis of variance

By using the duality between hypothesis testing and confidence interval, we can easily
construct level-α tests for

H0 : βj = 0 vs. H1 : βj 6= 0 and H0 : β = 0 vs. H1 : β 6= 0.

That is, we reject βj = 0 if 0 6∈ CIj(α) and reject β = 0 if 0 6∈ CI(α).
More generally, we may be interested in comparing nested linear models. As before,

consider the following partition

X = (X0 X1) and β =

(
β0

β1

)
,

where X0 ∈ Rn×p0 and β0 ∈ Rp0 . We are interested in comparing the full model µ = Xβ
with the submodel µ = X0β0, which amounts to testing H0 : β1 = 0 vs. H1 : β1 6= 0.
The (generalized) likelihood ratio statistic is given by

supβ∈Rp L(β, σ2)

supβ0∈Rp0 ,β1=0 L(β, σ2)
= exp

{
n

2
+
n

2

‖(P − P0)Y ‖2

‖(I − P )Y ‖2

}
12



Exercise 2.9. Prove the above equality.

Thus, the likelihood ratio test rejects H0 : β1 = 0 if ‖(P − P0)Y ‖2/‖(I − P )Y ‖2 is
large. Note that ‖(I − P )Y ‖2 is the residual sum of squares (RSS) of the full model,
while ‖(P − P0)Y ‖2 is the reduction of RSS when we enlarge the submodel to the full
model. This ratio has obvious geometric interpretations; see Figure 2.1.

To determine the critical value, we need to derive the distribution of the test statistic
under H0 : β1 = 0. Under this null hypothesis, we have Y = Xβ + ε = X0β0 + ε.
Therefore,

‖(P − P0)Y ‖2

‖(I − P )Y ‖2
=
‖(P − P0)ε‖2

‖(I − P )ε‖2

Because ε follows a multivariate normal distribution and

Cov ((P − P0)ε, (I − P )ε) = (P − P0)σ2I(I − P ) = 0,

we have (P − P0)ε ⊥⊥ (I − P )ε. Because P − P0 and I − P are projection matrices,
‖(P − P0)ε‖2 ∼ χ2

p−p0 and ‖(I − P )ε‖2 ∼ χ2
n−p. Therefore,

F =
‖(P − P0)Y ‖2/(p− p0)

‖(I − P )Y ‖2/(n− p)
∼ Fp−p0,n−p under H0.

The level-α likelihood ratio test rejects H0 : β1 = 0 when F > Fp−p0,n−p(α).

Exercise 2.10. Show that the t-test and F -test for H0 : βj = 0 vs. H0 : βj = 0 are
equivalent.

2.4 Linear conditional expectaion model

As discussed in Section 2.1, the normal linear model (2.2) contains three assumptions:
the conditional expectation follows a linear model µ = Xβ, the noise ε is independent
of X, and the noise ε ∼ N(0, σ2In). The last two distributional assumptions play an
essential role in the exact statistical inference discussed in Section 2.3 but are often too
restrictive in applications. Next, we briefly discuss relaxations of these assumptions.

2.4.1 Generalized least squares

One possible relaxation is to assume ε follows an non-isotropic normal distribution:

Y = Xβ + ε, ε |X ∼ N(0, σ2Σ),

where σ2 ∈ R is unknown and Σ ∈ Rn×n is a known positive-definite matrix that may
depend on X.

Theoretical results in Sections 2.2 and 2.3 can be easily extended to this model by
using the transformation X → Σ−1/2X and Y → Σ−1/2Y . The maximum likelihood
estimator of β in this model is given by the generalized least squares (GLS) estimator:

β̂GLS = (XTΣ−1X)−1XTΣ−1Y .

13



Exercise 2.11. Derive the above formula for β̂GLS from the definitions. Then derive it
again using the formula for β̂OLS.

An important special case of GLS is the weighted least squares (WLS). Given a vector
of weights w = (w1, . . . , wn), the WLS estimator is given by

β̂WLS = arg min
β

n∑
i=1

wi(Yi −XT
i β)2.

This is equivalent to choosing Σ = diag(w−1
1 , . . . , w−1

n ) in GLS.

2.4.2 Heteroscedasticity

Consider the following less restrictive linear model:

Yi = XT
i β + εi, i = 1, . . . , n,

where

• (εi,Xi), i = 1, . . . , n, are independent and identically distributed (IID);

• E(εi |Xi) = 0;

• Var(εi |Xi) = σ2(Xi).

Compared to the classical normal linear model (2.1), it no longer assumes εi ⊥⊥Xi, the
distribution of εi is normal, or the variance of εi is a constant.7 When σ2(Xi) = σ2 is a
constant, we say the noise is homoscedastic; otherwise, we say the noise is heteroscedastic.

Due to the lack of distributional assumptions, exact statistical inference is no longer
possible. However, we can rely on asymptotic arguments:

√
n(β̂ − β) =

√
n
{

(XTX)−1XTY − β
}

=
√
n
{

(XTX)−1XT (Xβ + ε)− β
}

=
√
n(XTX)−1XT ε

=

(
1

n

n∑
i=1

XiX
T
i

)−1(
1√
n

n∑
i=1

Xiεi

)
.

Under suitable regularity conditions, the first term converges in probability to ΣX =
E[XiX

T
i ] by the weak law of large numbers, and the second term converges in distribution

to N(0,Ω), where Ω = E(XiX
T
i ε

2
i ) = E{σ2(Xi)XiX

T
i }. Therefore, by Slutsky’s lemma,

√
n(β̂ − β)

d→ N
(
0,Σ−1

X ΩΣ−1
X

)
, as n→∞. (2.11)

The form of matrix Σ−1
X ΩΣ−1

X is common in misspecified maximum likelihood and
is often called the sandwich variance (for obvious reasons) or the inverse Godambe
information. When the noise is homoscedastic, i.e. σ2(Xi) = σ2, this reduces to

√
n(β̂ −

14



β)
d→ N(0, σ2Σ−1

X ), which is consistent with the exact distribution (2.8) obtained under
normality.

Equation (2.11) is not an (asymptotic) pivotal quantity yet because the distribution
depends on Σ and Ω. These unknown quantities can be estimated by

Σ̂X =
1

n

n∑
i=1

XiX
T
i and Ω̂ =

1

n

n∑
i=1

XiX
T
i e

2
i .

Under suitable regularity conditions, they converge to ΣX and Ω in probability. By
Slutsky’s lemma,

√
nΣ̂XΩ̂−1/2(β̂ − β)

d→ N(0, Ip), as n→∞.

It is then straightforward to construct confidence intervals or hypothesis tests for β.

2.4.3 Misspecified linear models

One may further question the validity of the linear model µ = Xβ itself. To emphasize
that the linear model could be misspecified, we sometimes call µ = Xβ a linear working
model. Consider the following setting

Yi = g(Xi) + εi, where (Xi, εi) are IID, εi ⊥⊥Xi, E(εi) = 0, i = 1, . . . , n. (2.12)

In nonparametric regression, the goal is to estimate estimate the regression function
g(·). A parametric model such as the linear model assumes g(·) belongs to a class of
function {g(· ;β) | β ∈ Rp} that is indexed by some finite-dimensional parameter β. Here,
our interest is to understand how the linear working model behaves when the truth is
(2.12).8

Recall that the OLS estimator β̂ minimizes
∑n

i=1(Yi − XT
i β)2. Therefore, it is

expected that, as n→∞, β̂ will converge to

βOLS = arg min
β

E
{

(Yi −XT
i β)2

}
= arg min

β
E
{

(g(Xi)−XT
i β + εi)

2
}

= arg min
β

E
{

(g(Xi)−XT
i β)2

}
+ E

{
(g(Xi)−XT

i β)εi
}︸ ︷︷ ︸

=0

+ E(ε2i )︸ ︷︷ ︸
=constant

= arg min
β

E
{

(g(Xi)−XT
i β)2

}
.

Therefore, XT
i βOLS may be viewed as the projection of g(Xi) onto the space of linear

functions of Xi.
We make two remarks on misspecified linear models. First, the “true” value of the

parameter βOLS depends on the distribution of Xi; see Figure 2.2 for an illustration.
Second, the definition of the population regression coefficient β also generally depends on
the estimator we use. For example, the least absolute deviation (LAD) estimator9

β̂LAD = arg min
β

n∑
i=1

|Yi −XT
i β|
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does not generally converge to βOLS, unless the linear model is correctly specified (i.e.
g(x) is indeed linear in x).

0

5

10

15

20

−4 −2 0 2 4

y

sample
a
b

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

x

de
ns

ity sample
a
b

Figure 2.2: The “true” value of βOLS depends on the distribution of the regressors. This
figure shows two samples generated from the same conditional distribution of Yi given
Xi but different marginal distributions of Xi. In both samples, Yi = X2

i +Xi + εi where
εi ∼ N(0, 1). In sample a, Xi ∼ N(−1, 1); in sample b, Xi ∼ N(1, 1). The value of βOLS
is negative in sample a but positive in sample b.

2.4.4 Omitted-variables bias and Simpson’s paradox

Misspecified models may also arise if some covariates are omitted in the regression.
Consider two linear models:

Model 1: Yi = XT
i β + εi, i = 1, . . . , n;

Model 1: Yi = XT
i β
∗ +ZT

i γ
∗ + ε∗i , i = 1, . . . , n.

In general, β 6= β∗, a phenomenon often referred to as the ommited-variable bias.
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Exercise 2.12. Show that β = β∗ if Xi ⊥⊥ Zi.

In its extreme form, ommited-variable bias is known as Simpson’s paradox, which was
initially discovered by K. Pearson and U. Yule. One of the best-known examples is the
1973 Berkeley admission data; see Table 2.1. Overall, men appear to be more likely to be
admitted than women. However, if we look at the department-level statistics, in most
cases women have a higher admission rate. This apparent paradox can be explained by
the observation that there appear to be more men applications to departments with a
higher admission rate. Whether this is also a kind of “gender bias” is another matter of
debate.

Fundamentally, the reason behind Simpson’s paradox is that a regression coefficient
only measures (conditional) association and does not necessarily indicate causation. A
rigorous discourse on causation is beyond the scope of this course, but you might find the
cartoon in Figure 2.3 illuminating (or not).

Department Men Women
Applicants Admitted Applicants Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%
...

...
...

...
...

Total 8442 44% 4321 35%

Table 2.1: Berkeley admission data.10

Figure 2.3: Correlation does not imply causation.
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2.5 Model diagnostics and model selection

Although the normal linear model makes several restrictive assumptions, it remains the
default choice for many applications used due to its simplicity. In practice, a common
trask is to select a linear working model according to one or some of the following criteria:

(i) Does the model appears to provide a good fit to the observed data?

(ii) How large is the model’s prediction error?

(iii) How likely is the true model covered, assuming the data are indeed generated from
it?

(iv) How interpretable is the model?

This section will provide some theoretical insights for the first three considerations.

2.5.1 Linear model diagnostics

One nice thing about making restrictive assumptions is that we can often check them
empirically. Here we provide some useful diagnostic quantities and plots for the normal
linear model.

To measure how well the linear model fits the observed data, a widely used value is
the coefficient of determination, defined as

R2 =
‖µ̂− Ȳ 1‖2

‖Y − Ȳ 1‖2
= 1− ‖Y − µ̂‖

2

‖Y − Ȳ 1‖2
,

where Ȳ =
∑n

i=1 Yi/n. In words, R2 is a measure of the proportion of variance of Yi that
can be explained by the linear model. A common mistake in practice is to interpret the
absolute value of R2 out of context, which depends crucially on the level of noise in the
observations. So a linear model with R2 = 1% is not necessarily a poor model.

The leverage of the ith observation is defined as Hii, the ith diagonal element of the
hat matrix. Recall that the fitted value for Yi is

µ̂i = (HY )i = HiiYi +
∑
k 6=i

HikYk.

So the leverage Hii is how much the observed value Yi determines the fitted value µ̂i.
Another motivation for leverage is the following result (recall R = Y − µ̂ is the vector of
residuals)

Var(Ri |X) = σ2(1−Hii). (2.13)

So the residual Ri is close to 0 if the leverage Hii is close to 1.

Exercise 2.13. Prove (2.13).
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Next we describe the diagnostic plots produced by the R function plot.lm by default.
The first is the residual vs. fitted plot, which plots the studentized residual R̃i against

the predicted value µ̂i. We can visually assess the assumption E(εi |Xi) = 0, by checking
if there is any obvious trend (e.g. a quadratic trend) in the plot.

The second is the quantile-quantile (Q-Q) plot, which is used to visually check normality
of the noise εi. Motivated by (2.13), the studentized or standardized residual of the ith
observation is defined as

R̃i =
Ri

σ̂
√

1−Hii
.

If the normal linear model is correct, R̃i should be close to εi/σ, which follows a standard
normal distribution. We may check this assumption by plotting the sample quantiles of
(R̃1, . . . , R̃n) against the theoretical quantiles of N(0, 1); see Figure 2.4 for an illustration.

Figure 2.4: Quantile-quantile (Q-Q) plot.

Exercise 2.14. In the normal linear model, show that R̃i ∼ tn−p−1 if we replace σ̂ in
the definition of R̃i by σ̂(−i), which is the estimator of σ using all observations besides
(Xi, Yi).

The third diagnostic plot is the scale-location plot, which shows the square root of the

absolute value of the standardized residual
√
|R̃i| against the fitted value µ̂i. This plot is

used to check the homoscedasticity assumption Var(εi | Xi) = σ2, under which
√
|R̃i|

should have an average value around 1.
The fourth and final one is a plot of residuals vs. leverage. More precisely, this

plot shows R̃i against Hii and is used to identify outliers with a large leverage. We
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say an observation (Xi, Yi) is an outlier if |Ri| is much larger than what is expected if
εi ∼ N(0, σ2). In other words, these observations differ substantially from model-predicted
values. Especially of concern are outliers with a high leverage, because just one or a few
of them can severely bias a regression model. Note that the definition of “outlier” depends
on the model. It is not rare to have one observation that is not an outlier originally
become an outlier when some other apparently outlying observations are removed. See
Figure 2.5 for an illustration.

Figure 2.5: Outliers with a high leverage can severely bias a regression model.

A useful quantity for outlier detection is Cook’s distance:

Di =
‖X(β̂ − β̂(−i))‖2

pσ̂2
=

1

p

Hii

1−Hii
R̃2
i , (2.14)

where β̂(−i) is the “leave-one-out” OLS estimator of β when (Xi, Yi) is removed from
the dataset. By definition, Di is a standardized change of the fitted values when the ith
observation is removed. Therefore, a large value of Di indicates that the ith observation
have a large influence on the fitted values. Some clever algebra produces the formula in
(2.14), so in order to compute Cook’s distance, it is unnecessary to repeatedly solve least
squares problems.

Recall that in the normal linear model, a (1−α)-confidence ellipsoid for β is given by

CI(α) =

{
β ∈ Rp | ‖X(β̂ − β)‖2

pσ̂2
≤ Fp,n−p(α)

}
,

Motivated by this, a rule of thumb in practice is that a Cook’s distance Di > Fp,n−p(0.5)
indicates an outlier of concern.

Exercise 2.15. Prove (2.14) using the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A
−1uvTA−1

1 + vTA−1u

that holds for any non-singular A ∈ Rp×p and u,v ∈ Rp such that vTA−1u 6= −1.

20



As a final remark on model diagnostics, the above quantities and plots should be
regarded as visual “falsification tests” of the various assumptions made by the normal
linear model. This means that even when all the diagnostic plots look exactly like what
are expected, we cannot conclude that the linear model must be correct. These tools
depart from rigorous theorems in mathematical statistics but are immensely useful in
practice. They provide empirical evidence to improve a statistical model and fit in nicely
with Box’s cycle of scientific research discussed in the very beginning of the course.

2.5.2 The bias-variance decomposition

Next, we consider the prediction error of a linear working model when it is possibly
misspecified. Consider the nonparametric regression model (2.12) which is repeated below:

Yi = g(Xi) + εi, where (Xi, εi) are IID, εi ⊥⊥Xi, E(εi) = 0, i = 1, . . . , n.

We further assume Var(εi) = σ2 exsits. In Section 2.4.3, we saw that the OLS estimator
β̂ estimates βOLS, the projection of g(Xi) onto the space of linear functions of Xi in the
population.

Let βn = E(β̂ |X1, . . . ,Xn) be the expected value of β̂. Notice that βn depends on
the model matrix X, so βn is a random quantity. This is why a subscript n is included.
Let (Xn+1,Yn+1) be a new independent observation from the same distribution.

The mean squared prediction error (MSPE) at a fixed value x ∈ Rn of the regressors
is defined as11

MSPE(x) = E
[
{Yn+1 −XT

n+1β̂}2 |Xn+1 = x
]

= E
[
{g(x)− xT β̂ + εn+1}2

]
= E

[
{g(x)− xT β̂}2

]
+ E

[
{g(x)− xT β̂}εn+1

]
︸ ︷︷ ︸

=0 because εn+1 ⊥⊥ β̂ and E[εn+1] = 0.

+E(ε2n+1)

= E
[
{g(x)− xTβn + xTβn − xT β̂}2

]
+ E(ε2n+1)

= E
[
{g(x)− xTβn}2

]
+ E

[
{g(x)− xTβn}{xTβn − xT β̂}

]
︸ ︷︷ ︸

=0 because E[β̂ − βn] = 0.

+ E
[
{xTβn − xT β̂}2

]
+ E(ε2n+1)

= E
[
{g(x)− xTβn}2

]
+ E

[
{xTβn − xT β̂}2

]
+ E(ε2n+1).

To summarize, we have obtained the following bias-variance decomposition of MSPE:

MSPE(x) = E
[
{g(x)− xTβn}2

]
︸ ︷︷ ︸

bias2

+ Var
(
xT β̂

)
︸ ︷︷ ︸

variance

+ σ2︸ ︷︷ ︸
irreducible

. (2.15)

Equation (2.15) plays a central role in understanding the predictive behaviour of
regression models, as its derivation does not rely on how β̂ is obtained. For the OLS
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estimator β̂, it can be shown that

n∑
i=1

Var(XT
i β̂ |X) = pσ2. (2.16)

Therefore, the average MSPE over the observed regressors is given by

1

n

n∑
i=1

MSPE(Xi) =
1

n

n∑
i=1

{g(Xi)−XT
i βn}2 +

pσ2

n
+ σ2. (2.17)

Exercise 2.16. Prove (2.16).

Equation (2.17) illustrates a fundamental phenomenon called the bias-variance trade-
off. In order to make the bias term

∑n
i=1{g(Xi) −XT

i βn}2 smaller, we can increase
model complexity and include more regressors in the linear model. However, this comes at
a price: the variance term pσ2/n will become larger. This trade-off of bias and variance
applies to not only the least squares estimator but also many other statistical tasks;12 see
Figure 2.6 for a nice schematic illustration.

Figure 2.6: Schematic of the behavior of bias and variance.13.

In linear models, the complexity of the least squares estimator is measured by p,
which coincides with the degrees of freedom. In more complex models, it is not always
straightforward to come up with a good measure of model complexity.
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2.5.3 Quantitative criteria for model selection

Next, we review some commonly used criteria for model selection. A better idea is to
estimate the prediction error of the working model.

The first criterion is Mallows’ Cp, which is an unbiased estimator of the average MSPE
in (2.17) (up to a constant scaling). To derive Cp, we first compute the expected value of
the RSS under the nonparametric regression model (2.12):

E
(
‖Y − µ̂‖2 |X

)
= E

{
‖(I −H)Y ‖2 |X

}
= E

{
‖(I −H)(µ+ ε)‖2 |X

}
= ‖(I −H)µ‖2 + E

{
‖(I −H)ε‖2 |X

}
= ‖(I −H)µ‖2 + (n− p)σ2.

Notice that for the OLS estimator β̂,

Xβn = X E(β̂ |X) = X(XTX)−1X E(Y |X) = Hµ.

Therefore, by comparing with (2.17), we see that

Cp = ‖Y − µ̂‖2 + 2pσ2 (2.18)

is an unbiased estimator of
∑n

i=1 MSPE(Xi).
In practice, in order to use Mallows’ Cp the noise variance σ2 needs to be estimated.

One common choice is to use the σ̂2 obtained from the full working model that uses all
the regressors.

Heuristically, because the training error rate ‖Y − µ̂‖2/n evaluates the predictive
performance of the model using the same data that the model is fitted to, it underestimates
the prediction error rate

∑n
i=1 MSPE(Xi)/n. The gap between the training error and

prediction error is sometimes referred to as the optimism of the training error rate. In
the case of OLS, the amount of optimism is 2pσ2/n, which is proportional to the degrees
of freedom p, a measure of model complexity. In general, the optimism tends to become
larger when the working model becomes more complex.

Exercise 2.17. Consider any linear estimator µ̂ = MY of µ where M ∈ Rn×n only
depends on the data through X. Show that tr(M) is a “generalized degrees of freedom”
in the sense that

CM = ‖Y − µ̂‖2 + 2σ2tr(M)

is an unibased estimator of
∑n

i=1 MSPE(Xi) for µ̂.

Our second criteria is leave-one-out cross-validation (LOO-CV), which is defined as

LOO-CV =

n∑
i=1

(Yi − µ̂(−i))
2, µ̂(−i) = XT

i β̂(−i),

where β̂(−i) is the leave-one-out OLS estimator that is computed using all observations
besides (Xi, Yi). The idea of leave-one-out was used in the definition of Cook’s distance
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(2.14) previously. Likewise, it is not necessary to actually compute the LOO OLS
estimators repeatedly. Indeed, it can be shown that

µ̂i = HiiYi + (1−Hii)µ̂(−i).

Therefore, we have the following simple formula

LOO-CV =
n∑
i=1

(
Yi −

µ̂i −HiiYi
1−Hii

)2

=

n∑
i=1

(Yi − µ̂i)2

(1−Hii)2
.

For linear models, Mallows’ Cp and LOO-CV often lead to very similar estimates of the
prediction error. The advantage of cross validation is that is is often easier to use in more
complex problems, although it may be no longer possible to obtain a closed-form formula.

Another two commonly used criteria for model selection are Akaike’s information
criterion (AIC) and the Bayesian information criterion (BIC). Because these information
criteria are based on the likelihood function, they can be applied to a wide range of
statistical problems. To illustrate this flexibility, we describe these criteria in more general
setups.

Suppose Yi
IID∼ f(y), i = 1, . . . , n, but a parametric model Yi

IID∼ f(y; θ) is fitted instead
over an Euclidean model space Θ. Under suitable regularity conditions, the MLE is
expected to converge to

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

log f(Yi; θ)

= arg max
θ∈Θ

1

n

n∑
i=1

log
f(Yi; θ)

f(Yi)

p→ arg max
θ∈Θ

Ef
{

log
f(Yi; θ)

f(Yi)

}
= arg min

θ∈Θ
Ef {− log f(Yi; θ)} ,

where the subscript f under Emeans that the expectation is computed over the density f(·).
To select an approriate model space Θ, AIC attempts to estimate Ef

{
−2 log f(Yn+1; θ̂) | θ̂

}
where the expectation is taken over a new observation Yn+1. It does so by making a
correction to the log-likelihood of the observed data at the MLE θ̂:

AIC = −2
n∑
i=1

log f(Yi; θ̂) + 2 dim(Θ). (2.19)

The correction term 2 dim(Θ) penalizes the log-likelihood function evaluated at the same
data used to fit the model. This closely resembles the idea of estimating the optimism of
the training error in Mallows’ Cp. It can be shown that AIC (divided by n) is a consistent
estimator of its target as n→∞, but that proof is beyond the scope of this course.

To simplify the presentation, we assumed above that the data are IID. The same idea
can be easily extended to regression problems by replacing f(Yi; θ̂) with the conditional
likelihood given Xi.

24



Exercise 2.18. Show that for the normal linear model with known α2, AIC concides
with Mallows’ Cp.

Let {Θ1, . . . ,Θm} be a collection of Euclidean model spaces. Then BIC is defined as

BIC(Θk) = −2
n∑
i=1

log f(Yi; θ̂k) + dim(Θk) log n,

where θ̂k is the MLE over Θk. BIC, as its name indicates is motivated by the Bayesian
perspective on model selection. If we assign a uniform prior on the model spaces,

P(Θk) =
1

m
, k = 1, . . . ,m,

Then it can be shown that, as n→∞, the posterior probability for a model is approxi-
mately given by

P(Θk | Data) ∝ e−BIC(Θk)/2.

This provides a much more principled way to select “true” regressors than naive selection
rules based on statistical significance of regression coefficients.

Compared with AIC, BIC puts a larger penalty on model complexity and thus selects
a smaller model. In practice, a rule of thumb is that AIC is more suitable for predictions
and BIC is more suitable for selecting the “correct” model.14

2.5.4 Algorithms for model selection

Besides the statistical considerations discussed above, there are also computational
challenges in model selection, as the number of submodels grows exponentially as the
number of regressors increases. This section describes some algorithms that explore a
large numberof of models more efficiently.

Our discussion thus far provides two useful insights for model selection. First, the
RSS ‖Y −Xµ̂‖2 concides with the (negative) log-likelihood function in the classical
normal linear model and is indicative of predictive performance. Thus, it is reasonable
to compare different models (especially those with the same complexity) by their RSS.
Second, a good measure of model complexity is the degrees of freedom, i.e. the number of
parameters in the model that are allowed to vary freely. These insights motivate the best
subset algorithm, which selects the submodel with the smallest RSS for every degrees of
freedom k.

However, the best subset algorithm is still a computationally intensive algorithm that
requires us to compute the RSS for all 2p submodel. Two greedy algorithms are commonly
used to reduce the number of search paths. The first is the forward stepwise algorithm,
which starts from the null model and greedily adds one unselected regressor at a time
that reduce RSS the most. The second is the backward stepwise algorithm, which starts
from the full model and greedily removes one unselected regressor at a time that increases
the RSS the least. There is of course no guarantee that these greedy algorithms will
select the aboslute best submodel for each degrees of freedom k. But they often select a
reasonably good submodel by examining only O(p2) submodels.
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Example 2.19. Consider Figure 2.7, which shows the RSS for every submodel represented
by a set of indicies of regressors for p = 3. For k = 0, 1, 2, and 3,

• The best subset algorithm selects ∅, {3}, {1, 2}, and {1, 2, 3};

• The forward stepwise algorithm selects ∅, {3}, {2, 3}, and {1, 2, 3};

• The backward stepwise algorithm selects ∅, {2}, {1, 2}, and {1, 2, 3}.

Figure 2.7: An illustration of model selection.

A common feature of these algorithms is that they produce a path of algorithm that
is indexed by model complexity. Once such a path is obtained, we can then select a single
model by using one of the quantitative criteria introduced above. We can also resort
to the model diagnostics and select a model that passes the visual checks or add new
regressors to the search space (e.g. add a quadratic term when the residual vs. fitted plot
shows a quadratic trend). There is no need to feel too uncomfortable about the ad hoc
nature of model selection. As G. Box summarized in a famous aphorism, “All models are
wrong, but some are useful.”

2.5.5 *Regularization

Thus far, our discussion on model selection has been fairly “discrete”. A single subset of
regressors is selected, and model complexity is measured by an integer (the number of
selected regressors). It is possible and in fact often desirable to “smoothen” this process
via an important idea called regularization. Briefly speaking, regularization tries to
stablize the fitted model (or in statistical terms, reduce the variance of the estimator) by
penalizing model complexity.15
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Our first example is the best subset algorithm, which can be rewritten as the solution
to the following optimization problem

minimize ‖Y −Xβ‖2

subject to ‖β‖0 ≤ k,

where ‖β‖0 = |{j | βj 6= 0}| is the number of non-zero entries in β (the `0-“norm”). Because
the minimal value of this problem is decreasing in k, the solution path for k = 0, . . . , p
can be reconstructed by the solution to the following unconstrained optimization problem

minimize ‖Y −Xβ‖2 + λ‖β‖0,

where λ‖β‖0 is the regularzing penalty to the least squares objective ‖Y −Xβ‖2 and
λ ≥ 0 is a tuning parameter that controls the amount of regularization.

However, the l0-“norm” ‖β‖0 is a difficult penalty to work with computationally. The
most widely used alternatives are the ridge regression (l2-norm penalty) that solves

minimize ‖Y −Xβ‖2 + λ‖β‖22, (2.20)

and the lasso (l1-norm penalty) that solves

minimize ‖Y −Xβ‖2 + λ‖β‖1.

Exercise 2.20. Show that the ridge regression estimator is given by

β̂λ = (XTX + λI)−1XTY

using the following two methods:

(i) Matrix calculus (see Section 2.2.1); and

(ii) Transforming (2.20) to an ordinary least squares problem of the form in (2.4).

2.5.6 *Inference after model-selection

After a model is selected (e.g. by any of the algorithms described in Section 2.5.4), a
common pitfall is to pretend that the selected regressors are determined a priori and
apply the standard inference procedures (e.g. those described in Section 2.3). This is
problematic because the selected subset of regressors is not fixed; in fact, it depends on
the realized Y and incurs selection bias.

There are two common solutions to inference after model-selection:

(i) One can split the sample and use some observations for model selection and the
others for statistical inference;

(ii) One can try to account for model selection, by excluding the information used by
model selection from statistical inference.
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The second solution is indeed an active research area in statistics.

Notes
1The regressor Xi may be a subset or a transformation of the covariates that are actually observed.

For example, suppose Zi is an observed covariate. Then we may let Xi = (1, Zi, Z
2
i ) in a linear model to

capture trends that are quadratic in Zi. See also footnote 8.
2Equation (2.1) does not necessarily describe the causal relationship between Xi and Yi. That is, if

an external force sets Xi to xi (instead of its “natural” value), (2.1) does not make any assumptions
on what the resulting Yi would become. In contrast, a linear structural equation model assumes that
the counterfactual value of Yi, often denoted as Y (xi)

i , is xTi β + εi. What has confused generations of
statisticians and scientists is that many people also use (2.1) to indicate a linear structural equation
model. For more discussion on the distinction between regression and causation, see Section 6.4 of
Freedman’s book.

3This is why some texts assume X is “fixed”. A better way to think about this is that the inference
for the normal linear model (2.1) is conditional on the model matrix X. This is an instance of the
conditionality principle, which says that the unconditional distribution and the conditional distribution
given an ancillary statistic carry the same information for statistical inference.

4In econometrics, this result is known as the Frisch–Waugh–Lovell theorem.
5Named after the statistician W. S. Gosset who used the pseudonym "Student" to publish his method.
6If we are more rigorous, we should write the estimator of σ2 as σ̂2 instead of σ̂2. But it is widely

understood that we estimate σ by first estimating σ2 and σ̂2 does not mean “σ̂ square”. Notice that
unbiasedness of σ̂2 does not translate to unbiasedness of

√
σ̂2 as an estimator of σ.

7This model makes an extra assumption on the distribution of X, but this is mostly needed to simplify
the presentation.

8The word “linear” in “linear model” refers to the modelling assumption that g(x;β) is linear in β
(instead of x). So the regression model Yi = β1 + β2Zi + β3Z

2
i + εi, although quadratic in the covariate

Zi, is still a linear model.
9The LAD estimator is a robust regression method that tries to limit the influence of outliers.

10Freedman, D., Pisani, R., and Purves, R. (2007). Statistics. New York: W W Norton, p.18.
11Some other texts define MSPE as E[{g(x)−xT β̂}], which we shall refer to as the mean squared error.
12One simple instance is Stein’s paradox, which is discussed in the Principles of Statistics course in

detail.
13Taken from Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning

(2nd ed.). New York: Springer, Figure 7.2.
14In a Bayesian setup, it is not necessary to select a single model. An alternative and perhaps more

desirable approach is called Bayesian model averaging.
15The same idea is frequently used to solve ill-posed inverse problems in applied mathematics and

engineering, often under the name Tikhonov regularization.
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Chapter 3

Exponential families

This Chapter provides an introduction to the theory of expoential families, which greatly
expand the classical statistical theory based upon normality. Exponential families are
basic building blocks of the generalized linear models discussed in the next Chapters and
more complex statistical models.

3.1 Definition and examples

3.1.1 Exponential tilting

Exponential families are obtained by exponentially “tilting” any density function. Suppose
f0(y), y ∈ Y ⊆ Rd is a density function with respect to a dominating measure m(dy).
By exponential tilting, we mean a collection of density functions given by

f(y;θ) ∝ eθTT (y)f0(y).

By normalizing the density functions, we obtain

f(y;θ) = eθ
TT (y)−K(θ)f0(y), (3.1)

where
K(θ) = log

∫
Y
eθ

TT (y)f0(y)m(dy).

Some terminologies for the terms in (3.1):

• θ ∈ Rp is called the natural parameter or canonical parameter.

• T (y) ∈ Rp is called the sufficient statistic.

• f0(y) is called the carrying density.

• K(θ) is called the cumulant function.

• Θ =
{
θ ∈ Rp |

∫
Y e

θTT (y)f0(y)m(dy) <∞
}

is called the natural parameter space.
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• The exponential family {f(y;θ) | θ ∈ Θ} is called minimal if T (y) is linearly
independent.

Obviously, f(y; 0) = f0(y), so 0 ∈ Θ. Furthermore, for any θ0 ∈ Θ, we may rewrite
the density function as

f(y;θ) = e(θ−θ0)TT (y)−{K(θ)−K(θ0)}f(y;θ0),

So comparing to (3.1), we see that the same exponential family can be obtained by
exponentially tilting any density function f(y;θ0) within it.

Exercise 3.1. Show that Θ is a convex set and K(θ) is a convex function on Θ. [Hint:
Use Hölder’s inequality.]

3.1.2 Examples

The first motivation to study exponential families is that they contain many important
probability distributions. Next we go through some examples.

Example 3.2 (Normal distribution). The density function of N(µ, 1) is given by

f(y;µ) =
1√
2π
e−(y−µ)2/2

= exp
(
µ︸︷︷︸
θ

y︸︷︷︸
T (y)

−µ2/2︸︷︷︸
K(θ)

) 1√
2π
e−y

2/2︸ ︷︷ ︸
f(y;0)

.

Example 3.3 (Poisson distribution). The Poisson distribution with rate λ can be obtained
by exponentially tilting the probability mass function of Poisson(1):

f0(y) = e−1 1

y!
, y = 0, 1, . . . .

We can first compute the cumulant function

K(θ) = log

∞∑
y=0

eθye−1 1

y!
= −1 + log

∞∑
y=0

(
eθ
)y 1

y!
= eθ − 1

The exponentially tilted density is then given by

f(y; θ) = eθy−K(θ)f0(y)

= eθy−e
θ 1

y!

=
(
eθ
)y
e−e

θ 1

y!

= λye−λ
1

y!
,

where λ = eθ. Thus, the natural parameter θ is related to the mean parameter λ via
θ = log λ in the Poisson exponential family.
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Example 3.4 (Binomial distribution). The probability mass function of a Binomial(n, π)
with fixed n is given by

f(y;π) =

(
n

y

)
πy(1− π)n−y = ey log π

1−π+n log(1−π)

(
n

y

)
, y = 0, 1, . . . , n.

So the natural parameter is the so-called logit function or log odds

θ(π) = log
π

1− π

that maps (0, 1) to R. By inversing this, we can obtain the usual parameter for binomial
by the expit function

π(θ) =
eθ

1 + eθ
.

The cumulant function is given by

K(θ) = −n log(1− π) = n log(1 + eθ).

More rigorously, we should further normalize the
(
n
y

)
term as it does not add up to 1.

But for all practical purposes, it is enough to obtain a cumulant function K(θ) up to a
constant difference.

Example 3.5 (Multinomial distribution). The probability mass function of a Multinomial(n,π)
for π = (π1, . . . , πL) with fixed n is given by

f(y;π) =
n!

y1! · · · yL!
πy11 · · ·π

yL
L =

n!

y1! · · · yL!
e(logπ)Ty.

So it is tempting to treat logπ = (log π1, . . . , log πL) as the natural parameter. However,
this is not minimal because of the constraints π1 + · · ·+ πL = 1 and y1 + · · ·+ yL = n.

To overcome this, one possibility is to set the last level as the baseline by rewriting
the density as

f(y;π) =
n!

y1! · · · yL!
exp

{
L−1∑
l=1

yl log πl +

(
n−

L−1∑
l=1

yl

)
log

(
1−

L−1∑
l=1

πl

)}

=
n!

y1! · · · yL!
exp

{
L−1∑
l=1

yl log

(
πl

1−
∑L−1

l=1 πl

)
+ n log

(
1−

L−1∑
l=1

πl

)}
.

So the (L− 1)-dimensional minimal natural parameter is given by

θl = log
πl
πL

= log
πl

1−
∑L−1

l=1 πl
, l = 1, . . . , L− 1.

Inversing this, we obtain the so-called multinomial logit or softmax function

πl(θ) =
eθl∑L
l=1 e

θl
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if we define θL = 0. The cumulant function is given by

K(θ) = − log

(
1−

L−1∑
l=1

πl

)
= log

(
L∑
l=1

eθL

)
.

Exercise 3.6. Show the following distributions are exponential families and find their
natural parameter, sufficient statistic, and cumulant function:

(i) The normal distribution

f(y;µ, σ2) =
1√

2πσ2
e−

(y−µ)2

2σ2 , y ∈ R .

(ii) The Gamma distribution

f(y;α, β) =
βα

Γ(α)
yα−1e−βy, y > 0.

(iii) The negative binomial distribution with fixed k

f(y;π) =

(
y + k − 1

y

)
πk(1− π)y, y = 0, 1, 2, . . . .

3.2 Properties of exponential families

Next, we introduce some important properties about univariate exponential families.
Many of the results below can be extended to multivariate exponential families, but such
extension is beyond the scope of this course.

3.2.1 Cumulants

The moments of an exponential family distribution (3.1) can be easily computed by its
cumulant function. Recall that for a random variable Y , its moment generating function
is given by

M(t) = E
(
etY
)
,

and its cumulant generating function is defined as

K(t) = logM(t).

Suppose M(t) is infinitely differentiable at 0. Then we have the following Maclaurin
expansions

M(t) =
∞∑
r=0

E(Y r)
tr

r!
,

K(t) =

∞∑
r=0

κr
tr

r!
,
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where E(Y r) = M (r)(0) and κr = K(r)(0). The values κ1, κ2, . . . are called cumulants of
the probability distribution and are closely related to the moments. In particular, the
first two cumulants are the mean and variance.

Exercise 3.7. Verify that κ1 = E(Y ), κ2 = Var(Y ), κ3 = E(Y − κ1)3, and κ4 =
E(Y − κ1)4 − 3κ2

2.

The exponential family {f(y; θ) | θ ∈ Θ} is called regular if Θ is an open set. Nearly
all exponential families and certainly all the exponential families we will consider are
regular. For a regular exponential family with a one-parameter natural parameter θ, the
moment generating function is given by

Mθ(t) = Eθ(etY )

=

∫
etyeθy−K(θ)f0(y)m(dy)

= eK(θ+t)−K(θ)

∫
e(t+θ)y−K(θ+t)f0(y)m(dy)

= eK(θ+t)−K(θ).

So the cumulant generating function is given by

Kθ(t) = logMθ(t) = K(θ + t)−K(θ).

Therefore, the mean and variance are given by the first two derivates of the cumulant
function K(·) at θ:

µ(θ) = Eθ(Y ) =
d

dt
Kθ(t)

∣∣∣∣
t=0

= K ′(θ), (3.2)

V (θ) = Varθ(Y ) =
d2

dt2
Kθ(t)

∣∣∣∣
t=0

= K ′′(θ). (3.3)

This is why we often only need to determine K(θ) up to an additive constant.
We refer to µ(θ) as the mean function and V (θ) the variance function. The above

derivation shows that they are related through the following key identity

µ′(θ) = K ′′(θ) = V (θ) ≥ 0. (3.4)

This shows that, apart from pathological cases with zero variance, the mean function µ(θ)
is strictly increasing and the cumulant function K(θ) is strictly convex.

3.2.2 Mean value parametrization

Because µ(θ) is strictly increasing in θ, we can also parameterize a univariate exponential
family by its mean value. Suppose the inverse function of µ(θ) is θ(µ). By the inverse
function theorem,

θ′(µ) =
1

V (θ)
.
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The exponential family can be alternatively written as

f(y;µ) = eθ(µ)y−K(θ(µ))f0(y)

for µ ∈M = {µ(θ) | θ ∈ Θ}. The setM is usually referred to as the mean space. When
using the mean-value parameterization, we often write the variance function as V (µ).

Example 3.8. Continuing from Examples 3.2 to 3.4, the natural parameter of N(µ, 1)
is θ(µ) = µ and the cumulant function is K(θ) = θ2/2. Therefore, the mean and variance
functions are

µ(θ) = θ, V (θ) = 1.

For Poisson(λ), the natural parameter is θ = log λ and K(θ) = eθ − 1. Therefore, its
mean and variance functions are given by

µ(θ) = V (θ) = eθ = λ.

For Bernoulli(π) = Binomial(1, π), the natural parameter is θ(µ) = log{π/(1− π)} and
the cumulant function is K(θ) = log(1 + eθ). Therefore, its mean and variance functions
are given by

µ(θ) =
eθ

1 + eθ
=

1

1 + e−θ
= π,

V (θ) =
eθ

(1 + eθ)2
= π(1− π).

Exercise 3.9. Derive the mean and variance of the negative binomial distribution.

3.2.3 IID sampling

Suppose Y1, . . . , Yn
IID∼ f(y; θ) where f(y; θ) is a one-parameter exponential family with

sufficient statistic Y . Then their joint density is given by

f(y1, . . . , yn; θ) =
n∏
i=1

f(yi; θ)

=

n∏
i=1

eθyi−K(θ)f0(yi)

= en{θȳ−K(θ)}
n∏
i=1

f0(yi).

This is a new exponential family with

• Natural parameter θ(n) = nθ;

• Sufficient statistic Ȳ = 1
n

∑
i=1 Yi;

• Cumulant function K(n)(θ(n)) = nK(θ) = nK(θ(n)/n);
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• Carrying density
∏n
i=1 f0(yi).

This property allows us to easily extend results for a single random variable from
exponential families to IID sampling.

Exercise 3.10. Use the cumulant function above to show that µ(n) = µ and V (n) = V/n.

3.2.4 Bayesian posterior distribution

Because the exponential family density function (3.1) is symmetric in the natural parameter
and sufficient statistic, the Bayesian posterior distribution of the natural parameter is
also an exponential family. To see, suppose we observe Y from an univariate exponential
family

f(y; θ) = eθy−K(θ)f0(y),

and θ ∈ Θ ⊆ R itself has a prior density θ ∼ π(θ). Let f(y) be the marginal density

f(y) =

∫
Θ
π(θ)f(y; θ) dθ.

By using the Bayes formula, the posterior distribution of θ is given by

π(θ | Y = y) =
π(θ)f(y; θ)

f(y)

=
π(θ)eθy−K(θ)f0(y)

f(y)

= eyθ−log{f(y)/f0(y)}π(θ)e−K(θ).

This is an exponential family with natural parameter y, sufficient statistic θ, and cumulant
function log{f(y)/f0(y)} (up to a constant).

As an application of this, suppose Y ∼ N(µ, σ2), where σ2 is known and µ has a prior
density π(µ). Then we have the following Tweedie’s formula

E(µ | Y ) = Y + σ2 f
′(Y )

f(Y )
. (3.5)

Exercise 3.11. Prove Tweedie’s formula.

3.2.5 *Empirical Bayes

A consequence of Tweedie’s formula is that the posterior mean of µ only depends on the
prior distribution π(µ) through the marginal density f(y). This gives rise to the empirical
Bayes methods.

Suppose we observe independent variables Yi ∼ N(µi, σ
2), i = 1, . . . , n, where the mean

parameters are generated by µi
IID∼ π(µ), i = 1, . . . , n but the density π(µ) is unknown.

Suppose σ2 is known and let Y = (Y1, . . . , Yn) and µ = (µ1, . . . , µn).
In this model, the MLE of µ is given by µ̂ = Y , with risk

E
(
‖µ̂− µ‖2

)
= E

(
‖Y − µ‖2

)
= nσ2.
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But we cannot apply the usual asymptotic efficiency theory for MLE here because the
dimension of the parameter is not fixed. In fact, the James-Stein estimator

µ̂JS =

(
1− (p− 2)σ2

‖Y ‖2

)
Y .

has a strictly smaller mean squared error than the MLE µ̂ for all values of µ, a result
that should be proved in Principles of Statistics.

This phenomenon can be best understood in the empirical Bayes framework. If π(µ) is
known, the optimal estimator of µ under the mean squared error is given by the posterior
mean (the “Bayes estimator”):

µ̂Bayes,i = E(µi | Yi) = Yi + σ2 f
′(Yi)

f(Yi)
.

The problem is the density π(µ) is unknown.
Empirical Bayes departs from the usual Bayesian analysis in the last paragraph by

estimating the prior π(µ) empirically. This implies that empirical Bayes is indeed a
frequentist method. In the normal means problem, empirical Bayes is made simple by
Tweedie’s formula because we can estimate the marginal density f(y) directly. In more
complicated problems, we may need to solve a deconvolution problem to estimate the
prior directly.

Exercise 3.12. Derive the James-Stein estimator by assuming µi
IID∼ N(0, τ2) and using

the fact that E{(p− 2)/χ2
p} = 1.

What is remarkable about the James-Stein estimator is that it dominates the MLE
even though the normal prior on µ may be wrong.

Tweedie’s formula (3.5) demonstrates a statistical concept called shrinkage, which is
also closely to regularization. The posterior mean E(µ | Y ) is given by the MLE Y (the
optimal unbiased estimator) plus a correction term σ2f ′(Y )/f(Y ) which increases bias
but decreases variance. When f(·) is unimodal, this correction term can be seen as a kind
of “regression toward the mean” or a correction to “winner’s curse”; see Figure 3.1 for an
illustration.

3.3 Likelihood inference

3.3.1 Maximum likelihood estimator

Consider the setting of IID sampling in Section 3.2.3. That is, suppose Y1, . . . , Yn
IID∼

f(y; θ) where f(y; θ) is a one-parameter exponential family with sufficient statistic Y , so
the joint density function is given by

f(y1, . . . , yn; θ) = en{θȳ−K(θ)}
n∏
i=1

f0(yi).
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Figure 3.1: Tweedie’s formula and shrinkage.

Thus, the log-likelihood function is given by

l(θ) = n
{
θȲ −K(θ)

}
+ constant. (3.6)

The score is defined as the gradient of the log-likelihood, which in this case is given by

U(θ) = l′(θ) = n{Ȳ −K ′(θ)} = n{Ȳ − µ(θ)}. (3.7)

The last equality uses (3.2), i.e. the first cumulant of a distribution is its mean.
The MLE θ̂ = arg maxθ l(θ) should satisfy the first-order condition U(θ̂), which means

that
µ̂ = µ(θ̂) = Ȳ , or equivalent θ̂ = θ(Ȳ ).

In other words, the MLE simply matches the theoretical mean µ(θ) with the observed
mean Ȳ .

Example 3.13. For Poisson(µ), θ̂ = log(µ̂) = log(Ȳ ). For Binomial(n, π) with fixed n,
θ̂ = log{π̂/(1− π̂)} where π̂ = µ̂/n = Ȳ /n.

3.3.2 Asymptotic inference

The large-sample distribution of θ̂ can be obtained by the standard asymptotic theory for
MLE. Next we outline some main results in this theory; you are referred to Principles of
Statistics for rigorous proofs.

By differentiating the identity
∫
f(y; θ) dy = 1 with respect to θ, under suitable

regularity conditions we obtain the second Bartlett identity,

i(n)(θ) = Var{l′(θ)} = E{−l′′(θ)}, (3.8)

where we use i(n)(θ) to denote the Fisher information of θ in an IID sample of size n. By
using (3.7), we obtain the following formula for exponential families

i(n)(θ) = nK ′′(θ) = nV (θ).
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Thus in exponentialy families, the Fisher information i(n)(θ) is simply the variance
function V (θ) times n.

Exercise 3.14. Prove (3.8).

Consistency of the MLE θ̂ follows from standard arguments and the proof is omitted.
To obtain the asymptotic distribution, the general approach is to take the first-order
Taylor expansion of the score equation at θ̂ = θ:

0 = U(θ̂) ≈ U(θ) + U ′(θ)(θ̂ − θ).

By using (3.7) and the central limit theorem, we have

U(θ)√
n

=
√
n{Ȳ − µ(θ)} d→ N(0, V (θ)).

Moreover, (3.7) implies that U ′(θ) = nK ′′(θ) = nV (θ). Thus,

√
n(θ̂ − θ) ≈ −U(θ)/

√
n

U ′(θ)/n

d→ −N(0, V (θ))

V (θ)
= N

(
0,

1

V (θ)

)
. (3.9)

Informally, we sometimes write this as

θ̂
·∼ N

(
θ,

1

i(n)(θ)

)
.

The above calculations are simplified by the fact that U ′(θ) is a constant for exponential
families. In the more general case, one can invoke the law of large numbers and Slutsky’s
lemma to derive the same asymptotic distribution.

Because the MLE of θ is given by θ̂ = θ(Ȳ ), one can also use the delta method to
obtain its asymptotic distribution. Roughly speaking, the delta method says that g(η̂) is
asymptotically normal if η̂ is asymptotically normal and g(η) is a smooth function. More
specifically, suppose that

√
n(η̂ − η)

d→ N(0, τ2),

where τ2 may depend on η and g(η) is continuously differentiable at η. Then

√
n {g(η̂)− g(η)} d→ N

(
0, τ2g′(η)2

)
.

This result can be shown by considering the Taylor expansion of g(η̂) at η and can be
easily extended to multivariate settings.

Exercise 3.15. Prove (3.9) by applying the delta method to θ̂ = θ(Ȳ ).

38



3.3.3 Hypothesis testing

Consider testing a simple null hypothesis H0 : θ = θ0 against a simple alternative
hypothesis H1 : θ = θ1 for some θ1 > θ0. By (3.6), the likelihood-ratio statistic is given
by

l(θ1)− l(θ0) = n
{

(θ1 − θ0)Ȳ −K(θ1) +K(θ0)
}
,

which is increasing in Ȳ . Thus, by the Neyman-Pearson Lemma, the most powerful
level-α test rejects H0 if Ȳ > C1−α, where C1−α is the (1−α)-quantile of Ȳ under θ = θ0.
Because this test is independent of θ1 and controls the type I error for any null parameter
value smaller than θ0, it is indeed the uniformly most powerful test for H0 : θ ≤ θ0 versus
H1 : θ > θ0.

To test H0 : θ = θ0 against H1 : θ 6= θ0, one can also resort to asymptotic arguments.
The likelihood-ratio statistic is given by l(θ̂)− l(θ0), which converges in distribution to
χ2

1/2 as n→∞ by Wilks’ theorem.
In general, Wilks’ theorem says that, as n→∞ and under the null hypothesis, the

log-likelihood ratio times two should converge to a χ2 distribution with a degrees of
freedom being the difference in the dimensions of the full parameter space for H0 ∪H1

and the dimension of the null parameter space for H0. A rigorous proof of Wilks’ theorem
should be covered in Principles of Statistics.

3.3.4 Deviance

Deviance is a measure of how one distribution in an exponential family differs from
another:

D(θ1, θ2) = 2Eθ1
{

log
f(Y ; θ1)

f(Y ; θ2)

}
= 2Eθ1{(θ1 − θ2)Y −K(θ1) +K(θ2)}
= 2{(θ1 − θ2)µ1 −K(θ1) +K(θ2)}.

(3.10)

If you are familiar with information theory, deviance is simply twice the Kullback-Leibler
divergence.

Example 3.16 (Continuing Example 3.2). For the family of normal distributions N(µ, 1),
the natural parameter is θ = µ and the cumulant function is K(θ) = θ2/2. Therefore,

D(µ1, µ2) = 2

{
(µ1 − µ2)µ1 −

µ2
1

2
+
µ2

2

2

}
= (µ1 − µ2)2

coincides with squared Euclidean distance.

Heuristically, deviance can be thought of as an extension of the Euclidean geometry
to exponential families, although generally it is not a distance metric (it is not symmetric
and does not obey the triangle inequality). By rewriting µ1 as K ′(θ1), we have

D(θ1, θ2)

2
= K(θ2)−K(θ1)− (θ2 − θ1)K ′(θ1).
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Recall that the cumulant function K(θ) is convex. Thus, the last identity can be
informatively represented by the picture in Figure 3.2, which is closely related to duality
theory in convex analysis. In particular, this picture shows that the deviance can be
locally approximated by the squared Euclidean distance times the Fisher information
i(θ1) = i(1)(θ1) = V (θ1), which is curvature of the cumulant function K(θ) at θ1:

D(θ1, θ2) ≈ i(θ1)(θ2 − θ1)2 for θ2 ≈ θ1. (3.11)

Figure 3.2: An informative picture about the deviance in exponential families.

Exercise 3.17. Verify the following formulae:

• For Poisson(λ), the deviance is given by

D(λ1, λ2) = 2

{
λ1 log

λ1

λ2
− λ1 + λ2

}
.

• For Binomial(n, π) with fixed n, the deviance is given by

D(π1, π2) = 2n

{
π1 log

π1

π2
+ (1− π1) log

1− π1

1− π2

}
.

Deviance also behaves nicely under IID sampling:

D(n)(θ1, θ2) = 2Eθ1

{
log

n∏
i=1

f(Yi; θ1)

f(Yi; θ2)

}

=
n∑
i=1

2Eθ1
{

log
f(Yi; θ1)

f(Yi; θ2)

}
= nD(θ1, θ2).

Exercise 3.18. Show that, for one-parameter exponential family, the likelihood-ratio
statistic for testing H0 : θ = θ0 versus H1 : θ 6= θ0 is given by D(n)(θ̂, θ). Show that this
statistic has a χ2

1 asymptotic distribution under the null by using (3.11).
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3.3.5 Deviance residual

Because deviance can be viewed as an extension to Euclidean distance, it allows us to
extend the definition of residuals to exponential families. With an abuse of notation, we
use D(µ1, µ2) to denote the deviance between two distributions in the exponential family
with mean µ1 and µ2.

In the normal linear model, D(y, µ) = (y − µ)2 is the squared residual. On the other
hand, the exponential family analogue of y − µ is given by

sign(y − µ)
√
D(y, µ).

With IID sampling, the total deviance is given by D(n)(µ̂, µ) = nD(Ȳ , µ). This motivates
us to define the deviance residual by

R = sign(Ȳ − µ)
√
D(n)(Ȳ , µ).

Exercise 3.19. Use Wilks’ theorem to show that R2 d→ χ2
1 as n→∞.

In practice, deviance residual R is generally preferred over the Pearson residual

RP =
Ȳ − µ√
V (µ)/n

,

because the distribution of R is much less skewed and closer to the standard normal
distribution.

Bartlett correction (not covered this year)

Moreover, it is possible to give a better approximation to the distribution of R via the
Bartlett correction. Recall that the skewness of the distribution of a random variable Y is
defined as

E{Y − E(Y )}3

{Var(Y )}3/2
=

κ3

κ
3/2
2

,

and the kurtosis is defined as

E{Y − E(Y )}4

{Var(Y )}2
− 3 =

κ4

κ2
2

.

By using the Taylor expansion, it can be shown that

R = N
(
−an, (1 + bn)2

)
+Op(n

−3/2),

where an = O(1/
√
n) depends on the skewness of Y and bn = O(1/n) depends on the

skewness and kurtosis. The Op(n−3/2) error term means that

P
(
R+ an
1 + bn

> zα

)
= α+O(n−3/2),
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where zα is the upper-α quantile of N(0, 1). Therefore, it is possible to obtain inexact but
very accurate inference for small n by staying within the exponential family framework.

3.4 Exponential dispersion families

3.4.1 Motivation and definition

The one-parameter exponential family can be restrictive in modelling the distribution of
random variables because the distribution is uniquely determined by the mean parameter
µ. In many applications, it is useful to introduce an additional parameter to model how
the variance deviates from its theoretical value V (θ) = µ′(θ).

Example 3.20. The normal distribution N(µ, σ2) is an exponential family only if the
variance parameter σ2 is fixed. As another example, it is undesirable to use the Poisson
distribution to model a count variable Y that satisfies Var(Y ) > E(Y ). This is called
overdispersion and is common in count data.

Rather than considering the full generalization to multi-parameter exponential families,
we will make a compromise. An exponential dispersion family is a collection of density
functions of the form

f(y; θ, σ2) = e{θy−K(θ)}/σ2
f0(y;σ2), (3.12)

where θ is called the natural parameter, σ2 > 0 is called a dispersion parameter, and
f0(y;σ2) is a carrying density function. It is straightforward to show that the cumulant
generating function for f(y; θ, σ2) is given by

K(t; θ, σ2) = Eθ,σ2(etY ) =
1

σ2

{
K(σ2t+ θ)−K(θ)

}
. (3.13)

Exercise 3.21. Prove (3.13).

Therefore, the mean function would match that of the corresponding exponential
family:

µ(θ, σ2) = Eθ,σ2(Y ) =
∂

∂t
K(t; θ, σ2)

∣∣∣∣
t=0

= K ′(θ),

and the variance function would have an extra factor of σ2:

V (θ, σ2) Varθ,σ2(Y ) =
∂2

∂t2
K(t; θ, σ2)

∣∣∣∣
t=0

= σ2K ′′(θ).

Compared to the standard exponential family, µ(θ, σ2) = µ(θ) and V (θ, σ2) = σ2V (θ).

3.4.2 Examples

Example 3.22 (Normal distribution). The density function of N(µ, σ2) is given by

f(y;µ, σ2) =
1√

2πσ2
e−

(y−µ)2

2σ2 = e
1
σ2
{µy−µ2/2} 1√

2πσ2
e−

y2

2σ2 .

So as expected, θ = µ and σ2 is the dispersion parameter.
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Example 3.23 (Poisson distribution). The density function of Poisson(λ) is given by

f(y;λ) = e−λ
λy

y!
= ey log λ−λ 1

y!
, y = 0, 1, . . .

So θ = log(λ) and µ = λ as before, and the dispersion parameter σ2 = 1 is fixed.

Example 3.24 (Binomial distribution). The density function for Y ∼ Binomial(n, π)/n
is given by

f(y;n, π) =

(
n

ny

)
πny(1− π)n(1−y)

= en{y log π
1−π+log(1−π)}

(
n

ny

)
, y = 0, 1/n, . . . , 1.

So θ = log π
1−π as before and the dispersion parameter is given by σ2 = 1/n.

Example 3.25 (Gamma distribution). The density function for Γ(α, β) is given by

f(y;α, β) =
βαyα−1e−βy

Γ(α)
, y > 0.

Is this an exponential dispersion family? Suppose it is, then the last term in the numerator
suggests that −β = θ/σ2. Moreover, the mean and variance of the Gamma distribution
is given by

µ(θ) = α/β, V (θ, σ2) = σ2V (θ) = α/β2.

By using the mean-variance relationship (3.4),

µ′(θ) = − 1

σ2

∂

∂θ

α(θ, σ2)

θ
= V (θ) =

1

σ2

α(θ, σ2)

θ2
.

This implies that
∂

∂θ
α(θ, σ2) = 0,

so α(θ, σ2) = α(σ2) does not depend on θ. Because the mean

µ(θ) =
α

β
=

α(σ2)

−θ/σ2

only depends on θ, we may take α = 1/σ2 and β = −θ/σ2. Conversely, θ = −β/α and
σ2 = 1/α.

Exercise 3.26. Verify that the Gamma density can indeed be written in the form in
(3.12) and the cumulant function is given by K(θ) = − log(−θ).
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Chapter 4

Generalized linear models

4.1 From linear models to generalized linear models

We are now ready to introduce generalized linear models (GLMs) that expand the classical
normal linear models.

4.1.1 Non-normal noise and the Box-Cox transformation

One of the main motivations for considering GLMs is to relax the assumption that the
noise variable is normally distributed. This is certainly not true if the response Y is
categorical. In many other applications, the distribution of Y may have a heavy tail. For
example, how long we spend on social media roughly follows a log-normal distribution
(i.e. log Y is normally distributed).1 In other cases such as the distribution of wealth, the
tail may exhibit a power law.2 We can use the central limit theorem to deal with model
misspecification (Section 2.4.2). However, with heavy-tailed distributions the central limit
theorem may not hold or may only provide a poor approximation for a moderate sample
size.

One solution to non-normal noise is to model a transformation of the response. The
Box-Cox transformation applies the following function to a positive response Y :

Y 7→ Y (λ) =

{
(Y λ − 1)/λ, if λ 6= 0,

log Y, if λ = 0.

One can then fit the usual normal linear model. The tuning parameter λ that defines the
transformation can be selected using the maximum likelihood estimator (jointly over β
and λ) or some visualization tool such as the Q-Q plot.

The Box-Cox transformation attempts to “kill three birds with one stone” in the
sense that it uses a transformation indexed by a single parameter λ to achieve normality,
linearity in the regressors, and variance stability. In practice, these goals are often difficult
to achieve together.

4.1.2 Three components of a generalized linear model

The key idea of GLMs is to use the theory for exponential families, which offer more
flexibility than the Box-Cox transformation. GLMs consist of three components:
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(i) Modelling the distribution of Yi given Xi using an exponential (dispersion) family;

(ii) A linear predictor ηi = XT
i β;

(iii) A strictly increasing and smooth link function g(·) that relates the predictor ηi with
the conditional expectation µi = E(Yi |Xi): ηi = g(µi) and µi = g−1(ηi).

As an example, the familiar normal linear model corresponds to assuming

(i) Yi |Xi ∼ N(µi, σ
2);

(ii) ηi = XT
i β;

(iii) µi = ηi, so g(·) is the identity function.

To simplify the exposition, we will adopt the same vector/matrix notation as in linear
models:

Y =

Y1
...
Yn

 , X =

X
T
1
...
XT
n

 , β =

β1
...
βp

 , µ =

µ1
...
µn

 and η =

η1
...
ηn

 .

Unless noted otherwise, the regressors X will be treated as fixed. In other words, the
inference for GLMs will be conditioned on X. See Section 2.1 for discussion on this in
the normal linear model.

4.2 The canonical form

The canonical form of a generalized linear model corresponds to setting the natural
parameter θ = η and identity dispersion σ2 = 1. It provides most of the insights into the
general theory for GLMs without getting into too much technical details.

More concretely, let {f(y; θ) | θ ∈ Θ} be a one-parameter exponential family as defined
in the previous Chapter. A canonical form GLM assumes that the responses Y1, . . . , Yn
are independent and

Yi |Xi ∼ f(y; θi), i = 1, . . . , n,

where the natural parameter is given by

θi = ηi = XT
i β.

An immediate consequence is that the mean parameter is given by

µi = E(Yi |Xi) = µ(θi) = µ(ηi),

so the canonical link function is given by g(µ) = θ(µ).
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The joint density of Y is given by

f(y;β) =
n∏
i=1

f(yi; θi)

= e
∑n
i=1 θiyi−K(θi)

n∏
i=1

f0(yi)

= eβ
TXTy−

∑n
i=1K(XT

i β)
n∏
i=1

f0(yi).

This is a p-parameter exponential family, with

• Natural parameter β;

• Sufficient statistic Z = XTY ; and

• Cumulant function φ(β) =
∑n

i=1K(XT
i β).

Therefore, the canonical form GLMs can be studied using the theory for multi-
parameter exponential families and have many nice properties that generalize the theory
in Section 3.2. For example, it can be shown that the expectation and covariance matrix
of Z are given by the gradient and Hessian matrix of the cumulant function:

Eβ(Z) = ∇φ(β) =
n∑
i=1

K ′(XT
i β)Xi = XTµ(β),

Covβ(Z) = ∇2 φ(β) =
n∑
i=1

K ′′(XT
i β)XiX

T
i = XTV (β)X,

where µ(β) = (µ1(β), . . . , µn(β))T and V (β) = diag(K ′′(XT
1 β), . . . ,K ′′(XT

n β)) =
diag(Var(Y1), . . . ,Var(Yn)).

The log-likelihood function of β is given by

l(β) = βTXTY −
n∑
i=1

K(XT
i β) + constant .

The score function is given by

U(β) = ∇l(β) = XTY −
n∑
i=1

K ′(XT
i β)Xi = XT {Y − µ(β)}.

Thus, the MLE β̂ satisfies the normal equations

XT {Y − µ(β̂)} = 0. (4.1)

Geometrically, the MLE is obtained by projecting Y onto {µ(β) | β ∈ Rp}, a p-
dimensional manifold in Rn. Of course, the GLM normal equations (4.1) reduce to the
normal equations (2.5) for the normal location family.
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For asymptotic inference of GLMs, the one-dimensional theory in Section 3.3.2 can be
extended in a straightforward manner. The Fisher information matrix for β is defined as

I(n)(β) = Cov{U(β)} = E{−∇2 l(β)} =
n∑
i=1

K ′′(XT
i β)XiX

T
i = XTV (β)X.

The asymptotic theory for the MLE suggests that, under suitable regularity conditions,

β̂
·∼ N(β, I(n)(β)−1).

This is an informal way of writing the convergence in distribution

√
n(β̂ − β)

d→ N(0, I(β)−1), as n→∞,

where I(β) = limn→∞ I
(n)(β)/n is assumed to exist.

4.3 Linkage and over-dispersion

Next, we introduce linkage and dispersion to GLMs. In this more general setup, it is
assumed that Y1, . . . , Yn are independent and Yi |Xi ∼ f(y; θi, σ

2
i ) follows a distribution

from a exponential dispersion family

f(y; θ, σ2) = e{θy−K(θ)}/σ2
f0(y;σ2),

where the natural and dispersion parameters are modelled by

θi = θ(µi) = θ(g−1(ηi)) = θ(g−1(XT
i β)),

where g(·) is strictly monotone (usually increasing) and twice differentiable, and

σ2
i = σ2wi,

where σ2 is possibly unknown and wi is some known weight.

4.3.1 Estimation

The log-likelihood function of this model is given by

l(β, σ2) =
n∑
i=1

1

σ2
i

{θiYi −K(θi)}+ log f0(Yi;σ
2
i ). (4.2)

This function depends on the coefficients β through θ1, . . . , θn. By differentiating l(β, σ2)
with respect to β, the MLE for β should solve the following score equation

n∑
i=1

(Yi − µi)Xi

Var(Yi)g′(µi)
= 0. (4.3)
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Because Var(Yi) = σ2
i V (µi) = σ2wiV (µi), the MLE β̂ satisfies

n∑
i=1

(Yi − µ̂i)Xi

wiV (µ̂i)g′(µ̂i)
= 0, (4.4)

where µ̂i = g−1(XT
i β̂). Equation (4.4) does not have a clear geometric interpretation like

(4.1), but crucially, it does not depend on σ2. This means that including the dispersion
parameter σ2 in the model does not change the MLE β̂.

Exercise 4.1. Prove (4.3). Then show (4.4) reduces to (4.1) when g(·) is the canonical
link function and w1 = · · · = wn = 1.

To estimate σ2, in the normal linear model we use

σ̂2 =
1

n− p
‖Y −Xβ̂‖2 =

1

n− p

n∑
i=1

(Yi − µ̂i)2.

In GLMs, recall that E{(Yi−µi)2} = Var(Yi) = σ2wiV (µi). This motivates us to estimate
σ2 (if it is unknown) by

σ̂2 =
1

n− p

n∑
i=1

(Yi − µ̂i)2

wiV (µ̂i)
.

To use a consistent notation, we set σ̂2 = σ2 when σ2 is known (e.g. σ2 = 1 in the
canonical form GLM).

4.3.2 Asymptotic normality and confidence intervals

By computing the Hessian of l(β, σ2), it can be shown that the Fisher information matrix
for (β, σ2) is block-diagonal

I(n)(β, σ2) =

(
I

(n)
ββ (β, σ2) 0

0 I
(n)
σ2σ2(β, σ2)

)
. (4.5)

Therefore, including the dispersion parameter σ2 does not change the information for β,
which is given by

I
(n)
ββ (β, σ2) =

1

σ2
XTWX, where W = W (β) = diag

(
1

wiV (µi){g′(µi)}2

)
. (4.6)

Exercise 4.2. Prove (4.5) and (4.6).

The standard asymptotic theory shows that, under suitable regularity conditions, β̂
has an asymptotic normal distribution

β̂
·∼ N

(
β, I

(n)
ββ (β, σ2)−1

)
= N

(
β, σ2(XTWX)−1

)
.

The asymptotic variance on the right hand side depends on the unknown parameters
β and σ2. To construct a confidence interval/region, they can be replaced by their
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estimators β̂ and σ̂2. For example, an equi-tailed asymptotic (1− α) confidence interval
for βj , j ∈ {1, . . . , p} is given by[

β̂j − zα/2
√
Iββ(β̂, σ̂2)−1

jj , β̂j + zα/2

√
Iββ(β̂, σ̂2)−1

jj

]
.

With a moderate sample size n, a slightly more accurate inference may be obtained by
replacing the normal upper-quantile zα/2 with tn−p(α/2), the upper-quantile of the t
distribution, which is motivated by the exact theory for the normal linear model.3

4.3.3 Overdispersion due to clustering

At this point, you might wonder why we sometimes want to model the dispersion in
GLMs. Overdispersion, the phenomenon that the variance of Y is larger than what
is expected from a theoretical model, often occurs in practice. A common mechanism
for overdispersion and underdispersion is unaccounted structure in the sample. This is
illustrated by the next sample.

Example 4.3. Suppose a sample of size n has n/k clusters, each of size k. The observa-
tions are distributed as Zij ∼ Bernoulli(πi), i = 1, . . . , n/k, j = 1, . . . , k. The response Y
is the total Y =

∑n/k
i=1

∑k
j=1 Zij , which is often modelled by a binomial distribution. This

is reasonable when πi = π for all i, as Y then follows a Binomial(n, π) distribution with

E(Y ) = nπ, Var(Y ) = nπ(1− π).

However, if the probabilities πi themselves are IID and

E(πi) = π, Var(πi) = τ2π(1− π),

it is straightforward to show that

E(Y ) = nπ, Var(Y ) = σ2nπ(1− π), where σ2 = 1 + τ2(k − 1).

That is, the mean of Y is unchanged but the variance is increased by a factor of σ2.

4.4 Analysis of deviance

The deviance is a key concept in exponential families and GLMs. It extends the
RSS/variance in normal linear models as a way to measure the goodness-of-fit of a
GLM. Analysis of deviance is an extension of the ANOVA in the normal linear model
(Section 2.3.4). Recall that in a one-parameter exponential family {f(y; θ) | θ ∈ Θ}, the
deviance between f(y; θ1) and f(y; θ2) is defined as

D(θ1, θ2) = 2Eθ1 {log f(Y ; θ1)− log f(Y ; θ2)}
= 2 {(θ1 − θ2)µ1 −K(θ1) +K(θ2)} .

As discussed in Section 3.3.4, deviance extends the Euclidean geometry to exponential
families. With an abuse of notation, it is often convenient to parameterize an exponential
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family distribution by its mean and write the deviance as D(µ1, µ2). For two n-vectors of
mean-value parameters µ1 and µ2, their total deviance is defined as

D(n)(µ1,µ2) =
n∑
i=1

D(µ1i, µ2i).

4.4.1 Nested models

The analysis of deviance applies to the setup of nested canonical form GLMs.4 The full
model is given by

θ = η = Xβ,

where X ∈ Rn×p and β ∈ Rp. As in Section 2.2.3, suppose the design matrix X and
coefficient vector β are partitioned as

X = (X0 X1), β =

(
β0

β1

)
,

where X0 ∈ Rn×p0 , X1 ∈ Rn×(p−p0), β0 ∈ Rp0×1, and β1 ∈ R(p−p0)×1. The submodel or
null model we consider is

θ = η = X0β0.

In other words, we are interested in testing the hypothesis H0 : β1 = 0 against H1 : β1 6= 0.
According to the GLM normal equations (4.1), the full model MLE β̂ ∈ Rp and

submodel MLE β̂ ∈ Rp0 satisfy

XT {Y − µ̂)} = 0, where µ̂ = µ(Xβ̂) =

µ(XT
1 β̂)
...

µ(XT
n β̂)

 ; and

XT
0 {Y − µ̂0)} = 0, where µ̂0 = µ(X0β̂0) =

µ(XT
1 β̂0)
...

µ(XT
n β̂0)

 .

See Figure 4.1 for an geometric illustration of nested GLM fits.
A GLM is called saturated ifX has rank n (which implies p ≥ n). In this case, µ̂ = Y .

Assuming the intercept is also included in the model, the smallest GLM is given by p = 1
and X = 1n. In this case, µ̂ = Ȳ 1n.

4.4.2 The deviance additivity theorem

The deviance additivity theorem says that the deviance between the observations (or
equivalently the saturated model) and the submodel can be decomposed as

D(n)(Y , µ̂0) = D(n)(Y , µ̂) +D(n)(µ̂, µ̂0). (4.7)

This equation follows immediately from the following relation between the deviance and
log-likelihood:

D(n)(µ̂, µ̂0) = 2 {l(µ̂)− l(µ̂0)} , (4.8)
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Figure 4.1: Illustration of nested GLMs. The full model space is given byM = {µ(Xβ) |
β ∈ Rp} and the submodel space is given byM0 = {µ(X0β0) | β0 ∈ Rp0}.

where l(µ) =
∑n

i=1 log f(Yi; θ(µi)) is the log-likelihood function. In Example 3.16, we
saw that in normal linear models with σ2 = 1, we have D(n)(µ1,µ2) = ‖µ1 −µ2‖2. So in
this case the deviance additivity theorem reduces to Pythagoras’ theorem.

Exercise 4.4. Show (4.8), then use it to prove (4.7).

The key identity (4.8) can be extended to GLMs with a canonical link function but a
undetermined dispersion σ2. In this case, it can be shown that5

D(n)(µ̂, µ̂0) = 2σ2 {l(µ̂)− l(µ̂0)} . (4.9)

Exercise 4.5. Prove (4.9).

4.4.3 Analysis of deviance

By Wilks’ theorem and (4.8), we have D(n)(µ̂, µ̂0)
d→ χ2

p−p0 as n → ∞ under the null
H0 : β1 = 0. So we reject H0 if

D(n)(µ̂, µ̂0) > χ2
p−p0(α).

In GLMs with the canonical link function and a dispersion parameter σ2, the deviance
should be divided by an estimator of σ2 following (4.9). Motivated by the exact F -test
for normal linear models, a slightly more accurate test in small samples rejects H0 if

D(n)(µ̂, µ̂0)

σ̂2
> (p− p0)Fp−p0,n−p(α).

With a sequence of nested GLMs, one can further perform a chain of analyses of deviance.
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4.5 Numerical computation

Up till now, we have not said anything about how the MLE β̂ can be computed. Unlike in
the normal linear model where β̂ can be found by solving some linear equations, the score
equations (4.1) or (4.4) for GLMs are not linear in β. Thus, some iterative algorithms
are needed.

4.5.1 Newton-Raphson

The Newton-Raphson algorithm is a general algorithm for optimization or root finding
problems. We illustrate this with a classical problem in statistics—finding the MLE.
Consider the optimization problem

maximize
β∈Rp

l(β),

where l(β) is the log-likelihood function for some statistics problem. Let U(β) and H(β)
be the gradient and Hessian matrix of l(β) at β. That is,

Uk(β) =
∂

∂βk
l(β), k = 1, . . . , p,

Hjk(β) =
∂2

∂βj∂βk
l(β), j, k = 1, . . . , p.

The key idea of the Netwon-Raphson algorithm is that the objective function l(β)
can be locally approximate near β∗ ∈ Rp by its second-order Taylor expansion (assuming
the function is sufficiently smooth):

l(β) ≈ l(β∗) + (β − β∗)TU(β∗) +
1

2
(β − β∗)TH(β∗)(β − β∗).

Because the local approximation is a quadratic function of β, we can easily find its
maximizer. By differentiating with respect to β, the maximizer should satisfy

U(β∗) +H(β∗)(β − β∗) = 0.

This motivates the following iterative algorithm (see Figure 4.2):

(i) Start at an initial parameter value β(0).

(ii) For t = 1, 2, . . . , update the parameter by

β(t) = β(t−1) −
{
H(β(t−1))

}−1
U(β(t−1)).

(iii) Stop the algorithm until the sequence β(t) converges in a numerical sense (e.g. if
l(β(t))− l(β(t−1)) < τ where τ is some tolerance level).
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Figure 4.2: An illustration of the Newton-Raphson algorithm.6.

4.5.2 Fisher scoring

A drawback of the Newton-Raphson algorithm is that the Hessian matrix H(β(t−1)) is
sometimes close to singularity, making its inverse numerically unstable.

When the objective function l(β) is the log-likelihood of some IID data, the Fisher
information matrix is the expectation of the negative Hessian matrix (which is sometimes
called the observed information):

I(β) = Eβ{−H(β)}.

The Fisher information matrix is guaranteed to be positive definite. Fisher scoring refers
to the modification of the Newton-Raphson algorithm where −H(β(t−1)) is replaced by
I(β(t−1)).7

4.5.3 Iteratively reweighted least squares

Let us now apply the general algorithms above to GLMs. For the most general form of
GLM described in Section 4.3, the log-likelihood function is given by (4.2) and is repeated
below:

l(β, σ2) =
n∑
i=1

1

σ2
i

{θiYi −K(θi)}+ log f0(Yi;σ
2
i ),

where θi = θ(g−1(XT
i β)) and σ2

i = σ2wi. The β-score is given by

Uβ(β, σ2) = ∇β l(β, σ2) =
1

σ2

n∑
i=1

(Yi − µi)Xi

wiV (µi)g′(µi)
,

and the Hessian matrix can be obtained by further differentiating Uβ(β, σ2) with respect
to β. In general, this is a complicated matrix, but the calculations greatly simplify if g(µ)
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is the canonical link, i.e. g(µ) = θ(µ). In this case, the negative Hessian matrix (a.k.a.
the observed information matrix) is indeed equal to the Fisher information matrix:

−Hβ,β(β, σ2) = I
(n)
β,β(β, σ2) =

1

σ2
XTWX, (4.10)

where W is defined in (4.6). So for GLMs using a canonical link function, the Newton-
Raphson algorithm coincides with the Fisher scoring algorithm.

Exercise 4.6. Prove (4.10) when g(µ) is the canonical link function.

The Fisher scoring algorithm admits a nice representation by defining a “residual” in
the predictor

Ri = (Yi − µi)g′(µi), R =

R1
...
Rn

 .

With this new definition, we can express the β-score as

Uβ(β, σ2) =
1

σ2
XTWR.

Let η(t)
i = XT

i β
(t), µ(t)

i = g−1(η
(t)
i ), and similarly define W (t) and R(t). The Fisher

scoring update is then given by

β(t) = β(t−1) + {I(n)
ββ (β(t−1), σ2)}−1Uβ(β(t−1), σ2)

= β(t−1) +
(
XTW (t−1)X

)−1
XTW (t−1)R(t−1)

=
(
XTW (t−1)X

)−1
XTW (t−1)

(
η(t−1) +R(t−1)

)
.

The last expression is the solution to a weighted least squares problem (Section 2.4.1).
Therefore, the Fisher scoring algorithm for GLMs is also known as the iteratively reweighted
least squares that updates the model parameters as follows

β(0) → η(0),µ(0) →W (0),R(0) WLS→ β(1) → η(1),µ(1) → · · ·

To initiate the algorithm, it is common to choose β(0) = 0 or µ(0) = Y .

4.6 Model diagnostics and model selection

The diagnosis of GLMs is very similar to that of linear models, thanks to the iteratively
reweighted least squares formulation of the MLE.
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4.6.1 The general idea

The key idea is to define the pseudo-response:

Z(t) = η(t) +R(t)

So the Fisher scoring update can be written as

β(t) =
(
XTW (t−1)X

)−1
XTW (t−1)Z(t−1).

Let Ẑ be the limit of Z(t) as t→∞. That is,

Ẑi = lim
t→∞

XT
i β

(t) + (Yi − µ(t)
i )g′(µ

(t)
i ) = XT

i β̂ + (Yi − µ̂i)g′(µ̂i), i = 1, . . . , n.

Further, let

Ŵ = W (β̂) = diag
(

1

wiV (µ̂i){g′(µ̂i)}2

)
and V̂ = diag(wiV (µ̂i)).

So we have the following convenient matrix representation

Ẑ = Xβ̂ + R̂, where R̂ = Ŵ−1/2V̂ −1/2(Y − µ̂).

The GLM diagnosis proceeds by treating Ŵ 1/2Ẑ, Ŵ 1/2η̂, and Ŵ 1/2R̂ as the “adjusted”
responses, fitted values, and residuals (see Section 2.4.1). They often behave like their
counterparts in the linear model. For example, the adjusted fitted values are given by

Ŵ 1/2η̂ = Ŵ 1/2X(XTŴX)−1XTŴ 1/2︸ ︷︷ ︸
H

Ŵ 1/2Ẑ,

which motivates the definition of the adjusted hat matrix H (not to be confused with the
Hessian matrix in the previous section).

4.6.2 Redefining residuals

It can be shown that
Var(Y − µ̂) ≈ σ2V̂ 1/2(I −H)V̂ 1/2, (4.11)

HV̂ −1/2(Y − µ) ≈ V̂ −1/2(µ̂− µ).

This motivates us to maintain the definition of the leverage of observation i as Hii.
There are several versions of residuals one can use for GLMs. The most common ones

are the Pearson residual
RP,i =

Yi − µ̂i√
σ̂2wiV (µ̂i)

,

and the deviance residual (see Section 3.3.5)

RD,i = sign(Yi − µ̂i)
√
D(Yi, µ̂i).
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The Pearson residual is closely related to the adjusted residual. In fact, it is straight-
forward to verify that RP = W 1/2R̂/σ̂. However, the variance of RP,i is usually smaller
than 1 upon considering (4.11). So just like in the diagnosis of linear models, the following
standardized Pearson residual is often used:

R̃P,i =
RP,i√
1−Hii

.

Similarly, it is common to use the standardized deviance residual

R̃D,i =
RD,i√
1−Hii

.

Cook’s distance can be similarly extended to GLMs:

Di =
1

p

Hii

1−Hii
R̃P,i.

4.6.3 Model selection

To select a GLM, we cannot apply Mallows’ Cp criterion because it relies on mean squared
error. However, we can still use cross-validationz by replacing the squared error with the
deviance. In other words, we seek a model that minimizes

CV(model) =
n∑
i=1

D(Yi, µ̂−i),

where µ̂−i is the leave-one-out fitted value for the ith observation. AIC and BIC can be
applied in the same way to GLMs by using the corresponding log-likelihood function.

Regarding algorithms for model selection, the stepwise methods and the best subset
method can be applied in the same way as before. Regularization can be achieved by
adding the same penalty on certain complexity measure of β as before.

4.7 Binomial regression

In the rest of this Chapter, we discuss two of the most widely used families of GLMs:
binomial regression and Poisson regression.

In a binomial regression, it is assumed that the responses Y1, . . . , Yn are independent
and

Yi ∼
1

ni
Binomial(ni, µi), i = 1, . . . , n,

where ni is known but µi is unknown. As we have seen in Example 3.24, Binomial(n, µ)
is an exponential dispersion family:

f(y;n, µ) =

(
n

ny

)
µny(1− µ)n(1−y)

= exp

{
1

n−1

(
y log

µ

1− µ
+ log(1− µ)

)}(
n

ny

)
.

The dispersion parameter is σ2 = 1, the dispersion weight is w = 1/n, the natural
parameter is θ = log{µ/(1−µ)}, and the cumulant function is given by K(θ) = log(1+eθ).
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4.7.1 Common link functions

Recall that the link function relates the linear predictor with the mean value. Specifically,
g(µi) = ηi = XT

i β. The canonical link makes ηi equal to the natural parameter θi, so for
binomial regression the canonical link is given by the logit function

g(µ) = θ(µ) = log
µ

1− µ
.

More generally, we can choose g(µ) to be any strictly increasing function from (0, 1)
to R.8 In other words, we can let g to be the quantile function (inverse of the CDF) of
any continuous random variable ε. The logit link corresponds to the logistic distribution,
whose distribution function is simply the expit function:

F (η) =
eη

1 + eη
.

Another commonly used link is the probit link g(µ) = Φ−1(µ), which corresponds to
letting ε ∼ N(0, 1). Some less common link functions include the identity link g(µ) = µ
and the complementary log-log (cloglog) link g(µ) = log{− log(1− µ)}.

4.7.2 Latent variable interpretation

The above quantile function viewpoint provides an interesting interpretation of the link
functions for the binomial regression. To illustrate this, suppose ni = 1, i = 1, . . . , n. Let

Y ∗ = η + ε, ε ∼ F (·), Y = 1{Y ∗>0},

where F (·) is the CDF of some continuous probability distribution. Then the mean value
of Y can be given by

µ = E(Y ) = P(Y ∗ > 0) = P(ε > η) = 1− F (−η).

Thus, if the distribution is symmetric about 0,

η = −F−1(1− µ) = F−1(µ).

This formulation is quite useful because it allows us to fit a linear model to the latent
variable Y ∗ using just the sign of Y ∗, as long as the noise distribution is known.

The cloglog link arises from a similar model in which the latent variable is distributed
as

Y ∗ ∼ Poisson(eη).

Note that µ = eη is in fact the canonical link for Poisson regression (see Section 4.8).
Suppose the observation is still given by Y = 1{Y ∗>0}, then

1− µ = P(Y = 0) = P(Y ∗ = 0) = e−e
η
,

which results in the cloglog link η = log(− log(1− µ)).

57



4.7.3 Logistic regression and odds ratio

The logit link (aka the logistic regression) is by far the most popular for binomial regression.
Beyond the fact that it enjoys some nice properties being the caonical link, it has some
other advanrages. First, in logistic regression the odds of an observation is given by

P(Yi = 1)

P(Yi = 0)
=

µi
1− µi

= eηi = eX
T
i β =

p∏
j=1

(
eβj
)Xij

.

Therefore, eβj represents a multiplicative change to the odds per nuit change of the jth
regressor.9

Moreover, when we just have a single binary regressor, consider the saturated model

log
µ

1− µ
= η = β0 + β1X,

where µ = E(Y | X) = P(Y = 1 | X). Then the difference in odds ratio for different levels
of X is given by

log
P(Y = 1 | X = 1)

P(Y = 0 | X = 1)
− log

P(Y = 1 | X = 0)

P(Y = 0 | X = 0)
= (β0 + β1)− β0 = β1.

Therefore, the odds ratio is given by

P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)
= eβ1 .

The odds ratio is a useful quantity because it enjoys a symmetry:

P(Y = 1 | X = 1)/P(Y = 0 | X = 1)

P(Y = 1 | X = 0)/P(Y = 0 | X = 0)
=

P(X = 1 | Y = 1)/P(X = 0 | Y = 1)

P(X = 1 | Y = 0)/P(X = 0 | Y = 0)
. (4.12)

This neat property implies that we can sample from a population according to Y (suppose
Y = 1 means a case), and it does not bias the odds ratio. For example, in case-control
studies for rare diseases, we can pair each case (e.g. a patient suffering from the disease)
with a control (e.g. a healthy individual). This is much more efficient than a random
sample from the population, which may contain very few cases. For rare diseases, the
odds ratio offers a good approximation to the more interpretable risk ratio, defined as
P(Y = 1 | X = 1)/P(Y = 1 | X = 0), because P(Y = 0) is very close to 1.

4.8 Poisson regression

4.8.1 Models for count data

Poisson regression is used to model count data: Yi ∈ {0, 1, 2, . . . }, i = 1, . . . , n. It is
common to model counts by a Poisson distribution, Yi ∼ Poisson(µi). One rationale for
this is the following law of small numbers. Consider a triangular array {µn,j > 0 | 1 ≤ j ≤
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n} such that
∑n

j=1 µn,j = µ. Then under the assumption that maxj µn,j → 0 as n→∞,
we have

n∑
j=1

Bernoulli(µn,j)→ Poisson(µ) as n→∞.

In words, if Y is the total count of many small probability events, then Y approximately
follows a Poisson distribution.

The Poisson distribution Y ∼ Poisson(µ) has the mean-variance relation (Example 3.8)

Var(Y ) = E(Y ) = µ.

In practice, the data are sometimes overdispersed compared to the theoretical relationship
above due to clustering or other reasons (Section 4.3.3).

4.8.2 *Variance stabilizing transform (not covered this year)

To deal with overdispersion, one can use the variance stabilizing transform that maps Y
to g(Y ). By the delta method, Var(g(Y )) ≈ {g′(µ)}2 Var(Y ). Thus, if we take

g′(µ) =
1√

Var(Y )
,

then Var(g(Y )) ≈ 1. For Poisson, this is g(Y ) = 2
√
Y . We can then fit a linear

model for E(2
√
Y | X) and use the linear model noise variance to probe overdispersion.

The drawback of this approach is that
√
Y might not be the scale we would like to

investigate. We can also use a dispersion parameter σ2 in the (quasi-)Poisson GLM to
model overdispersion, which will be discussed in more detail next.10

4.8.3 Poisson regression

Recall that the probability mass function of Poisson(µi) is given by

f(yi;µi) = e−µi
µyi

yi!
= eyi logµi−µi 1

yi!
, yi = 0, 1, . . . .

With the expersion parameter σ2 included, the probability mass function bcomes

f(yi;µi, σ
2) = e

1
σ2
{yi log µi−µi}f0(yi;σ

2).

So the natural parameter is θi = log(µi) and the cumulant function is K(θ) = eθ.
In Poisson regression, the most common choice of the link function is the canonical

log link g(µ) = θ(µ) = log(µ), so the model is

logµi = XT
i β.

This is often referred to as the log-linear model. This model is straightforward to interpret,
as

µi = eX
T
i β =

p∏
j=1

(eβj )Xij ,
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So eβj represents a multiplicative change to the predicted mean value per nuit change of
the jth regressor.

Other common link functions for Poisson regression including the identity link and the
square root link.11 Notice that the square root link assumes that

√
E(Yi |Xi) = XT

i β,
which is different from fitting a linear model after the square root variance stabilizing
transform which assumes that E(

√
Yi |Xi) = XT

i β.
The deviance in Poisson regression (σ2 = 1) is given by (Exercise 3.17)

D(Yi, µ̂i) = 2

{
Yi log

Yi
µ̂i
− Yi + µ̂i

}
.

If X includes intercept (a column 1) and the canonical log link is used, the score equation
XT (Y − µ̂) = 0 implies that

n∑
i=1

µ̂i =
n∑
i=1

Yi.

Therefore, by letting δi = Yi − µ̂i and assuming |δi| � µ̂i, the total deviance for the
Poisson regression is approximately given by

D(n)(Y , µ̂) = 2
n∑
i=1

Yi log
Yi
µ̂i

= 2
n∑
i=1

(µ̂i + δi) log

(
1 +

δi
µ̂i

)

≈ 2
n∑
i=1

(µ̂i + δi)

(
δi
µ̂i
− 1

2

δ2
i

µ̂2
i

)

≈ 2
n∑
i=1

δi +
1

2

δ2
i

µ̂i

=
n∑
i=1

(Yi − µ̂i)2

µ̂i
.

The last expression is precisely the Pearson χ2-statistic from IB Statistics:

χ2 =
∑ (observed− fitted)2

fitted
.

For Poisson regression, Pearson’s residual is given by

RP,i =
Yi − µ̂i√
V (µ̂i)

=
Yi − µ̂i
µ̂i

,

so Pearson’s χ2-statistic is given by χ2 =
∑n

i=1R
2
P,i and converges to χ2

n−p if the Poisson
regression is correctly specified. Note that this convergence does not require n to converge
to infinity; in fact, convergence to χ2

n−p would be ill-defined if n increases and p is fixed.
The crucial assumption is that mini µi → ∞ (which can be seen from the assumption
that δi � µ̂i). This is the so-called small dispersion asymptotics.
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4.8.4 Multinomial models and the Poisson trick

Poisson regression can also be used to analyze multinomial data. Suppose (Y1, . . . , YL) ∼
Multinomial(n,π), where n is known but π = (π1, . . . , πL) is unknown. The probability
mass function is given by

f(y;π) =
n!

y1! · · · yL!
πy11 · · ·π

yL
L , for

L∑
i=1

Yi = n.

This is not a minimal exponential family because of the constraint on Y , which also
implies that Y1, . . . , YL are not independent. A potential solution is to set one level as
the reference and obtain a (L− 1)-parameter exponential family (Example 3.5). However,
the symmetry in the parameters is broken.

A more elegant solution is the Poisson trick, which refers to the following result in
probability. Suppose Yi ∼ Poisson(µi), i = 1, . . . , L independently. Let Y+ =

∑L
i=1 Yi,

then

Y+ ∼ Poisson(µ+) and Y1, . . . , YL | Y+ ∼ Multinomial(Y+;π),

where πi = µi/µ+, i = 1, . . . , L and µ+ =
∑L

i=1 µi.
12

Exercise 4.7. Verify the Poisson trick.

Consider the log-linear Poisson model

Yi ∼ Poisson(µi) independently, and logµi = α+XT
i β,

where the intercept α is distinguished from the rest of the coefficients. Then by the
Poisson trick,

Y+ =
L∑
i=1

Yi ∼ Poisson(µ+) and Y | Y+ ∼ Multinomial(Y+,π),

where

µ+ =

n∑
i=1

µi = eα
n∑
i=1

eX
T
i β, and

πi =
µi
µ+

=
eX

T
i β∑n

i=1 e
XT
i β
, i = 1, . . . , n. (4.13)

Importantly, π does not depend on the intercept α in the Poisson model. In consequence,
the likelihood function for the Poisson model factorizes as

LP (α,β) =

n∏
i=1

f(Yi;µi)

= f(Y1, . . . , YL | Y+;β)f(Y+;α,β)

= LM (β)f(Y+;α,β),
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where LM (β) denotes the likelihood for the multinomial model (4.13). Alternatively,
because given β, µ+ is uniquely determined by α and vice versa, we can write this more
concisely as

LP (µ+,β) = LM (β)f(Y+;µ+).

The above likelihood factorization implies that we can fit the multinomial model (4.13)
using the Poisson log-linear model with an intercept, and the likelihood inference for β
in the two models will be equivalent. To see this, the MLE β̂ for the Poisson likelihood
LP (µ+,β) will also maximize the multinomial likelihood LM (β). The Fisher information
matrix for the Poisson model is block-diagonal:

I(n)(µ+,β) =

(
I

(n)
µ+µ+(µ+) 0T

0 I
(n)
ββ (β)

)
.

Deviance in the Poisson model is the same as deviance in the multinomial model, because
µ̂+ = Y+.

4.9 Contingency tables

Next we apply the Poisson and multinomial models to analyze contingency tables that
display empirical frequencies of random variables.

4.9.1 Two-way contingency tables

Example 4.8. The following contingency table was constructed from a interim release
of a Phase-III trial for the Moderna COVID-19 vaccine in November, 2020.13 The *

Not a case Non-severe case Severe case

Placebo * 79 11
Vaccine * 5 0

cells were not reported, but they are presumably very large because the total number of
participants was about 30,000. The press release claims that the vaccine efficacy is about
1− (5 + 0)/(79 + 11) = 94.5% and the p-vlaue (for no efficacy) is less than 0.0001.

There are two ways to think about the data in contingency tables:

• We observe counts Yjk, j = 1, . . . , J, k = 1, . . . ,K. In the previous example, J = 2
and K = 3.

• The table is an aggregation of individual observations (Ai, Bi), i = 1, . . . , n. In
the previous example, Ai is the treatment received (placebo or vaccine), Bi is the
outcome (not a case, non-severe case, or severe case), and n ≈ 30, 000. The observed
counts are given by

Yjk =
n∑
i=1

1{Ai=j,Bi=k}, j = 1, . . . , J, k = 1, . . . ,K.
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A common question in two-way contingency tables is testing the null hypothesis that
the rows and columns are independent, H0 : Ai ⊥⊥ Bi. In the vaccine trial example, this
amounts to testing the hypothesis that the vaccine has no effect at all.

Suppose (Ai, Bi), i = 1, . . . , n are IID. Let πjk = P(Ai = j, Bi = k), j = 1, . . . , J, k =
1, . . . ,K, so the counts follow a multinomial distribution Y ∼ Multinomial(n,π). The
null hypothesis can be expressed in terms of π as

H0 : πjk = πAj π
B
k , for all j, k,

where πAj =
∑K

k=1 πjk and πBk =
∑J

j=1 πjk are the marginal distributions of A and B. In
the surrogate Poisson model, this can be expressed as

H0 : µjk = µ+π
A
j π

B
k for all j, k,

which is equivalent to the log-linear model

H0 : log µjk = α+ βAj + βBk , for all j, k, (4.14)

This is a submodel of the saturated model that places no restrictions on µjk:

H1 : log µjk = α+ βAj + βBk + βABjk , for all j, k. (4.15)

Therefore, testing independence in contingency tables is equivalent to testing nested
models in Poisson regression.

Notice that (4.14) and (4.15) are overparametrized. For identifiability, it is necessary
to set some levels as the reference. For example, we may set βA1 = βB1 = βAB1k = βABj1 = 0
for all j, k.

Example 4.9. For a 2× 2 table (J = K = 2), the null/independence log-linear model
assumes

logµ =


logµ11

logµ12

logµ21

logµ22

 =


1 0 0
1 0 1
1 1 0
1 1 1


︸ ︷︷ ︸

X0

 α
βA2
βB2

 =


α

α+ βB2
α+ βA2

α+ βA2 + βB2

 ,

and the saturated log-linear model assumes

logµ =


logµ11

logµ12

logµ21

logµ22

 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1


︸ ︷︷ ︸

X


α
βA2
βB2
βAB22

 =


α

α+ βB2
α+ βA2

α+ βA2 + βB2 + βAB22

 .

The degrees of freedom of the sub/independence model is 1+(J−1)+(K−1) = J+K−1
and the degrees of freedom of the saturated model is JK. By Wilks’ theorem, under H0

and as n→∞, the deviance between the two models or equivalently Pearson’s χ2-statistic
converges in distribution to χ2

JK−(J+K−1) = χ2
(J−1)(K−1). This provides an asymptotic

test for the independence hypothesis.
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4.9.2 Three-way contingency tables

The discussion above can be extended to three-way contingency tables, although there
are more independence and conditional independene hypotheses that can be tested.
Individually, the observations come as IID triplets (Ai, Bi, Ci), i = 1, . . . , n, which can be
aggregated by a three-way table:

Yjkl =

n∑
i=1

1{Ai=j,Bi=k,Ci=l}, j = 1, . . . , J, k = 1, . . . ,K, l = 1, . . . , L.

There are several possible models for the joint probability mass πjkl = P(Ai = j, Bi =
k,Ci = l). The first model assumes

H1 : πjkl = πAj π
B
k π

C
l for all j, k, l,

where πAj , π
B
k , π

C
l are the corresponding marginal probabilities (similar conventions are

used below). This is equivalent to assuming

H1 : Ai ⊥⊥ Bi ⊥⊥ Ci.

The second model assumes

H2 : πjkl = πAj π
BC
kl for all j, k, l,

which amounts to the independence

H2 : Ai ⊥⊥ (Bi, Ci).

The third model assumes

H3 : πjkl = πABjk π
BC
kl for all j, k, l.

It can be shown that this implies

P(Ai = j, Ci = l | Bi = k) = P(Ai = j | Bi = k)P(Ci = l | Bi = k). (4.16)

So this model amounts to the conditional independence

H3 : Ai ⊥⊥ Ci | Bi.

Exercise 4.10. Verify (4.16).

The fourth model assumes

H4 : πjkl = πABjk π
BC
kl π

AC
jl .

This model does not imply any independence or conditional independence, but it assumes
that there is no three-way interaction in the joint distribution.

Finally, the fifth and saturated model assumes

H5 : πjkl = πABCjkl ,
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where πABCjkl is completely unrestricted besides the constraints that the marginals need
to sum up to 1. Of course, this model also makes no independence or conditional
independence assumptions.

The five models above for the three-way contingency table are nested and can be tested
using the deviance or Pearson’s χ2 of the corresponding surrogate Poisson models. These
Poisson log-linear models differ in whether certain two-way and three-way interaction
terms are included.

4.9.3 *Graphical models (not covered this year)

With more variables, it is more convenient to represent independence and conditional
independence relationship using a graph.

Consider an undirected graph (V , E) where V = (V1, . . . , Vp) is a discrete random
vector and E ⊆ {V1, . . . , Vp}2 is the edge set. We say the distribution of V factorizes
according to this graph if the probability mass function of V can be written as

P(V = v) =
∏

C ⊆ {V1, . . . , Vp}
(A1, A2) ∈ E for all A1, A2 ∈ C

πC(vC).

Such subset of vertices C is called a complete subgraph or clique. Thus, graphical
factorization means that the distribution can be decomposed according to the cliques in
the graph.

See Figure 4.3 for the graphical models corresponding to the five models for the three-
way contingency table. There is a deep connection between graph theory and conditional
independence: in an undirected graphical model, if the probability distribution factorizes
according to the graph and a subset of variables B “blocks” all paths between two other
non-overlapping subsets A and C, then A ⊥⊥ C | B.14

Notes
1See https://en.wikipedia.org/wiki/Log-normal_distribution#Occurrence_and_applications for more

examples.
2See https://en.wikipedia.org/wiki/Pareto_distribution#Occurrence_and_applications for more

examples.
3This is indeed what summary.glm in R does.
4With non-canonical link functions, one can still carry out an analysis of deviance by Wilks’ theorem,

but the additive relationship (4.7) no longer holds.
5In some texts, the total deviance is simply defined as the difference in the log-likelihood.
6Taken from Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley &

Sons, Figure 4.2.
7In machine learning, this technique is known as the natural gradient method.
8We may need g(µ) to be sufficiently smooth (e.g. twice differentiable) for the asymptotic theory to

go through.
9This is not necessarily a causal effect. See Section 2.4.4.

10One can also use GLMs with other discrete distributions such as the negative binomial. However,
this is beyond the scope of this course.

11See ?family in R.

65

https://en.wikipedia.org/wiki/Log-normal_distribution#Occurrence_and_applications
https://en.wikipedia.org/wiki/Pareto_distribution#Occurrence_and_applications


A

B C

(a) H1 : A ⊥⊥ B ⊥⊥ C.

A

B C

(b) H2 : A ⊥⊥ (B,C).

A

B C

(c) H3 : A ⊥⊥ C | B.

A

B C

(d) H4 and H5: no independence or
conditional independence.

Figure 4.3: Graphical models for three-way contingency tables.

12This is in fact a special instance of a more general result for exponential families. See Brown, L. D.
(1986). Fundamentals of statistical exponential families: With applications in statistical decision theory.
Institute of Mathematical Statistics, Theorem 1.15.

13https://investors.modernatx.com/news-releases/news-release-details/
modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy.

14This is one direction of the famous Hammersley-Clifford theorem.
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Chapter 5

Review and look forward (not covered this year)

5.1 Review

Table 5.1 provides a concise summary of the main definitions and results in this course.
Some other topics we covered are reviewed below.

Model diagnostics

For linear models:

• Leverage of ith observation: Hii, where H = X(XTX)−1XT is the hat matrix.

• Coefficient of determination/Variance explained: R2.

• Check normality: Q-Q plot using standardized residuals

Yi − µ̂i
σ̂
√

1−Hii
.

• Check nonlinearity: residual vs. fitted plot.

• An observation with a large residual is called an outlier, which is particularly
concerning if the leverage is also large. Check by the residual vs. leverage plot.
Cook’s distance is another useful diagnostics:

Di =
‖X(β̂ − β̂(−i))‖2

pσ̂2
=

1

p

Hii

1−Hii
R̃2
i .

• Check heteroskedasticity: residual scale vs. fitted plot.

For generalized linear models, diagnostics are same as above with some minor modifi-
cations:

• Replace the hat matrix by H = W 1/2X(XTWX)−1XTW 1/2 obtained from
iteratively reweighted least squares.
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Distribution of Y MLE & Geometry Statistical inference

Chapter 2

Linear model

1. Normal LM: Y |X ∼ N(Xβ, σ2I);

2. Nonparametric relaxation:

Yi = g(Xi) + εi, εi ⊥⊥Xi.

1. Euclidean: β̂ = arg minβ ‖Y −Xβ‖2;
2. Nested projections:

X = (X0 X1)⇒ PXPX0 = PX0 ;

3. Partial regression:

β̂j = lm(resid(Y ∼X−j) ∼ resid(Xj ∼X−j)).

1. σ̂2 = ‖Y −Xβ̂‖2/(n− p);
2. With normality, use pivor (β̂ − β)/σ̂;

3. Without normality, establish
√
n(β̂ − β)

d→ Normal;

4. Nested models: Use ANOVA/LRT.

Chapter 3

Exponential

family

1. Y ∼ f(y; θ) = eyθ−K(θ)f0(y);

2. Mean-value parametrization:

µ = µ(θ) = K′(θ);

3. Variance V (θ) = µ′(θ) = K′′(θ).

1. MLE: µ̂ = Ȳ ;

2. Deviance extends Euclidean distance:

1. Fisher information:

i(n) = nV (θ), i(n)(µ) = n/V (µ);

2. Central limit theorem:
√
n(θ̂ − θ) d→ N(0, 1/V (θ)).

3. LRT is uniformly most powerful.

Chapter 4

Generalized

linear model

1. Yi |Xi ∼ e{yiθi−K(θi)}/σ2
i f0(yi;σ

2
i );

2. Linkage g(µi) = ηi = XT
i β;

3. Canonical link: ηi = θi;

4. σ2
i = wi︸︷︷︸

known

σ2.︸︷︷︸
over/under-dispersion

1. MLE: β̂ = arg minβD+(Y ,µ(β)).

2. Score equation:∑n
i=1

(Yi−µi)Xi
Var(Yi)g′(µi)

= 0;

(Canonical form: XT {Y − µ(β)} = 0.)

3. Deviance additivity (for canonical link):

D+(Y , µ̂0) = D+(Y , µ̂) +D+(µ̂, µ̂0).

1. Fisher information:

I(β, σ2) =

(
XTWX/σ2 0

0 ∗

)
,

where W = diag(wiV (µi){g′(µi)}2)−1;

2. Asymptotic distribution:

β̂
·∼ N(β, σ2(XTWX)−1);

3. σ̂2 =
∑n
i=1(Yi − µ̂i)2/{(n− p)V (µ̂i)};

4. Nested models: Analysis of deviance/LRT

D+(Y , µ̂)−D+(Y , µ̂0)
d→ χ2

p−p0 .

Table 5.1: A concise summary of this course.
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• Replace residual with one of the following (and standardize by dividing
√

1−Hii

as before):

– Pearson’s residual:
Yiµ̂i

σ̂
√
wiV (µ̂i)

;

– Deviance residual:
sign(Yi − µ̂i)

√
D(Yi, µ̂i).

Model selection

Why model selection?

• Select a simpler and more interpretable model.

• Better bias-variance tradeoff.

See Table 5.2 for a summary of model selection criteria.

Linear model Generalized linear model

1. Cp = ‖Y − µ̂‖2 + 2 · df · σ2 is an
unbiased estimator of mean squared pre-
diction error.

Unavailable

2. Cross-validation: CV =
∑n

i=1(Yi −
µ̂−i)

2 =
∑n

i=1
(Yi−µ̂i)2
(1−Hii)2 .

Replace squared error with deviance.

3. AIC = −2l(β̂, σ̂2) + 2df. Same.

4. BIC = −2l(β̂, σ̂2) + df log n. Same.

Table 5.2: Criteria for model selection.

Algorithmically, model selection or regularization can be achieved by the best subset
method, greedy (forward or backward) stepwise selection method, or adding penalty terms
to the likelihood function. Ignoring model selection may lead to biased post-selection
inference.

Asymptotic theory for likelihood inference

• The log-likelihood function is given by l(β;Y ) =
∑n

i=1 log f(Yi |Xi;βi).

• Score function: U(β;Y ) = ∇l(β;Y ).

• Fisher information: I(β) = Varβ(U(β;Y )) = Eβ{−∇2l(β;Y )}.
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• MLE: β̂ = arg maxβ l(β;Y ).

• Under regularity conditions, β̂ ·∼ N(β, I(β)−1). This leads to asymptotic confidence
intervals and hypothesis tests.

• LRT: Suppose β =

(
β0

β1

)
and interested in testing H0 : β1 = 0 vs. H1 : β1 6= 0.

Wilks’ theorem:

2

{
sup

H0∪H1

l(β;Y )− sup
H0

l(β;Y )

}
d→ χ2

dim(θ1).

Other topics

• Heteroskedasticity-robust standard error for linear models.

• Bias-variance tradeoff in linear models.

• Simpson’s paradox.

• Box-Cox transformation.

• Computation for GLMs: Newton-Raphson, Fisher scoring, and iteratively reweighted
least squares.

• Binomial regression: common link functions and latent variable interpretations.

• Poisson log-linear regression, multinomial model, and the Poisson trick.

• Contingency tables: parametrizing Poisson regression for independence testing.

5.2 Look forward

• Mixed effect models: Assume some elements of (high-dimensional) β are random.
(Part III, Statistical Learning in Practice.)

• Generalized additive models and kernel regression: Replace XT
i β by some basis

function expansion. (Part III, Modern Statistical Methods.)

• Trees, random forests, and boosting: Replace XT
i β by a (complicated) step func-

tion. (Part II, Mathematics of Machine Learning ; Part III, Statistical Learning in
Practice.)

• Neural networks: Replace XT
i β by a composition of GLMs. (Part II, Mathematics

of Machine Learning ; Part III, Statistical Learning in Practice.)

• Regularization. (Part III, Modern Statistical Methods.)

• Graphical models. (Part III, Bayesian Statistics, Causal Inference.)

• Distinguishing correlation from causation. (Part III, Causal Inference.)
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