
STATISTICAL MODELLING Part IIC, Michaelmas 2021
Practical 6: Binomial regression By courtesy of Dr. S. A. Bacallado and Dr. R. Shah

Binary responses

A dataset from Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression
concerns factors affecting the development of myopia (short-sightedness) in children. Our response is
binary, 1 indicating that the child developed myopia within the period of study, and 0 indicating they
did not. The explanatory variables available to us are the gender of the child, the myopia status of
each of their parents, and the number of hours per week spent by the child outside school on various
activities: sport, reading for pleasure, playing computer games, studying for school assignments and
watching television. Download the data from the course webpage:

> path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> Myopia <- read.csv(file.path(path, "Myopia.csv"))

> Myopia[1:3, ]

> attach(Myopia)

To perform logistic regression (i.e. regression with binomial responses and the logit link function, so the
canonical link in this case), or to fit any generalised linear model, we can use the glm function (as usual
with a new function, do ?glm to find out more). This works rather like the lm in terms of how arguments
must be specified and also in terms of procedures for accessing details of the fitted model. We may fit a
binomial logistic regression model to our data with myopic as the response with the following code:

> MyopiaLogReg1 <- glm(myopic ~ ., data = Myopia, family = binomial)

> summary(MyopiaLogReg1)

We have to specify the response distribution which is (scaled) binomial. The link is taken as the canonical
(logistic) link unless we specify otherwise. We see the output from summary applied to a glm object is very
similar to that obtained when it is applied to an lm object. In the former case, the function summary.glm

is called (in the latter case it is summary.lm that is used). You can find out more about summary.glm

by accessing the help with ?summary.glm.
Let us understand the output produced. Why are there no coefficients estimates for mumMypoicNo?
The standard errors are given by the square roots of the diagonal entries of the inverse of the Fisher
information matrix evaluated at the maximum likelihood estimator. Recall that the m.l.e. β̂ satisfies
β̂ ∼ ANp(β, i−1(β̂)). The z values are then

β̂j√
{i−1(β̂)}jj

.

Under the null hypothesis that βj = 0, this should approximately have a N(0, 1) distribution. The final
column of the output gives the (approximate) p-values for each of the hypotheses βj = 0 for j = 1, . . . , p,
using this approximation. Which variables seem to be statistically significant?
At the bottom of the output, we are told the dispersion parameter σ2 for the binomial family is taken to
be 1, as we expect. In lectures, we will see that the residual sum of squares in the normal linear model
can be generalised in GLMs by a statistic called deviance (the residuals generalise in several ways, one of
which are called deviance residuals). Then, the null deviance is the deviance of an intercept only model,
and the residual deviance is what we call the deviance of a GLM in lectures.
To test the null hypothesis that the intercept only model is correct, against the alternative of the model
we have fitted, we can perform a likelihood ratio test with the following:

> pchisq(480.08-439.60, df = 617-609, lower.tail = FALSE)

[1] 2.607117e-06

Should we reject the null hypothesis?
Rather than performing the test manually, we can let R do the work using the anova function. We have
already seen it in action for lm objects. With glm objects it performs what is sometimes known as an
analysis of deviance.
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> MyopiaLogReg0 <- glm(myopic ~ 1, family = binomial)

> anova(MyopiaLogReg0, MyopiaLogReg1, test = "LR")

Analysis of Deviance Table

Model 1: myopic ~ 1

Model 2: myopic ~ gender + sportHR + readHR + compHR + studyHR + TVHR +

mumMyopic + dadMyopic

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 617 480.08

2 609 439.60 8 40.478 2.61e-06 ***

In contrast to the lm case, here we need to specify that we want to perform a likelihood ratio test (test
= "LR") in order for the final column containing the p-value to be given. Make sure you understand
where the entries in the table above are coming from.
Let us also fit a model that additionally includes interactions between the categorical variables mumMyopic,
dadMyopic. We do this with the following:

> MyopiaLogReg2 <- glm(myopic ~ . + mumMyopic:dadMyopic, data = Myopia, family = binomial)

> summary(MyopiaLogReg2)

Exercises

1. Test the null hypothesis that the model in MyopiaLogReg1 is correct against the more complex
alternative model MyopiaLogReg2. Which model should you prefer?

2. Now fit a model MyopiaLogReg3 with all the variables as in MyopiaLogReg1 but without the compHR
and TVHR variables. Use this to test whether hours spent watching TV and hours spent playing
computer games are collectively significant.

3. Now we wish to test whether the coefficients for mumMyopic and dadMyopic are the same in the
model MyopiaLogReg3 (i.e. we want to see whether the mother’s or the father’s myopia contributes
more to predicting that their child is myopic). To formally test this hypothesis, we should create
a variable

> mumPlusdadMyopic <- (dadMyopic == "Yes") + (mumMyopic == "Yes")

This will have zeroes when neither parents are myopic, a 1 when exactly one parent is myopic, and
2 when both are myopic. Fit a new model such that the z-test for the coefficient of mumMyopic

answers this question.

4. Fit a model in which the effects of each parent having myopia are equal, but there may be an
interaction, i.e. the effect of both parents having myopia is not necessarily the sum of the effect of
each parent having myopia.
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Binomial responses with multiple trials

Download the Smoking data from the course webpage with

> detach(Myopia)

> Smoking <- read.csv(paste(file_path, "Smoking.csv", sep =""))

> attach(Smoking)

In 1972–1974 a survey was taken; twenty years later a follow-up study was conducted, and it was
determined if each interviewee was still alive. Among the information obtained originally was whether a
person was a smoker or not and their age; the latter was divided into seven categories represented by the
Age.group variable which gives the mid-points of these categories. Thus, the interviewees were divided
into 14 groups, the information of each corresponding to a data point. Let us begin by plotting the data.

> total <- Survived + Died

> propDied <- Died / total

> plot(propDied[Smoker == "Yes"] ~ Age.group[Smoker == "Yes"],

+ xlab = "Age group", ylab = "Proportion died")

> points(propDied[Smoker == "No"] ~ Age.group[Smoker == "No"], pch = 4)

We can also plot the log odds for the proportion who died in each of the age groups.

> logit <- function(p) log(p/(1-p))

> plot(logit(propDied)[Smoker == "Yes"] ~ Age.group[Smoker == "Yes"],

+ xlab = "Age group", ylab = "Empirical logit")

> points(logit(propDied)[Smoker == "No"] ~ Age.group[Smoker == "No"], pch = 4)

If a logistic regression model taking as response the proportion of interviewees who died and as explana-
tory variables the age group and smoking status is correct, we should see that the points fall close to
two parallel lines. If there was an interaction between smoking status and age, we would expect two
non-parallel lines (why?). The following performs a binomial regression with logit link:

> SmokingLogReg1 <- glm(propDied ~ Age.group + Smoker, family = binomial,

+ weights = total)

> summary(SmokingLogReg1)

Note we now must specify the weights for the GLM. Recalling that the dispersion parameter of the ith

observation in a GLM is σ2
i = aiσ

2, the ith weight is ai
−1, which is ni when the response is n−1

i Bin(ni, µi).
R uses these weights to form the Wm matrix used in the (iterated) weighted least squares algorithm.
From the final lines of the summary output, we can easily see that we reject the null hypothesis that the
intercept only model is correct, against the alternative of the model we have fitted (how can we see this?
Recall that E(Z) = 2 and sd(Z) = 2 when Z ∼ χ2

2).

Exercise: Estimate the multiplicative change in odds of dying for an increase in age of one year.

There is another way to test our model in which we now consider it as the null. In lectures we see that
when the dispersion parameter σ2 is 1 (as in our case), the deviance is the likelihood ratio statistic for
testing the null hypothesis that our model is correct against the saturated model (i.e. the model with as
many parameters as observations, n, or, equivalently, with the µi unrestricted, so µi = Yi). Therefore,
applying the results we have seen naively, we would guess that the deviance is approximately distributed
as a χ2

n−p (n− p = 11) distribution if the model is correct. There is a catch: our results hold as n→∞,
so this cannot be true as the limiting distribution cannot depend on n! However, when the ni are large
(like here), so-called small dispersion asymptotics justify this approximation (although for n fixed). The
large value of the deviance of 32.572 compared to E(Z) = 11 (and accounting for sd(Z) =

√
22 ≈ 4.7)

when Z ∼ χ2
11 suggests that the model fit is probably not too good. Indeed

> pchisq(32.572, df = 11, lower.tail = FALSE)

[1] 0.0006170603

We can try to improve the model by perhaps introducing a quadratic effect of age, or treating age as a
category or factor.
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> SmokingLogReg2 <- glm(propDied ~ Age.group + I(Age.group^2) + Smoker, family = binomial,

+ weights = total)

> SmokingLogReg3 <- glm(propDied ~ factor(Age.group) + Smoker, family = binomial,

+ weights = total)

Note the I is needed in the first model fit above so that the ^ operator is treated in the usual way, and
it simply squares the age. Also try experimenting with other link functions:

> SmokingLogReg4 <- glm(propDied ~ Age.group + Smoker, family = binomial(link=probit),

+ weights = total)

> SmokingLogReg5 <- glm(propDied ~ Age.group + Smoker, family = binomial(link=cloglog),

+ weights = total)
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