
STATISTICAL MODELLING Part IIC / Michaelmas 2022
Example Sheet 2 (of 4)

In all the questions that follow, X is an n by p design matrix with full column rank and H
is the orthogonal projection on to the column space of X. We will assume that n − p ≥ 2.
The vector Y ∈ Rn will be a vector of responses and we will define β̂ := (XTX)−1XTY ,
σ̂2 := ‖(I −H)Y ‖2/(n− p) and ε̂ := Y −Xβ̂.

1. Consider a linear model Y = Xβ + ε. Now suppose we reparametrise by letting θ = Aβ
where A ∈ Rp×p is invertible, so now we have Y = XA−1θ + ε (with XA−1 the new
design matrix). Show that the fitted values and predictions based on applying OLS in the
reparametrised model will be identical to those in the original model.

2. Show that the solution to the ridge regression problem

β̂λ = arg min
β
‖Y −Xβ‖2 + λ‖β‖2

is given by β̂λ = (XTX + λI)−1XTY . Try to prove this result using two methods: (1)
Matrix derivatives; (2) Treating ridge regression as solving the least squares problem for
the following expanded design matrix and responses:

X̃ =

(
X√
λIp

)
, Ỹ =

(
Y
0

)
.

3. Suppose Y ∼ N(µ, σ2I) where µ ∈ Rn is unknown. Consider any linear estimator of the
form µ̂ = MY where M = M(X) ∈ Rn×n can depend on X. Show that

CM = ‖Y − µ̂‖2 + 2σ2 · trace(M)

is, condition on X, an unbiased estimator of the mean squared prediction error

E(‖Y ∗ − µ̂‖2 | X)

where Y ∗ = µ + ε∗, ε∗ ∼ N(0, σ2I) is independent of Y . Explain why this reduces to
Mallow’s Cp when µ̂ = Xβ̂.

4. Show that the AIC in a normal linear model is

n{1 + log(2πσ̂2MLE)}+ 2(p+ 1),

where σ̂2MLE = ‖(I−H)Y ‖2/n is the maximum likelihood estimator of σ2. When the noise
variance σ2 is known, re-derive the AIC and show that it is equivalent to Mallows’ Cp.

5. Suppose the design matrix X consists of just a single variable and a column of 1’s rep-
resenting an intercept term (as the first column). Show that the leverage, Hii, of the ith

observation satisfies

Hii =
1

n
+

(Xi2 − X̄2)
2∑n

k=1(Xk2 − X̄2)2
,

where X̄2 := 1
n

∑n
k=1Xk2. Describe what kind of observations may have a large leverage.

Hint: Why can we assume that the ith component of the second column is Xi2− X̄2 rather
than Xi2?

1



6. Return to the brain sizes data studied in practical 3.

> path <- "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> BrainSize <- read.csv(file.path(path, "BrainSize.csv"))

> attach(BrainSize)

> BrainSizeLM2 <- lm(PIQ ~ MRI_Count + Height)

In this question we will plot a confidence ellipse for the coefficients for brain size and
height. To do this, first install the ellipse package using

> install.packages("ellipse")

and select a mirror of your choice (if prompted). Next load the package with library(ellipse).
Look at ?ellipse.lm and plot a 95% confidence ellipse for the coefficients with

> plot(ellipse(BrainSizeLM2, c(2, 3)), type = "l")

Using abline add to the plot the end points of 95% confidence intervals for each of the
coefficients in red, and also add in blue the sides of the confidence rectangle in question
6 of Example sheet 1. If you are using Rstudio, you can output a pdf of your plot by
clicking on “Export” above the plot window. Now look at the correlation between the
estimates of these coefficients using

> summary(BrainSizeLM2, correlation = TRUE)$correlation

and compare this to the correlation between the corresponding variables

> cor(Height, MRI_Count)

What do you notice? Explain.

7. One of the data sets in the Modern Applied Statistics in S-Plus (MASS) library is hills.
You can find out about the data with

> library(MASS)

> ?hills

> pairs(hills)

The data contain one known error in the winning time. Identify this error (think carefully!)
and subtract an hour from the winning time. Hint: You can examine the plots and identify
observations for which the response and covariates satisfy certain inequalities e.g.

> subset(hills, time > 50 & dist < 20)

Can you see any reason why we might want to consider taking logarithms of the variables?
Explain why we should include an intercept term if we do choose to take logarithms.
Explore at least two linear models for the transformed data, and give estimates with
standard errors for your preferred model. Predict the record time for a hypothetical 5.3
mile race with a 1100ft climb, give a 95% prediction interval for both models and explain
how and why they differ.
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8. Let Y be a random variable with density f(y; θ) for y ∈ Y ⊆ Rn and some θ ∈ Θ ⊆ Rd,
and write `(θ;Y ) and U(θ;Y ) for the corresponding log-likelihood and score functions.
Assume that the order of differentiation with respect to a component of θ and integration
over Y may be interchanged where necessary. Show that, for r, s = 1, . . . , d,

Covθ{Ur(θ;Y ), Us(θ;Y )} = −Eθ
{ ∂2

∂θr∂θs
`(θ;Y )

}
.

9. In the normal linear model, find the Fisher information matrix for the parameters (β, σ2).
Assume XTX/n → Σ. Use the asymptotic theory of the maximum likelihood estimator
to obtain the asymptotic covariance matrix of (β̂, σ̂2) and show that it is indeed the limit
of the exact covariance matrix of (β̂, σ̂2).

10. (a) Let A be a p × p non-singular matrix and let b ∈ Rp. Prove that if vTA−1u 6= −1,
then A+ uvT is invertible with inverse given by the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

(b) Consider a linear model Y = Xβ + ε with E(ε | X) = 0 and Var(ε) = σ2I. Let XT
i

denote the ith row of X. Further, let X(−i) denote the (n − 1) × p matrix obtained

by deleting the ith row of X, and suppose that this matrix has full column rank
and that the leverage score of the ith observation, Hii, is less than 1. Let β̂(−i) be

the OLS estimator of β when the ith observation has been removed. Prove that the
difference

Var(β̂(−i))−Var(β̂)

is positive semi-definite. Hint: Use XTX =
∑n

i=1 xix
T
i and Hii = XT

i (XTX)−1Xi.

(c) Show that

β̂ − β̂(−i) =
1

1−Hii
(XTX)−1Xi(Yi −XT

i β̂), (1)

and use this to deduce the identity

µ̂i = HiiYi + (1−Hii)µ̂(−i), (2)

where µ̂i = XT
i β̂ and µ̂(−i) = XT

i β̂(−i).

(d) Show that Cook’s distance Di of the observation (Yi, Xi) can be expressed as

Di :=
‖X(β̂ − β̂(−i))‖2

pσ̂2
=

1

p

( Hii

1−Hii

)
η̂2i ,

where η̂i = (Yi −XT
i β̂)/(σ̂

√
1−Hii) is the ith studentised fitted residual.

11. (a) (Continuation) The externally studentised residual of the ith observation may be
defined as

η̃i :=
ε̂i

σ̂(−i)
√

1−Hii
,

where σ̂(−i) is the equivalent of σ̂ but calculated omitting the ith observation, so

σ̂2(−i) =
1

n− p− 1
‖Y(−i) −X(−i)β̂(−i)‖2,
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where Y(−i) is the response Y without the ith component. Show that η̃i ∼ tn−p−1

in the normal linear model, that is, if ε | X ∼ N(0, σ2I). Hint: Use (2). How can
we construct a hypothesis test based on η̃i to test whether the ith observation is an
outlier?

(b) Another dataset in the MASS package is mammals which gives the body and brain
masses of 68 mammals. Log transform both variables and then fit a linear model
with log(brain) as the response. Then apply your hypothesis test to check whether
the observation corresponding to humans is an outlier. The function rstudent that
calculates externally studentised residuals may be of help. What is the p-value you
obtain? (You can also discuss whether a one- or two-sided t-test is most appropriate
here).
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