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Welcome

Main course webpage:
http://www.statslab.cam.ac.uk/~qz280/teaching/causal-2023/.

Moodle page is not regularly maintained but will be used for announcements:
https://www.vle.cam.ac.uk/user/index.php?id=252866.

Example class:
▶ Location: MR11.
▶ Time: Thursday at 3:30pm on 2nd Nov, 23th Nov, 18th Jan.
▶ Instructor: Jieru (Hera) Shi.

Past lecture notes and literature can be found on course webpage.
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What is causal inference?

Infer causal relationships from experimental or observational data.

This field has come under spotlight after several pioneers won major awards
in recent years:

▶ Judea Pearl (Turing Award, 2011);
▶ Joshua Angrist & Guido Imbens (Nobel Memorial Prize in Economics, 2021);
▶ James Robins, Miguel Hernán, Thomas Richardson, Andrea Rotnitzky, & Eric

Tchetgen Tchetgen (Rousseeuw Prize for Statistics, 2022).
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Why is causal inference important?

1 Ubiquitous in many scientific disciplines:
▶ Medicine & biological sciences;
▶ Economics, psychology, & social sciences;
▶ Computer science & artificial intelligence;
▶ Policy & business decisions.

2 Connects mathematical theory with the real world:
▶ Classical statistics: models → inference.
▶ Machine learning: data → prediction.1

▶ Causal inference: models and inference ↔ reality.

Useful quote by George Barnard2: “in statistical inference, as distinct from
mathematical inference, there is a world of difference between the two statements
”X is true” and ”X is known to be true”.”

1Recommended reading: “Statistical Modeling: The Two Cultures” by Leo Breiman, Statistical
Science, 2001. See also the recent reprint and discussion in Observational Studies.

2Paraphrased, see https://artowen.su.domains/links/ for the original quote.
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Motivating example 1: Smoking and lung cancer

By the mid-1940s, it had been observed that lung cancer cases had tripled over
the previous three decades. Possible explanations included

Changes in air quality due to the introduction of automobile;

Widespread expansion of paved roads that contained many carcinogens;

Aging of the population;

The advent of radiography;

Better clinical awareness of lung cancer and better diagnostic methods;

Smoking.
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Advertisement for cigarette smoking (1950)
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Correlation = causation?

A series of observational studies since 1950 reported overwhelmingly strong
association between smoking and lung cancer.

Some prominent statisticians including R A Fisher objected to the idea that
this implies that smoking causes lung cancer, but no compelling competing
hypothesis could be found.

This eventual led to one of the biggest public health intervention to reduce
tobacco consumption.
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Yule-Simpson paradox in linear regression analysis
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Motivating example 2: Policy evaluation

Do job training programmes increase the participants’ earnings?

Do gun control policies actually decrease gun homicides?

Do mask mandates decrease the chance of getting COVID?

Do new web designs increase a company’s revenue?
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Two more philosophical points

Cycle of scientific research (George Box)

hypothesis → design → data collection → analysis → hypothesis → . . .

Three principles of causal inference

Randomization ⊂ Identification ⊂ Elaboration
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Randomized experiments: Introduction

Originated from Fisher’s seminal work on agricultural experiments in
1920-30s.

Remains the “gold standard” for causal inference.

Example: mRNA vaccines for COVID-19.

Notation

Upper-case (lower-case) letters: random (fixed) quantities;

Subscript: experimental unit.

[n] = {1, . . . , n};

Problem setup

See blackboard:

Variables: covariates, outcome, treatment, exposure.
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Design of experiments

The treatment assignment mechanism or randomization scheme refers to the
probability distribution

π(z | x) = P(Z = z | X = x).

Examples

See blackboard:

1 Bernoulli trials.

2 Sampling without replacement.

3 Randomized complete block design.
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Towards a formal theory

“Implicit” causal inference

Often, experimental data are analyzed using linear regression:

Yi = α+ βAi + γTXi + ϵi .

Does β ̸= 0 mean there is a causal effect?

Or E[Y | A = 1] ̸= E[Y | A = 0]?

Formal theory: Neyman-Rubin causal model

See blackboard:

Neyman’s potential outcome model.

Consistency of potential outcomes.

Fundamental problem of causal inference.a

Validity of exposure mapping.

aRecommended reading: “Statistics and causal inference” by Paul Holland in JASA, 1986.
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Example: Interference

We will almost always assume the identity exposure mapping is valid.

But this may not be true in many problems: vaccine studies, experiments on
social networks (e.g. Instagram).

See blackboard: n units interacting via a network.
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Example: Lady tasting tea

Description of the experiment

A young lady claimed that she is able to tell whether the tea or the milk was
added first to a cup.
The experiment provides the lady with eight randomly ordered cups of tea—four
prepared by pouring milk and then tea, four by pouring tea and then milk. The
lady attempts to select the four cups prepared by one method or the other, and
may compare cups directly against each other as desired. The method employed
in the experiment is fully disclosed to the lady.

See blackboard:

Potential outcomes schedule.

2× 2 contigency table.

Fisher’s exact test.
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Randomization inference: General tests

Randomization provides the “reasoned basis” for Fisher’s exact test.

See blackboard:

Exogeneity of randomization.

Fisher’s sharp null ⇒ imputation of p. o. schedule W = (Y (z))z∈Z .

Randomization p-value (p for probability):

P = P(T (Z ′,X ,W ) ≤ T (Z ,X ,W ) | Z ,X ,W )

=
∑
z

1{T (z,X ,W )≤T (Z ,X ,W )}π(z | x).

Fisher’s exact test: Neyman-Rubin model, A = Y = {0, 1}, sampling without
replacement.

Randomization test vs. permutation test vs. Monte-Carlo approximation.
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Randomization inference: Estimation

Setting: Neyman-Rubin model, A = {0, 1}, sampling without replacement.

Notation

Sample average treatment effect: βn =
1

n

n∑
i=1

Yi (1)− Yi (0).

Difference-in-means estimator: β̂DIM = Ȳ1 − Ȳ0.

Denote Ȳ (a) =
1

n

n∑
i=1

Yi (a), S
2(a) =

1

n − 1

n∑
i=1

{Yi (a)− Ȳ (a)}2,

S2(0, 1) =
1

n − 1

n∑
i=1

{Yi (1)− Yi (0)− βn}2.

See blackboard:

Mean and variance of the randomization distribution of β̂DIM.

Variance estimator and finite-sample CLT.
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Randomization inference: F -test

Setting: Neyman-Rubin model, A = {0, 1, . . . , k − 1}.

Normal linear model: Yi =
k−1∑
j=0

µj1{Ai=j} + ϵi , ϵi
i.i.d.∼ N(0, σ2).

OLS: µ̂j = Ȳj =
1

Nj

n∑
i=1

Yi1{Ai=j}, where Nj =
n∑

i=1

1{Ai=j}.

ANOVA: SA =
n∑

i=1

(µ̂Ai − Ȳ )2, SE =
n∑

i=1

(Yi − µ̂Ai )
2. Then under

H0 : µ0 = · · · = µk−1, we have

SA/σ
2 ∼ χ2

k−1, SE/σ
2 ∼ χ2

n−k

⇒E(SA)
E(SE )

=
k − 1

n − k
, F =

SA/(k − 1)

SE/(n − k)
∼ Fk−1,n−k .

See blackboard:

Randomization distribution of SA and SE .
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Repeated sampling

Setting: Neyman-Rubin model, A = {0, 1}, (Xi ,Ai , (Yi (a))a∈A) are i.i.d.

Simplifies mathematical calculations.

Usually gives good approximations to sampling without replacement.

Notation: (A,X ,Y ) for a generic random variable.

See blackboard:

Positivity/overlap assumption.

Causal identification in randomized experiments.

OR and IPW estimators of the average treatment effect (ATE).
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M-estimation

Suppose Di
i.i.d.∼ P, i = 1, . . . , n.

An m-estimator of θ = θ(P) can be obtained by minimizing a loss function ℓ:

θ̂ = argmin
θ

1

n

n∑
i=1

ℓ(θ,Di ).

Example: maxmimum likelihood estimator.

Denote θ0 = argmin
θ

E[ℓ(θ;D)] and ψ(θ,D) =
∂

∂θ
ℓ(θ,D).

See blackboard:

Taylor expansion for
1

n

n∑
i=1

ψ(θ̂,Di ) = 0 at θ0.

Asymptotic distribution of θ̂.

Special case: linear regression with heteroscedastic noise.
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Regression adjustment

Further assume A ⊥⊥ X (simple Bernoulli trial) and E[X ] = 0.

Three OR estimators of the ATE:

(α̂1, β̂1) = argmin
α,β

1

n

n∑
i=1

(Yi − α− βAi )
2,

(α̂2, β̂2, γ̂2) = argmin
α,β,γ

1

n

n∑
i=1

(Yi − α− βAi − γXi )
2,

(α̂3, β̂3, γ̂3, δ̂3) = argmin
α,β,γ,δ

1

n

n∑
i=1

(Yi − α− βAi − γXi − δAiXi )
2.

See blackboard:

Asymptotic distribution of β̂1, β̂2, β̂3: all unbiased, β̂3 is the most efficient.

What happens if E[X ] ̸= 0?

Qingyuan Zhao (University of Cambridge) Causal Inference MT2023 22 / 79



Randomization experiments: Different paradigms

Randomization
test

Neyman’s method Regression

Population Finite Finite Super-population

Randomness Only A Only A A,X ,Y

Point estimator Hodges-Lehmann
(example sheet)

Difference-in-
means

Least squares

Inference Exact Exact variance for-
mula, conservative
& asymptotic infer-
ence

Asymptotic

Covariate adjust-
ment

Possible Possible Yes
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Introduction to linear SEMs
Linear structural equation models (SEMs) were first developed by Sewall
Wright around 1920 to study the heredity of guinea pigs.3

It is a precursor of the general theory of (causal) graphical models developed
since 1980/90s and remains widely used in practice.

3Interestingly, Fisher’s work on randomized experiments are also very much related to his work on
genetics; see Tudball, Davey Smith, and Zhao, “Almost exact Mendelian randomization”,
arXiv:2208.14035.
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Graph basics

We will be primarily interested in using acyclic directed mixed graphs (ADMGs).

G = (V,D,B): finite vertex set V, directed edges D ⊆ V ×V, and bidirected
edges B ⊆ V ×V.
A graphical model means a bijection from V to a collection of random
variables {V1, . . . ,Vp}, usually either j 7→ Vj or Vj 7→ Vj (we will use both).

Write (Vj ,Vk) ∈ D as Vj → Vk , representing direct causal effect.

Write (Vj ,Vk) ∈ B as Vj ↔ Vk , representing hidden common causes.

We say G is acyclic if it contains no directed cycle like V1 → · · · → Vl → V1.

A walk on G is a sequence of adjacent edges of any type or orientation.

A path is a walk without repeated vertices.
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Graph basics (cont.)

Collider
A key concept in probabilistic graphical models is collider—colliding
arrowheads on a walk like → Vj ←, → Vj ↔, ↔ Vj ← or ↔ Vj ↔.

A walk without colliders will be called an arc and denoted by a squiggly line
( ), with matching end-point arrowheads.

Familial terminology

Walk notation Vj is a ... of Vk Familial notation

Vj → Vk parent Vj ∈ pa(Vk)
Vj ← Vk child Vj ∈ ch(Vk)
Vj Vk ancestor Vj ∈ an(Vk)
Vj Vk descendant Vj ∈ de(Vk)

We will often consider directed acyclic graphs (DAGs), which are ADMGs
with no bidirected edges.
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Linear structural equation models
We say a random vector V satisfies a linear structural equation model (SEM) with
respect to an ADMG G = (V = [p],D,B) and parameters (α,B,Λ) if V solves

V = α+ BTV + E , (1)

α ∈ R| V | is the intercept;

B = (βjk : j , k ∈ V) is a weighted adjancency matrix of (V,D);
E is a random vector with mean 0 and covariance matrix Λ = (λjk : j , k ∈ V)
that is positive semidefinite and a weighted adjancency matrix of (V,B)

Structural?
The above definition is incomplete.

“Structural” (aka “causal”) means that these equations “still hold” if we set
VJ to vJ in an intervention/experiment.

See blackboard:

Example.

Definition of total causal effect in linear SEMs.
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Path analysis

In a linear SEM, any edge h is associated with a coefficient:

σ(h) =

{
βjj′ , if h = j → j ′,

λjj′ , if h = j ↔ j ′.

For any walk π = h1 · · · · · hq, define

σ(π) =


1, if q = 0 (i.e. π is empty),
q∏

m=1

σ(hm), if q ≥ 1.

Convention: · for concatenation; + for disjoint union (of sets of walks).

See blackboard:

Trek rule: Cov(V ) = σ(W (V
t
V));

(Unconditional) m-connected walks/paths.

Wright’s path analysis: if V is standardized so that var(Vj) = 1 for all j ,
then cov(Vj ,Vk) = σ(P(j k)) for all j , k .
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Two examples

Find Var(A), Var(Y ), Cov(A,Y ), and the causal effect of A on Y .

A Y
βAY

λAY

λAA λYY

X

A M Y
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Correlation versus causation

For the rest of this course, we will maintain the following assumptions:

The causal diagram G is acyclic;

All vertices of G has bidirected self-loops (which will be omitted).

Suppose further that V is standardized: Var(Vj = 1) for all j . Then

Causal effect of Vj on Vk = σ(P(j k)),

Cov(Vj ,Vk) = σ(P(j k)).

See blackboard: Discussion on three examples:

Confounder: A← X → Y ;

Mediator: A→ M → Y ;

Collider: A→ C ← Y .
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Partial correlation

There’s much interest in conditional independence, a notion of irrelevance.

In linear models, this is usually measured by partial correlation.

Consider the partition V = (V1,V2,V3). Let

Cov(V ) = Σ =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 , Σ−1 = Ω =

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 .

The partial correlation of V1 and V2 given V3 is defined as

Cor(V1,V2 | V3) = Cor(V1 −Σ13Σ
−1
33 V3,V2 −Σ23Σ

−1
33 V3)

= − Ω12√
Ω11Ω22

.

When V is multivariate normal, this suggests that V1 ⊥⊥ V2 | V3 iff Ω12 = 0.
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Roadmap

Suppose V follows a linear SEM w.r.t. an ADMG G, and {j}, {k},L are disjoint
subsets of V = [p].

Central question

When can we use the graph G to conclude that Cor(Vj ,Vk | VL) = 0?

Let Ṽ = {j , k ,L}, and U = V \Ṽ.

Solution

1 Understand the “projection graph” G̃ that describes Ṽ = (Vj ,Vk ,VL).

2 Understand how Ω̃ = (Cov(Ṽ ))−1 relates to G̃.
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Marginalization and latent projection
Let Σ be the covariance matrix of V = (Ṽ ,U). Then

Σ̃ = (Σ)Ṽ,Ṽ = ((I − B)−TΛ(I − B)−1)Ṽ,Ṽ .

Useful formula for block matrix inversion:

A =

(
E F
G H

)
, A−1 =

(
S−1 −S−1FH−1

−H−1GS−1 H−1 + H−1GS−1FH−1

)
,

where S = E − FH−1G is the Schur complement.

See blackboard:

Block matrix inversion for I − B.
Expressing Σ̃ using treks in the latent projection graph G̃ with vertex set Ṽ
and the following edges:

a

→←↔
 b [G̃] ⇐⇒ a


via U

via U

via U

 b [G], for all a, b ∈ Ṽ.

Corollary: Latent projection preserves and .
Example.
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A graphical criterion for conditional independence

Now consider the precision matrix Ω̃ = Σ̃−1 = (I − B̃)Λ̃−1(I − B̃)T .

Notation: ∗ is a wildcard character meaning any number of colliders.

See blackboard:

Definitions: m∗-connected (walk) and confounding.

A simple graphical criterion for unconfoundedness:

j ̸ ∗ k | L [G] ⇔ j↮∗ ↔ k [G̃] ⇒ (Λ̃−1)jk = 0.

m-separation as a graphical criterion for conditional independence:

j ̸ ∗ k | L [G] ⇔ j ̸ ∗ k [G̃]

⇓
(Ω̃)jk = 0 ⇔ Cor(Vj ,Vk | VL) = 0.

Comments on completeness.

Definition: m-connected (path).
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Examples

A M

B

Y

C D

Is the following true?

1 A ̸ Y .

2 A ̸ ∗ Y | B.
3 A ̸ ∗ Y | B,M.

Another example: Open https://www.dagitty.net/dags.html, then load
Shrier & Platt, 2008 under the Examples menu.
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Identifiability problems in linear SEMs

Given a graph G, the trek rule/Wright’s path analysis defines a map

(B,Λ) 7→ Σ = Cov(V ).

The general identifiability problem

Under what graphical conditions is this map invertible?

There are different notions of invertibility.

See blackboard:

Instrumental variable graph and generic identifiability.

Factor analysis and measurement models in psychometrics (example paper).
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Review: the squiggly line notation
This new notation is introduced this year to visualize graphical arguments.

A walk without colliders is called an arc and denoted by a squiggly line ( ),
with matching end-point arrowheads.

There are three kinds of arcs: , , (bidirected arc or confounding
arc) (Q: why isn’t there a arc like ?).

Half arrowhead means unrestricted. For example, the set of all arcs from j to
k is denoted as

W(j k) =W(j k) +W(j k) +W(j k).

∗ means any number of colliders, so W(j ∗ k) contains all walks from
j to k. Similarly, W(j ∗ k) contains all walks from j to k consisting of
any number of bidirected arcs.

W(j ∗ k | L) contains all walks from j to k that are m∗-connected
given L. Similarly for W(j ∗ k | L).
When these sets are non-empty, we say the corresponding type of connection
is true. For example, W(j ∗ k | L) ̸= ∅ means j and k are
m-connected given L.
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A review and look forward

Summary of this chapter

Basic terminology and notation for directed mixed graphs.

Definition of linear SEMs.

Trek rule and Wright’s path analysis.

Marginalization and latent projection.

Partial correlation/conditional independence, m-separation.

Identifiability problems.

Beyond linearity

We will consider different “structures” between random variables that can be
modelled by graphs:

1 Factorization (probabilistic);

2 Conditional independences/Markov properties (probabilistic);

3 Causality.
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Factorization
f is joint density function of V = (V1, . . . ,Vp) (w.r.t. a product measure).

DAG model (Bayesian statistics, causality, . . . )

We say the distribution of V factorizes according to a DAG G = (V = [p],D) if

f (v) =
p∏

j=1

fj|pa(j)(vj | vpa(j)).

Undirected graphical model (statistical physics, contigency tables, . . . )

We say the distribution of V factorizes according to an undirected graph
G = (V = [p], E) if there exists {ψC(·) : C ⊆ V} such that

f (v) =
∏
C⊆V

ψC(vC),

where the product is over all cliques (complete subgraphs) of G.

See blackborad: Examples.
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Conditional independence

Conditioning is a key concept in probability theory.

Let fJ |K denote the conditional density function of VJ given VK:

fJ |K(vJ | vK) =
fJ ∪K(vJ , vK)

fK(vK)
when fK(vK) > 0.

The subscript of f will often be omitted.

Definition
For disjoint J ,K,L ⊆ V, we say VJ is conditionally independent of VK given VL
and write VJ ⊥⊥ VK | VL if

f (vJ , vK | vL) = f (vJ | vL)f (vK | vL) whenever f (vL) > 0.

If L = ∅, we just write VJ ⊥⊥ VK.
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Graphoid axioms

As a notion of irrelevance, conditional independence satisfies several axiomatic
properties: for all disjoint J ,K,L,M⊂ V,

Symmetry VJ ⊥⊥ VK | VL ⇔ VK ⊥⊥ VJ | VL;

Chain rule VJ ⊥⊥ VK | VL∪M and VJ ⊥⊥ VM | VL ⇔ VJ ⊥⊥ VK∪M | VL.

If f (v) > 0 for all v , we further have

Intersection VJ ⊥⊥ VK | VL∪M and VJ ⊥⊥ VM | VL∪K ⇒ VJ ⊥⊥ VK∪M | VL

Ternary relations that satisfy these axioms are called graphoids.

J L

K

M
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Global Markov property in undirected graphical models

Fix an undirected graph G = (D, E).

Definition
For disjoint J ,K,L ⊂ V, we say J and K are separated by L and write
J − ̸ ∗ −K | L if every path from j ∈ J to k ∈ K in G goes through a node in L.

Theorem (Hammersley-Clifford)

Suppose f (v) > 0 for all v . Then the distribution V factorizes according to G iff

J − ̸ ∗ −K | L =⇒ VJ ⊥⊥ VK | VL, ∀J ,K,L . (Global Markov)

Statistical physics: Gibbs random field ⇔ Markov random field.
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Global Markov property in DAG models

Now fix an DAG G = (V,D).

Definition

For disjoint J ,K,L ⊂ V, we say J and K are d-separated4 by L and write
J ̸ ∗ K | L if there exists no walk π from j ∈ J to k ∈ K in G such that

All non-colliders on π are not in L;
All colliders on π are in L.

Theorem
The distribution of V factorizes according to G iff

J ̸ ∗ K | L =⇒ VJ ⊥⊥ VK | VL, ∀J ,K,L . (Global Markov)

See blackboard:

Proof of this theorem by induction.

4d/m-separation: d means “directed” and m means “mixed”
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Structure learning

Goal: infer the graphical structure from data.

Gaussian graphical models

For undirected graphs and Gaussian data, it suffices to estimate the inverse
covariance matrix.

In particular, this is a model selection problem. A common algorithm called
the “graphical lasso” is covered in Modern Statistical Methods.

DAG models: Faithfulness
We say a distribution of V is faithful to a DAG G if the conditional
independences are exactly those implied by the global Markov property.

Question: Given faithfulness, can we learn the DAG G from a sample from
the distribution of V ?

Qingyuan Zhao (University of Cambridge) Causal Inference MT2023 46 / 79



Markov equivalence of DAG models

Observation: we clearly cannot distinguish V1 → V2 from V1 ← V2 based on just
a sample of (V1,V2).

Two DAGs are said to be Markov equivalent if they imply the same
d-separations.

We can only hope to recover a Markov equivalence class, i.e. a maximal set
of Markov equivalent DAGs.

Theorem
Two DAGs G1 and G2 are Markov equivalent iff the following conditions are true:

1 G1 and G2 have the same “skeleton” (set of edges ignoring their directions);

2 G1 and G2 have the same set of “unshielded colliders” (j → ℓ← k but j and
k are not adjacent).

See blackboard: Example.
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Algorithms based on conditional independence testing

IC/SGS algorithm

Step 0 Start with a fully connected undirected graph.

Step 1 Remove j − k if Vj ⊥⊥ Vk | VL for some L ⊂ V.
Step 2 Orient j − ℓ− k as j → ℓ← k if j and k are not adjacent and

Vj ̸⊥⊥ Vk | VL for all subsets L containing ℓ.

Step 3 Orient some of the other edges so that the graph contains no
cycles or new unshielded colliders.

The more widely used PC algorithm accelerates Step 1 by gradually
increasing the size of L, because if j and k are d-separated by L, they are
also d-separated by any superset of L.
Some difficulties: conditional independence testing; latent variables; causal
interpretation.
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Nonparametric structural equation model (NPSEM)
Fix an ADMG G = (V = [p],D,B). We may generalize linear SEMs by using a
general nonlinear relationship for each equation:

Vj = fj(Vpa(j),Ej), j ∈ V,

where (E1, . . . ,Ep) “obeys” the bidirected graph (V,B).

Structural?
Recall the remark on slide 28: what makes a system of equations “structural”
or “causal”?

To formally answer this question, we need to consider potential outcomes of
the system under different interventions.

See blackboard:

Definition via recursive substitution.

“Natural counterfactual” of the variables being intervened on.

Simplification of potential outcomes and the consistency property.

Examples.
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Markov properties of basic potential outcomes

Two views

Functional/Multiple-world: the random errors (E1, . . . ,Ep) satisfy the global
Markov property w.r.t. (V,B).
Counterfactual/Single-world: the basic p. o. (V1(v[p]), . . . ,Vp(v[p])) satisfy
the global Markov property w.r.t. (V,B) for all v[p].

Definition

We say V and all its counterfactuals satisfy the (single/multiple-world) causal
model w.r.t. an ADMG G = (V,D, E) if

All the potential outcomes satisfy the consistency property w.r.t. (V,D);
The basic potential outcomes satisfy the (single/multiple-world) Markov
property w.r.t. (V,B).

See blackboard:

An example.

Defining a NPSEM through basic potential outcomes.

Qingyuan Zhao (University of Cambridge) Causal Inference MT2023 51 / 79



Representing recursive substitution as a graph operation

Suppose VĨ has already been intervened on.

Key idea: We may view an additional intervention on Vi as splitting it into
two: a natural counterfactual Vi (vĨ) and a fixed value vi .

Definition

Given an ADMG G = (V,B,D), the single-world intervention graph (SWIG) G(I)
is an ADMG with vertex set V (vI) ∪ vI , and

For j ̸∈ I, Vj(vI) inherits all edges of Vj in G.

For i ∈ I, Vi (vI) inherits all incoming edges and vi inherits all outgoing
edges of Vi in G.

See blackboard:

Relationship with recursive substitution.

Example.
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Recursive substitution preserves global Markov properties

Theorem
Suppose V and its counterfactuals satisfy the single-world causal model w.r.t. an
ADMG G = (V,D,B). Then for any I ⊆ V, V (vI) satisfies the global Markov
property w.r.t. G(I).

Any fixed vertex vi , i ∈ I in G(I) does not introduce (statistical) dependence.
Thus, it is convenient to consider the graph G∗(I) without vI .

See blackboard: proof using the following observations (let I ′ = I ∪{j}).
Lemma 1 For any I ⊂ V, one can always find j ̸∈ J such that de(j) ⊆ I.
Lemma 2 If k ̸∈ ch(j), then Vk(vI) = Vk(vI′).

Lemma 3 Compared to G∗(I ′), G∗(I) has the new edges
Vj(vI)→ Vch(j)(vI).

Lemma 4 Any m-separation in G∗(I) also holds in G∗(I ′).
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DAG causal models

Now suppose G is a DAG.

An immediate corollary is that V (vI) should factorize w.r.t. G(I).
But we can say more. Identification results below are stated with discrete V .

Theorem (g-computation formula)

Suppose V and its counterfactuals satisfy the single-world causal model w.r.t. a
DAG G = (V,D,B). Then for any I ⊆ V, we have

P(V (vI) = ṽ) =
p∏

j=1

P(Vj = ṽj | Vpa(j)∩I = vpa(j)∩I ,Vpa(j)\I = ṽpa(j)\I).

This matches our intuition of modularity of causal models.

See blackborad: example.
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Back-door criterion

Next: queries about causal identifiability in ADMG models. Let G = (V,D,B).

Theorem

Let X , {A}, {Y } ⊂ V be disjoint. Suppose

1 X contains no descendant of A;

2 A ̸ ∗ Y | X (no m-connected “backdoor” paths).

Then Y (a) ⊥⊥ A | X . Under the positivity assumption P(A = a | X = x) > 0 for
all a and x , we have

P(Y (a) = y) =
∑
x

P(Y = y | A = a,X = x)P(X = x), for all y .

See blackboard: examples and proof.
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Front-door criterion

A M Y

Proposition

For the above causal graph, the causal effect of A on Y is identified by

P(Y (a) = y)

=
∑
m

{∑
a′

P(Y = y | M = m,A = a′)P(A = a′)

}
P(M = m | A = a).

See blackboard: proof and interpretation.
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The fixing operator

For more general queries about causal identification, we need to answer the
following question: Does the g-formula hold when G is not a DAG but an ADMG?

Definition
For an ADMG G, a vertex i is called fixable if there exists no j such that
i j and i↔ ∗ ↔ j .

The Markov blanket of I ⊆ V is defined as mb(I) = {j ̸∈ I : j ∗ I}.

Theorem

Suppose indicies in I can be arranged into a sequence (i1, . . . , im) such that
Vik (vI[k−1]

) is fixable in G(I [k−1]), k = 1, . . . ,m. Then for all v and ṽ we have

P(VI(vI) = ṽI ,VV \ I(vI) = ṽV \ I)

P(VI = vI ,VV \ I = ṽV \ I)
=

P(VI = ṽI | Vmb(I) = ṽmb(I))

P(VI = vI | Vmb(I) = ṽmb(I))
.

See blackboard: proof (when I = {i}) and examples.
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Big picture

DAG for basic p.o. DAG for observed var.

ADMG for basic p.o. ADMG for observed var.
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Fixing
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Big picture

Causal Inference ≈ Causal Identification + Statistical Inference.

Design trumps analysis

Let V be the observed data, F be the full data (incl. all p.o.), and η be some
nuisance parameters.

Error of causal estimator︷ ︸︸ ︷
β(V ; η̂)− β(PF )

=β(PV )− β(PF )︸ ︷︷ ︸
Design bias

+β(η(PV ))− β(PV )︸ ︷︷ ︸
Model bias

+β(V ; η̂)− β(η(PV ))︸ ︷︷ ︸
Statistical noise

.

For the rest of this course, we will shift our focus to the statistical aspect, i.e. the
tradeoff between the last two terms in this decomposition.
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Setting

Full data Fi = (Xi ,Ai ,Yi (·)).
Observed data Vi = (Xi ,Ai ,Yi ).

No unmeasured confounders5

For the rest of this Chapter, we will assume i.i.d. data and A ⊥⊥ Y (a) | X , a ∈ A.

We will work with binary exposure (A = {0, 1}), although many things below
easily extend to exposures with multiple levels.

We will discuss two approaches to statistical inference:
1 Matching and randomization inference;
2 Semiparametric inference.

5This assumption dismisses the important practical question about how the confounders should be
selected. For a recent review on confounder selection, see Guo, Lundborg, Zhao, “Confounder Selection:
Objectives and Approaches”, arxiv:2208.13871.
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Matching
Basic idea: use observational data to “mimic” a randomized experiment by
grouping treated and control units with similar covariates.

This requires a “distance”. One example is the Mahalanobis distance:

dMA(x , x̃) = (x − x̃)T Σ̂(x − x̃),

where Σ̂ is some estimated covariance matrix of x .

Propensity score

One useful concept is the propensity score π(X ) = P(A = 1 | X ).

This “summarizes” the confounders in the sense that
A ⊥⊥ Y (a) | π(X ), a ∈ A.
From a graphical perspective, this is essentially the fixing operator.

This motivates the following choice of distance:

dPS(x , x̃) =
{
logit(π̂(x))− logit(π̂(x̃))

}2

,

where logit(π) = log(π/(1− π)) is the logistic function and π̂ is an estimator
of the propensity score.
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Some matching algorithms

When discussing matching algorithms, we assume A1 = · · · = An1 = 1 and
An1+1 = · · · = An = 0.

Nearest-neighbour (i.e. “greedy”) matching

Sequentially match unit 1 ≤ i ≤ n1 to argmin
n1+1≤j≤n

d(Xi ,Xj).

Optimal matching

Solve the following optimization problem:

minimize
n1∑
i=1

d
(
Xi ,

n∑
j=n1+1

MijXj

)
subject to Mij ∈ {0, 1},

n0∑
j=1

Mij = 1,
n1∑
i=1

Mij ≤ 1, 1 ≤ i ≤ n1, 1 ≤ j ≤ n0.

This can be recasted as a network flow problem and solved efficiently.
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How to check if matching is satisfactory?

Heuristic: in randomized Bernoulli trials, all pre-treatment covariates are
approximately “balanced” in the treated and control groups.

We can measure covariate imbalance as

Bk(M) =
1
n1

∑n1
i=1(Xik −

∑n0
j=1 Mi,j+n1Xjk)√

(S2
1k + S2

0k)/2
, k = 1, . . . , p.

Some practical guidelines require Bk(M) < 0.1 for all k.

One can also incorporate such constraints in the mixed integer program and
solve it using modern optimizers.
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Inference after matching

One option: use the average treated-minus-control difference to estimate the
average treatment effect on the treated: E{Y (1)− Y (0) | A = 1}.
Here we explore randomization inference after matching. To simplify the
notation, suppose unit i is matched to unit i + n1.

DenoteM = {a ∈ {0, 1}2n1 : ai + ai+n1 = 1 for all i ∈ [n1]}.

Assumption: Matching recreates a pairwise randomized experiment

P(A = a | X ,Y (·),A ∈M) =

{
2−n1 , if a ∈M,

0, otherwise.

This is true if there are no unmeasured confounders and the propensity scores
are exactly matched.6

One can then use any randomization test (e.g. with the signed rank/score
statistic; see Example Sheet 1) to test a sharp null hypothesis.

6There is one more caveat: the set of matched units may still depend on the realized exposures.
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Semiparametric inference

The general problem: estimating a statistical functional β = β(PV ).

Example: β = E{Y (1)− Y (0)} = E{E(Y | A = 1,X )− E(Y | A = 0,X )}.
This is a semiparametric problem because it involves infinite-dimensional
nuisance parameters (two regression functions).

We will discuss some general solutions to this problem before applying them
to functionals in causal inference.

General setup

V1, . . . ,Vn
i.i.d.∼ P ∈ P, where P is a statistical model. We say P is

parametric if it is indexed by finite-dimensional parameters;

nonparametric if it is dense in all probability distributions of V ;

semiparametric if it is in between.

As this is a course on causal inference instead of asymptotic statistics, we will
gloss over regularity conditions and technical details below.
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von-Mises expansion

Definition: Gateaux derivative

Consider a one-dimensional model {Pϵ = (1− ϵ)P+ ϵQ ∈ P : ϵ ∈ (−δ, δ)}. The
Gateaux derivative of β at P in the direction Q− P is given by

β′
P(Q− P) =

d

dϵ
β(Pϵ)

∣∣∣∣
ϵ=0

,

if the derivative exists at ϵ = 0.

The (first order) von-Mises expansion of β is given by

β(Pn)− β(P) =
1√
n
β′
P(
√
n(Pn − P)) + R(Pn,P),

where R(Pn,P) = oP(1/
√
n) is a negligible remainder term.

See blackboard:

Definition of the empirical distribution Pn.

Heuristics for the von-Mises expansion.
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Influence function

Typically, β′
P is a continuous linear map, so

β(Pn)− β(P) =
1

n

n∑
i=1

β′
P(δVi − P) + R(Pn,P).

Denote ϕP(v) = β′
P(δv − P), the influence function of β at P.

Theorem (Functional delta method)

Suppose β is smooth7and β(Pn) is well defined. Then

√
n{β(Pn)− β(P)}

d→ N(0,Var(ϕP(V ))).

See blackboard:

Properties of the influence function.

Examples: population mean and Z-estimation.

7The “right” notion of smoothness is Hardamard differentiability. See Sec. 20.2 of van der Vaart,
Asymptotic Statistics, CUP.
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Bias correction using the influence function
Often β(Pn) is not well defined (e.g. if β depends on the density function).

An alternative is to use β(P̂), where P is a parametric or smooth estimator of
P. However, P̂ may not converge to P at a 1/

√
n rate.

The one-step correction of β(P̂) is defined as

β̂1-step = β(P̂) + EPn(ϕP̂(V )).

Theorem (Asymptotic normality of the one-step estimator)

Suppose β is smooth and the following conditions are satisfied:

1
√
nEPn−P(ϕP̂(V )− ϕP(V ))→ 0 in probability;

2
√
nR(P, P̂)→ 0 in probability (e.g. if n1/4∥P− P̂∥ → 0).

Then we have
√
n{β̂1-step − β(P)}

d→ N(0,Var(ϕP(V ))).

See blackboard:

Heuristics for the one-step estimator.

Expansion of β̂1-step − β(P).
Using cross-fitting to remove condition 1.
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Calculus of influence functions
In general, the influence function is defined as the Riesz representation of the
derivative of β. This requires us to solve an integral equation.

More intuitive alternative: calculate ϕP(v) = β′
P(δv − P) using the chain rule

for differentiation.8

In applying this calculus, one may pretend that V has a finite support.

See blackboard:

Influence function of P(X = x) is given by δx − P(X = x).

Influence function of E(Y | X = x) is {Y − E(Y | X = x)} δx
P(X = x)

.

Influence function of β = E{E(Y | A = 1,X )} is given by

A

P(A = 1 | X )
{Y − E(Y | X ,A = 1)}+ E(Y | X ,A = 1)− β.

The augmented inverse probability weighted (AIPW) aka the doubly robust
(DR) estimator of the ATE and its properties.

8The main issue we are neglecting here is that β′
P is generally not defined for a singular direction like

δv − P.
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Inverse probability weighting (IPW)

Let µa(X ) = E(Y | X ,A = a) and π(X ) = P(A = 1 | X ).

Motivation: E{µ1(X )} is a linear functional of µ1, so it has an Riesz
representation:

E{µ1(X )} = E
{ A

π(X )
µ1(X )

}
= E

{ A

π(X )
Y
}
.

This may also be viewed as an application of the fixing operator.

This motivates the IPW estimator of the ATE

β̂ =
1

n

n∑
i=1

Ai

π̂(Xi )
Yi −

1− Ai

1− π̂(Xi )
Yi

In practice, one often gets better finite-sample properties by directly
estimating 1/π(X ) and 1/(1− π(X )).
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Case study: Entropy Balancing
Problem: assuming no unmeasured confounders, estimate

β = E(AY (0)) = E(Aµ0(X )) = E(π(X )µ0(X )) = E
{
(1− A)w(X )µ0(X )

}
,

where w(X ) = π(X )/{1− π(X )}.
The influence function of β is given by

ϕβ(V ) = (1− A)w(X ){Y − µ0(X )}+ Aµ0(X )− β.
Suppose Ai = 1 for 1 ≤ i ≤ n1 and Ai = 0 for n1 + 1 ≤ i ≤ n.
Entropy balancing estimates wi = w(Xi ), i = n1 + 1, . . . , n by solving

maximize −
n∑

i=n1

wi logwi

subject to
n1∑
i=1

Xi =
n∑

i=n1+1

wiXi ,

wi > 0, i = 1, . . . , n.

See blackboard:
Lagrangian dual problem and its statistical interpretation.
Double robustness of entropy balancing.
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Introduction

Instrumental variable (IV) is the oldest and most well developed approach to
deal with unmeasured confounders.

IV in linear SEMs

Z A Y

When a linear SEM is assumed, the causal effect of A on Y is generically
identified by

βAY =
Cov(Z ,Y )

Cov(Z ,A)
.

See handout:

Example: returns to schooling.
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Linear SEMs: Multiple IVs & exogenous covariates

X

Z1

... A Y

Zp

See blackboard:

Linear SEM for this graph.

Expression of E(Y | Z ,X ).

The two-stage least squares estimator.
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Counterfactual definition of IV

Now consider the simplest case:

Z A Y

This entails three assumptions:

Assumption Graph Counterfactual
1. Relevance Z → A Z ̸⊥⊥ A
2. Exogeneity Z ̸ ∗ Y Z ⊥⊥ Y (z , a)
3. Exclusion restriction Z ↛ Y Y (z , a) = Y (a)

Any Z that satisfies these assumptions is called a valid instrumental variable.

However, this generally only provides partial identification of the causal effect
(ES2 Q13).

Additional assumptions are needed for point identification. One example is
effect homogeneity:

Y (a)− Y (a′) = β(a− a′) for all a, a′ ∈ A.
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Semiparametric estimation with IV

Assume effect homogeneity and 0 ∈ A.
By assumption, Z ⊥⊥ Y (0) = Y − βA. This defines a semiparametric model.

Denote α = E(Y − βA). Then (α, β) solves

E{(Y − α− βA)g(Z )} = 0, for all g(·).

Now suppose we have an i.i.d. sample (Zi ,Ai ,Yi ), i = 1, . . . , n.

See blackboard:

Plug-in estimator β̂g and its asymptotic distribution.

Optimal choice of g (“optimal instrument”).

Further comments on IV-based estimators.
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Beyond effect homogeneity: Motivating example

Suppose the simple IV graph describes a randomized experiment with
non-compliance:

Z A Y

Z is the treatment assignment (randomized);

A is the actual treatment (not randomized).

There are two ways to analyze this data:

1 Ignore A (intention-to-treat analysis);

2 Use Z as an IV for A.
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IV identification: complier average causal effect

Assume Z ,A ∈ {0, 1}. Define the compliance classes as

C =


always taker (at), if A(0) = 0,A(1) = 1,

never taker (nt), if A(0) = 1,A(1) = 0,

complier (co), if A(0) = 0,A(1) = 1,

defier (de), if A(0) = 1,A(1) = 0.

Theorem (Identification under monotonicity)

Assuming the multiple-world causal model w.r.t. the IV graph, A ̸⊥⊥ Z, and
P(A(1) ≥ A(0)) = 1. Then

βCACE = E{Y (1)− Y (0) | C = co} = Cov(Z ,Y )

Cov(Z ,A)
.

See blackboard:

Proof of this result.
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