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Q 1 We use the notation from the lecture notes and find and compute the design bias as

�(O)� �(F) = E[Y |A = 1]� E[Y |A = 0]� E[Y (1)� Y (0)] = 0,

where we applied consistency. We use one of the models (2.14) - (2.16) and by Lemma 2.23 we

know

�(O, ✓) = �1 = �2 = �3 = E[Y |A = 1]� E[Y |A = 0].

Hence, the modeling bias is

�(O, ✓)� �(O) = E[Y |A = 1]� E[Y |A = 0]�
�
E[Y |A = 1]� E[Y |A = 0]

�
= 0.

Q 2 (i) We show that ⇡(x) is a balancing score with the following two equations:

P(A = 1 |X,⇡(X)) = P(A = 1 |X) = ⇡(X),

P(A = 1 |⇡(X)) = E[E[A|X] |⇡(X)] = E[⇡(X)|⇡(X)] = ⇡(X).

The first line follows from the fact that ⇡(X) is a function of X and the second from an

application of the tower law.

(ii) We prove that Y (a) ?? A |⇡(X), a 2 {0, 1} via the graphoid axioms that hold for conditional

independence. From the assumption of no unmeasured confounders and the fact that ⇡(X) is

a balancing score, we get

Y (a) ?? A |X, A ?? X |⇡(X).

The first conditional independence can be extended to

Y (a) ?? A |⇡(X),X

because ⇡(X) is a transformation of X. By the contraction axiom we get

A ?? (Y (a),X) |⇡(X)

and, by decomoposition, we arrive at A ?? Y (a) |⇡(X).

(iii) We prove that for any balancing score b(x), there is a function f such that ⇡ = f � b by

contradiction. So suppose that b(x) cannot be written as a function of ⇡(x). It means that there

exist x1 and x2 such that b(x1) = b(x2) but ⇡(x1) 6= ⇡(x2). By definition of ⇡, P(A = 1 |X =

x1) 6= P(A = 1 |X = x2) holds which implies that A 6?? X | b(X). This is a contradiction to

b(x) being a balancing score.

Q 3

P
�
[2n1]

= A[2n1] | [2n1]
,[2n1]

2 M
�
= P

�
[2n1]

= A[2n1] |X[2n1]
,[2n1]

2 M
�

=

n1Y

i=1

P (Ai = ai, Ai+n1 = ai+n1 |Xi, Xi+n1 , Ai +Ai+n1 = 1)

=

n1Y

i=1

P (Ai = ai, Ai+n1 = ai+n1 |Xi, Xi+n1) I(ai + ai+n1 = 1)

P (Ai = 1, Ai+n1 = 0 |Xi, Xi+n1) + P (Ai = 0, Ai+n1 = 1 |Xi, Xi+n1)

=

n1Y

i=1

⇡(Xi)(1� ⇡(Xi+n1))

2⇡(Xi)(1� ⇡(Xi+n1))
I(ai + ai+n1 = 1) = 2

�n1 I(A 2 M).

1



The first two equalities come from the ’no unmeasured confounders’ and i.i.d. assumption, re-

spectively. For the third equality we use the definition of conditional probability and employ

⇡(Xi) = ⇡(Xi+n1) as well as the i.i.d. assumption for the fourth equality.

Q 4 We use the familiar notation n1 =
Pn

i Ai, n0 =
Pn

i=1
(1 � Ai) and ⇡ = E[A]. The regression

estimator is given by

�̂1 =

Pn
i=1

AiYiPn
i=1

Ai
�

Pn
i=1

(1�Ai)YiPn
i=1

(1�Ai)
.

We derive the influence function in a similar way to the IPW-estimator in the notes:

p
n(�̂1 � �) =

p
n

✓Pn
i=1

AiYiPn
i=1

Ai
�

Pn
i=1

(1�Ai)YiPn
i=1

(1�Ai)
� �

◆

=

p
n

n

✓Pn
i=1

Ai(Yi � E[Y |A = 1])

n1/n
�

Pn
i=1

(1�Ai)(Yi � E[Y |A = 0])

n0/n

◆

=
1
p
n

nX

i=1

Ai(Yi � E[Y |A = 1])

⇡
�

(1�Ai)(Yi � E[Y |A = 0])

1� ⇡
+Rn,

where the residual term is given by

Rn =
1
p
n

 
nX

i=1

Ai(Yi � E[Y |A = 1])

✓
n

n1

�
1

⇡

◆
�

nX

i=1

(1�Ai)(Yi � E[Y |A = 0])

✓
n

n0

�
1

1� ⇡

◆!
.

Since n/n1 � ⇡�1
converges to 0 in probability and n�1/2

Pn
i=1

Ai(Yi � E[Y |A = 1]) is Op(1) due

to the CLT, the first term of Rn converges to zero in probability. The same reasoning applies to

the second term. Hence, the influence function is

 �(Ai, Yi) =
Ai(Yi � E[Y |A = 1])

⇡
�

(1�Ai)(Yi � E[Y |A = 0])

1� ⇡
.

We prove that its mean is indeed zero:

E[ � ] =
1

⇡
E[Y |A = 1]P(A = 1)�

⇡

⇡
E[Y |A = 1]�

1

1� ⇡
E[Y |A = 0]P(A = 0)+

1� ⇡

1� ⇡
E[Y |A = 0] = 0.

Q 5 We have

Ep[m(�(P), V )] = 0 (1)

and let Pt = (1� t)P + t�V . Then

0 =

Z
m(�(Pt), u)dPt

=

Z
m(�(Pt), u)

�
(1� t)p(u) + t�V (u)

�
du

so di↵erentiating with respect to t (assuming we can interchange derivative and integral) gives

0 =

Z
m0

(�(Pt), u)
@�(Pt)

@t

�
(1� t)p(u) + t�V (u)

�
du�

Z
m(�(Pt), u)(p(u)� �V (u))du

Plugging in t = 0 then gives

0 =

Z
m0

(�, u)�P(V )p(u)du�

Z
m(�, u)(p(u)� �V (u))du

from which we conclude that:

�P(V ) = �Ep

hn @

@�
m(�(P), V )

oi�1

m(�(P), V )
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Q 6 We reformulate �̂OR,a using the definitions of the empirical estimators

�̂OR,a =
1

n

nX

i=1

µ̂a(Xi) =
1

n

nX

i=1

X

x

I(Xi = x)

Pn
j=1

I(Aj = a,Xj = x)YjPn
l=1

I(Al = a,Xl = x)

=
1

n

X

x

nX

j=1

I(Aj = a,Xj = x)Yj

Pn
i=1

I(Xi = x)Pn
l=1

I(Al = a,Xl = x)

=
1

n

X

x

nX

j=1

I(Aj = a,Xj = x)Yj
1

⇡̂(x)
=

1

n

nX

j=1

I(Aj = a)Yj

⇡̂(Xj)
= �̂IPW,a.

Therefore, we have �̂OR = �̂IPW.

We prove the second equation by expanding over the support X and using the definition of the

estimate of the propensity

1

n

nX

i=1

I(Ai = a)

⇡̂(Xi)
µ(Xi) =

1

n

X

x

nX

i=1

I(Ai = a,Xi = x)µ(Xi)

Pn
j=1

I(Xj = x)
Pn

l=1
I(Al = a,Xl = x)

=
1

n

X

x

µ(x)
nX

i=1

I(Ai = a,Xi = x)

Pn
j=1

I(Xj = x)
Pn

l=1
I(Al = a,Xl = x)

=
1

n

X

x

µ(x)
nX

j=1

I(Xj = x) =
1

n

nX

j=1

µ(Xj).

Q 7 (a) We show that four di↵erent quantities are equal to �a.

(i) We use the tower law and the definition of ⇡a(x) = P(A = a |X = x).

E

I(A = a)Y

⇡a(X)

�
= E


E

I(A = a)Y

⇡a(X)

� ����X
�
= E


1

⇡a(X)
P(A = a |X)E[Y |A = a,X]

�

= E[µa(X)] = �a.

(ii) We use the tower law and linearity and obtain three terms. The first was treated in

(i) and the second and third can be shown to cancel with the properties of conditional

expectations and the definition of the propensity score

E[ma(D;µa,⇡a)] = E

E

I(A = a)

⇡a(X)
(Y � µa(X)) + µa(X)

� ����X
�

= �a � E


1

⇡a(X)
E[I(A = a) |X]µa(X)

�
+ E[µa(X)] = �a.

(iii) We employ consistency and Y (a) ?? A |X as well as the tower law

E[ma(D;µa, ⇡̃a)] = E

I(A = a)

⇡̃a(X)
(Y � µa(X))

�
+ E[µa(X)]

= E

E

I(A = a)

⇡̃a(X)
(Y (a)� µa(X)

� ����X
�
+ �a

= E

E[I(A = a) |X]

⇡̃a(X)

�
E[Y (a) |X]� µa(X)

��
+ �a

= E

⇡a(X)

⇡̃a(X)

�
E[Y |A = a,X]� E[Y |A = a,X]

��
+ �a = �a

(iv) Again we apply the tower law and use the result from (i)

E[ma(D; µ̃a,⇡a)] = E

I(A = a)

⇡a(X)
Y

�
� E


E

I(A = a)

⇡a(X)
µ̃a(X)

� ����X
�
+ E[µ̃a(X)]

= �a � E

⇡a(X)

⇡a(X)
µ̃a(X)

�
+ E[µ̃a(X)] = �a
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(b) Please refer to the 2021 notes on Pages 82-85.

Q 8 (a) We use that Z is binary and reexpress cov(Y, Z) as follows

cov(Y, Z) = E[Y Z]� E[Y ]E[Z] = E[Y |Z = 1]E[Z]� (E[Y |Z = 1]E[Z] + E[Y |Z = 0]E[1� Z])E[Z]

= E[Y |Z = 1]E[Z]� E[Y |Z = 1]E[Z]E[Z]� E[Y |Z = 0]E[1� Z]E[Z]

= (E[Y |Z = 1]� E[Y |Z = 0])E[1� Z]E[Z]

and similarly

cov(A,Z) = (E[A |Z = 1]� E[A |Z = 0])E[1� Z]E[Z].

Therefore, we get

cov(Y, Z)

cov(A,Z)
=

E[Y |Z = 1]� E[Y |Z = 0]

E[A |Z = 1]� E[A |Z = 0]
.

(b) In order to derive the influence function, we replace step by step the estimated terms by their

population versions and consider the residual terms. We use the notation Xi = Yi � �Ai and

µ = E[Xi] and the following abbreviations

R1 =
1
p
n

nX

i=1

(µ� X̄)(g(Zi)� E[g(Zi)]) = op(1)Op(1) = op(1),

R2 =
1

n

nX

i=1

(Ai � Ā) (g(Zi)� g(Z))� cov(Ai, g(Zi)) = op(1),

R3 =
1
p
n

nX

i=1

(Xi � µ) (g(Zi)� E[g(Zi)]) = Op(1).

The asymptotic behaviour follows from the CLT and LLN. We derive the influence function

as follows

p
n (�̂g � �) =

p
n

✓
1

n

Pn
i=1

(Yi � Ȳ ) g(Zi)

1

n

Pn
i=1

(Ai � Ā)g(Zi)
� �

◆
=

1p
n

Pn
i=1

(Xi � X̄) g(Zi)

1

n

Pn
i=1

(Ai � Ā)g(Zi)

=

1p
n

Pn
i=1

(Xi � X̄) (g(Zi)� E[g(Zi)])

1

n

Pn
i=1

(Ai � Ā) (g(Zi)� g(Z̄))

=

1p
n

Pn
i=1

(Xi � µ) (g(Zi)� E[g(Zi)]) +R1

cov(Ai, g(Zi)) +R2

=
1
p
n

nX

i=1

 �(Zi, Ai, Yi) +
R1

cov(Ai, g(Zi)) +R2

+

✓
1

cov(Ai, g(Zi)) +R2

�
1

cov(Ai, g(Zi))

◆
R3

=
1
p
n

nX

i=1

 �(Zi, Ai, Yi) + op(1).

(c) IF can be treated as an operator that maps functionals e.g., �(P), to its influence function,

e.g.,  g(Z,A, Y ). The calculus of the influence function is similar to taking derivatives. Thus

the influence function of the functional �(P) can be expanded as:

IF(�(P)) = IF(cov(Y, g(Z))) cov(A, g(Z))� cov(Y, g(Z))IF(cov(A, g(Z)))

cov(A, g(Z))2

Thus it rests to study IF(cov(Y, g(Z))) and IF(cov(A, g(Z))).

IF(cov(Y, g(Z))) = (Y � E(Y ))(g(Z)� E{g(Z)})� cov(Y, g(Z))

IF(cov(A, g(Z))) = (A� E(A))(g(Z)� E{g(Z)})� cov(A, g(Z))

besides,

� =
cov(Y, g(Z))

cov(A, g(Z))

After some simple plug-ins, we can get the influence function shown in (b).
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Q 9 To reformulate the design bias, we use the derivation on page 88 of the lecture notes and consistency

and obtain

E[E[Y |A = 1,X] ]� E[Y (1)]

= E[E[Y (1) |A = 1,X] ]� E[E[Y (1) |A = 1,X]⇡(X)]� E[E[Y (1) |A = 0,X](1� ⇡(X))]

= E[ (1� ⇡(X)) (E[Y (1) |A = 1,X]� E[Y (1) |A = 0,X])] = E[ (1� ⇡(X)) �1(X)].

Applying a similar reasoning, we get

E[Y (0)]� E[E[Y |A = 1,X] ] = E[⇡(X) �0(X)]

and, thus, prove the claim.

In order to account for the design bias, we can try to estimate it

dbias = 1

n

nX

i=1

(1� ⇡̂(Xi))�̂1(Xi) + ⇡̂(Xi)�̂0(Xi)

and subtract it from the outcome regression or doubly robust estimate:

�̂OR =
1

n

nX

i=1

µ̂1(Xi)� µ̂0(Xi)�
dbias,

�̂DR =
1

n

nX

i=1

m1(Di; µ̂1, ⇡̂)�m0(Di; µ̂0, 1� ⇡̂)� dbias.

Q 10 Since A 62 an(W ), it holds W (a) = W for a 2 {0, 1} which implies E[W (1) |A = 1] = E[W (0) |A =

1]. We rewrite the terms in the equation for the confounding bias of W and Y

E[Y (0) |A = 1]� E[W (0) |A = 1] = E[Y (0) |A = 1]� E[W (1) |A = 1] = E[Y (0)�W |A = 1],

E[Y (0) |A = 0]� E[W (0) |A = 0] = E[Y (0)�W |A = 0]

and notice that this implies the parallel trend assumption. We use this and consistency to identify

the average treatment e↵ect of the treated

ATT = E[Y (1)� Y (0) |A = 1] = E[Y (1)�W |A = 1]� E[Y (0)�W |A = 1]

= E[Y (1)�W |A = 1]� E[Y (0)�W |A = 0] = E[Y �W |A = 1]� E[Y �W |A = 0].

Q 11 According to the definition of the model, we have

⇡i =
exp(g(Xi) + �Ui)

1 + exp(g(Xi) + �Ui)
)

⇡i
1� ⇡i

= exp(g(Xi) + �Ui).

We use the assumption Xi = Xi+n1 (stated in the Exercise 8.3 in the lecture notes) as well as

Ui, Ui+n1 2 [0, 1] and obtain

⇡i
1� ⇡i

. ⇡i+n1

1� ⇡i+n1

=
exp(� Ui)

exp(� Ui+n1)
= e�(Ui�Ui+n1 ) 2 [e�� , e� ] = [�

�1,�].

We use the setting of Theorem 8.4 with  ⌘ 1 and compute the mean and variance of S�
i :

E[S�
i ] =

�

1 + �
�

1

1 + �
=

�� 1

1 + �
,

var(S�
i ) = E[(S�

i )
2
]� (E[S�

i ])
2
= 1�

✓
�� 1

1 + �

◆2

=
4�

(1 + �)2
.

We define S̄�
:= n�1

1

Pn
i=1

S�
i . Since var(S�

i ) is finite, we can apply the CLT and get

p
n1

✓
S̄�

�
�� 1

�+ 1

◆
d
! N

✓
0,

4�

(1 + �)2

◆
, as n1 ! 1.
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Denote the observed value of the sign statistic as Tobs =
Pn1

i=1
sign(Di). Then the asymptotic

randomisation p-value is given by

p = P(T � Tobs) = 1� �

 
Tobs � n1(�� 1)/(1 + �)

2
p
n1

p
�/(1 + �)

!
,

where we adjusted for the missing normalisation.
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Influence Functions for Fun and Profit

Jay Kahn

First draft: July 10, 2015
This draft: February 12, 2022

An influence function tells you the e↵ect of a change in one observation on an estimator. It’s useful in
studying model robustness and calculating variance-covariance matrices for certain types of estimators,
especially when more straightforward methods become hard to implement.

1 Definition

Let (⌦,S, P ) be a probability space with random variables X1, . . . , Xn : (⌦,S) ! (X ,⌃) i.i.d. random
variables defined on it. Finally, suppose we’re interested in an estimator, ✓̂ : (Xn,⌃n) ! (�,A).

One way to begin (going back to Huber (1964)) is to use the concept of a “contaminated” distribution
function:

Definition 1.1. Suppose F is a distribution on ⌃. The contaminated distribution function is

defined:

F✏(x|G) = (1� ✏)F + ✏G (1)

where �x is the probability measure on ⌃ which assigns probability 1 to {x} and 0 to all other elements

of ⌃.

Imagine sampling F as pulling individuals from a barrel. The distribution F✏(x|G) is called a contam-
inated distribution because sampling from it is like sampling from a barrel of F where some number
of individuals from G have slipped into the barrel. This concept already has a clear use for robustness
applications. But there are even more useful restrictions of contaminated distribution functions:

Definition 1.2. Suppose F is a distribution on ⌃. The �-contaminated distribution function is

defined:

F✏(x) = (1� ✏)F + ✏�x = F✏(x|�x) (2)

where �x is the probability measure on ⌃ which assigns probability 1 to {x} and 0 to all other elements

of ⌃.

Now instead of talking about some members of G slipping into the distribution, it’s as if we have too
many of individual x in the barrel. Later on, this will allow us to talk about oversampling of one
particular observation. Using the �-contaminated distribution we can define the influence function fairly
easily:

Definition 1.3. The influence function of ✓̂ at F ,  i : X ! � is defined:

 ✓̂,F (x) = lim
✏!0

✓̂(F✏(x))� ✓̂(F )

✏
(3)

In other words, the influence function is the marginal e↵ect of oversampling x on a particular estimator
for an uncontaminated distribution.

In a more general setting, we can discuss a certain type of derivative known as the Gâteaux derivative:
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Definition 1.4. The Gâteaux derivative of ✓̂ at F in the direction G is defined:

LF (x) = lim
✏!0

✓̂((1� ✏)F + ✏G)� ✓̂(F )

✏
(4)

So the influence function is clearly the Gâteaux derivative of ✓̂ at F in the direction of �x. Recasting
influence functions in this light means that we have many useful properties of influence functions which
come from the fundamental theorem of calculus applied to Gâteaux derivatives. Most importantly, we
can make use of the chain rule:

Theorem 1.5 (Chain rule for influence functions). Suppose we have an estimator ✓̂(F ) such that ✓̂(F ) =
T (✓̂1(F ), . . . , ✓̂n(F )). Then:

 ✓̂,F (x) =
nX

i=1

@T

@✓̂i
 ✓̂i

(x) (5)

2 Examples

These properties of the influence function already allow us to derive influence functions for a wide variety
of estimators. In what follows I will use X or Y to denote a random random variable, following a joint
distribution F . Particular values of X or Y will be denoted with lower case letters, x or y.

2.1 Mean of a distribution

Let ✓̂ = E [X], and denote the expectation with respect to the current distribution function F (x) as
EF (x). Then:

✓̂(F✏(x)) = EF✏(x) [X]

= (1� ✏) EF✏(x) [X] + ✏x

Therefore, applying the definition of the influence function above:

)  ✓̂(x) = x� E [X] (6)

Here we can see a feature of influence functions we’ll derive later, which is:

E
⇥
 ✓̂(x)

⇤
= E [x� E [X]] = 0

Among other things, this is a useful way to check that there are no errors in calculating an influence
function: if the mean is not equal to zero (or within the computer language’s zero tolerance), then the
influence function has been calculated incorrectly.

2.2 Variance and covariance of a distribution

Suppose we’re now interested in ✓̂(F ) = Var [X] = E[X2]�E[X]2. Then by the Chain rule for influence
functions:

 ✓̂(x) = (x2 � E[X2])� 2E[X](x� E[X])

= (x� E[X])2 �Var[X] (7)

Similarly, for the covariance of X and Y , ✓̂(F ) = E[XY ]� E[X] E[Y ].

 ✓̂(x) =
�
xy � E[XY ]

�
�
�
x� E[X]

�
E[Y ]�

�
y � E[Y ]

�
E[X]

= (x� E[X])(y � E[Y ])� Cov(X,Y ) (8)

In the three cases above, you can see a form start to develop. The influence function for variance is just
the moment condition that defines variance evaluated at x, minus the population estimate of variance.
This is really just an extension of the influence function for the mean defined above.
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2.3 Simple linear regression

Often times instead of summary statistics, we’re interesting in coe�cients from regressions. Take the
simplest case of regression, a single-variable linear regressions with a slope and an intercept. In this

case, ✓̂(F ) =
Cov(X,Y )

Var(X)
. A final application of the chain rule is necessary to find the influence function

for this estimator:

 ✓̂(x, y) =
(x� E[X])(y � E[Y ])� Cov(X,Y )

Var(X)
�
�
(x� E[X])2 �Var(X)

�
Cov(X,Y )

�
Var(X)

�2

=
(x� E[X])(y � E[Y ])� �(x� E[X])2

Var(X)

=
(x� E[X])

Var(X)
[(y � E[Y ])� �(x� E[X])] (9)

This equation isn’t quite as simple as the previous examples, but notice that it is still the case that
E
⇥
 ✓̂(x, y)

⇤
= 0. I’ll cover more complicated examples of regressions later on.

2.4 Median

We can also apply influence functions to estimators that aren’t based on expectations, though these
influence functions are generally harder to derive. For instance, the median is a statistic, MX , which
solves:

0.5 = F (MX)

It is convenient to start with the influence function for the median of a uniform number over the unit
interval,  M̃X

(x). The uncontaminated median is 0.5. The contaminated median solves:

0.5 = (1� ✏)MX + ✏ MX>x

This equation has three possible solutions:

MX =

8
>>><

>>>:

0.5

1� ✏
if 0.5 < (1� ✏)x

x if 0.5� ✏ < (1� ✏)x < 0.5
0.5� ✏

1� ✏
if (1� ✏)x < 0.5� ✏

Taking the derivative, and letting ✏ shrinks to zero, the influence function for the median of a uniform
variable becomes:

 M̃X
(x) =

8
><

>:

0.5 if 0.5 < x

X if x = 0.5

�0.5 if x < 0.5

Now imagine the general random variable X with distribution function FX as simply a transformation
of a uniform random random variable, U : X = F�1

X (U) (this is an example of the inverse or Smirnov
transform). The median of X, MX can be represented as a transformation of the median of U , MX =

F�1
X (MU ). The derivative of F

�1
X is just

1

fX(MX)
, where fX is the density function of X. Applying the

chain rule for influence functions:

 M̂X
(x) =

8
>>>><

>>>>:

0.5

fX(MX)
if MX < x

0 if x = MX

� 0.5

fX(MX)
if x < MX
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It’s di�cult to find a sample counterpart for this influence function, as it requires density function
estimation, but its equation is now known. In practice I’ve found that standard Kernel estimation works
well for calculating the variance of a median, but for functions of multiple medians the error involved
with density estimation starts to create problems.

3 M-estimators and influence functions

Most estimators we use in econometrics are actually solutions to maximizing or minimizing a criterion
function. In general, an M -estimator is an estimator for a parameter, ✓ that is the solution to some
maximization problem over the data:

✓̂ = argmax
✓2⇥

E [G(X, ✓)]

This concept nests maximum-likelihood and least-squares estimators. We’re going to deal with a class
of M -estimators for which G is di↵erentiable and can therefore the estimate can written as the solution
to a set of equations:

E [g(X, ✓)] = 0

where g(X, ✓) = r✓G(X, ✓). For the contaminated distribution, ✓ must solve:

(1� ✏) E [g(X, ✓)] + ✏g(x, ✓) = 0

We can use total di↵erentiation to figure out the e↵ect of changing ✏:

d

d✏
(1� ✏) E [g(X, ✓)] = � d

d✏
✏g(x, ✓)

�E [g(X, ✓)] + (1� ✏) E [r✓g(X, ✓)]
d✓

d✏
= �g(x, ✓)� ✏r✓g(x, ✓)

d✓

d✏

Around ✏ = 0, the estimator must solve E [g(X, ✓)] = 0, so:

E [r✓g(X, ✓)]
d✓

d✏
= �g(x, ✓)

d✓

d✏
= �E [r✓g(X, ✓)]�1 g(x, ✓) =  ✓(x) (10)

Here we already have one useful piece of information: take the expectation of this influence function over
the distribution. You’ll find you get (nearly) the same equation you would use for Newton iterations
to find the maximum of the estimator. So you can find the actual M -estimator simply by using influence
functions to update your guess (provided that estimator is suitably well behaved).

3.1 Interpretation for MLE

For MLE, G(X, ✓) is the log-likelihood: ln f(X, ✓). This means that:

g(X, ✓̂) =
@

@✓̂
ln f(x, ✓̂) =

1

f(X, ✓̂)
r✓f(X, ✓̂)

r✓g(X, ✓̂) =
@2

@✓̂2
ln f(x, ✓̂) =

1

f(X, ✓̂)
H✓f(X, ✓̂)�

 
1

f(X, ✓̂)

!2

r✓f(X, ✓̂)0r✓f(X, ✓̂)

E
h
r✓g(X, ✓̂)

i
= E

"
1

f(X, ✓̂)
H✓f(X, ✓̂)

#
� E

2

4
 

1

f(X, ✓̂)

!2

r✓f(X, ✓̂)0r✓f(X, ✓̂)

3

5

4



Note that if the likelihood is correctly specified this last equation reduces since:

E

"
1

f(X, ✓̂)
H✓f(X, ✓̂)

#
=

Z
f(X, ✓̂)

f(X, ✓̂)
H✓f(X, ✓̂) =

Z
H✓f(X, ✓̂) = H✓

Z
f(X, ✓̂) = H✓1 = 0

So:

 ✓(x) = E

2

4
 

1

f(X, ✓̂)

!2

r✓f(X, ✓̂)0r✓f(X, ✓̂)

3

5
�1

| {z }
Fisher information matrix (inverse)

⇥ 1

f(x, ✓̂)
r✓f(x, ✓̂)

| {z }
Score evaluated at x

(11)

3.2 Interpretation for least squares

For least squares, G(X,Y ) = (Y � f(X,�))2, and:

g(x, y,�) = �2r�f(X,�)(Y � f(X,�))

r�g(x, y,�) = 2r�f(X,�)r�f(X,�)0 � 2H�f(X,�)(Y � f(X,�))

So the influence function for a least squares estimate is:

 ✓(x, y) = E [r�f(X,�)r�f(X,�)0 � 2H�f(X,�)(Y � f(X,�))]
�1 r�f(x,�)(y � f(x,�))

In the case of OLS, f(X,�) = X�, and H�f(X,�) = 0, so that the influence function becomes:

 ✓(x, y) = E [X 0X]
�1

x0(y � x�)

Looking at the simple linear regression example above, it’s clear that these two influence functions are
consistent.

4 Generalized method of moments and influence functions

GMM is a good another example of an extremum estimator, as well as being used generally across
economics. The GMM estimator solves:

✓̂ = argmin
✓2⇥

E [M(X, ✓)]0 W E [M(X, ✓)]

which requires:

E
h
m(X, ✓̂)

i0
W E

h
M(X, ✓̂)

i
= 0.

For a contamined distribution, the estimator then sovles:

[(1� ✏) E [m(X, ✓)] + ✏m(x, ✓)]0 W [(1� ✏) E [M(X, ✓)] + ✏M(x, ✓)] = 0.

Taking the total derivative around ✓ = 0, we get:

E [M(X, ✓)]0 W


m(x, ✓) + E [r✓m(X, ✓)]

@✓

d✏

�
+ E [m(X, ✓)]0 W


M(x, ✓) + E [m(X, ✓)]

d✓

d✏

�
= 0

Crucially, in the population, E [M(X, ✓)] = 0 for a correctly specified GMM, meaning:

 ✓(x) =
d✓

d✏
= �

�
E [m(X, ✓)]0 W E [m(X, ✓)]

��1
E [m(X, ✓)]0 WM(x, ✓)

Note that for a just-identified GMM, m(X, ✓) is a square matrix, and we can simplify this expression
greatly to:

 ✓(x) = E [m(X, ✓)]�1 M(x, ✓) (12)
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where m(X, ✓̂) = r✓M(X, ✓̂). This clearly nests the influence functions for mean, variance, covariance
and simple regression coe�cients in the sections above. In addition, imagine that the moment condition
is additively seperable from the parameter of interest, such that M(x, ✓̂) = h(x)� ✓̂. Then m(x, ✓̂) = 1,
so that  ✓(x) = M(x, ✓̂) = h(x) � ✓̂. This simple equation explains the pattern we saw earlier in the
influence functions for mean, variance and covariance, where the influence function for an observation
was just the moment condition evaluated at that particular observation. This will hold true for all higher
order moments of a distribution as well.

4.1 Applications

4.1.1 Weighted mean

Moment conditions are of the form E [W (X �m)] = 0. This is a case where m(x,w, ✓̂) 6= 1 and instead
m(x,w, ✓̂) = w. Therefore:

 ✓(x,w) =
w

E [W ]
(x�m)

if W = 1 as for an un-weighted mean, we clearly get the same result as the influnce function for the
mean above.

4.1.2 Instrumental variables

Moment conditions are of the form M(Z, Y,X, ✓) = Z 0(Y � X�). Instrumental variables can be just-
identified, but let’s tackle the overidentified version where there are more instruments than endogenous
variables, and with an arbitrary weight matrix, W . Then m(Z, Y,X, ✓) = Z 0X, and the influence
function is:

 ✓(z, y, x) = (E [Z 0X]W E [X 0Z])
�1

E [Z 0X]Wz0(y � x�)

We can easily see that for OLS, where Z = X, this reduces nicely to the same formula derived above:

 ✓(x, y, x) = E [X 0X]
�1

x0(y � x�)

5 Influence functions and variance

Note for this class of estimators it must be the case E [ ✓(x)] = 0. This makes the computation of
variances and covariances for influence functions extremely easy:

Cov( ✓1(x), ✓2(x)) = E [ ✓1(x) ✓2(x)]� E [ ✓1(x)] E [ ✓2(x)] = E [ ✓1(x) ✓2(x)] (13)

Why is this useful? Say we have an estimate ✓̂ from a random sample. We can look at this sample as
a series of ✏-contaminations to the true distribution, each of which puts 1/n weight on the derivative.
Then for large enough n we can represent the di↵erence between our ✓̂ and the true ✓ by use of a Taylor
expansion:

✓̂ = ✓ +
nX

i=1

 ✓(xi)
1

n
+ many higher order terms

These higher order terms will converge in probability to zero, even when multiplied by
p
n. This implies

that:
p
n(✓̂ � ✓) =

1p
n

nX

i=1

 ✓(xi) + op(1) (14)

for which a more formal argument is given in Newey and McFadden (1986). So the asymptotic distribu-
tion of the estimator and the asymptotic distribution of the influence function are directly related. This
means that we have now come up with a hugely convenient way to find the variances and covariances of
a variety of estimators: using the same properties of influence functions.
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Why is this particularly useful? Imagine that you want to know the covariance between the coe�cients
of a linear regression and the autocorrelation of one of your variables. Without influence functions, you
have three options available to you:

1. Bootstrap your estimates.

2. Make structural assumptions and derive the covariance.

3. Estimate all the above as a GMM system.

Option 1, bootstrapping, is probably what most researchers would think to do first. But bootstrapping
is computationally intensive, you have to sample and resample hundreds of times and if you have large
data or a complicated estimator this process can be prohibitively expensive. Bootstraps can also have
poor finite sample performance. Option 2, making structural assumptions, usually requires a good deal
of work on the derivation, and at the end of all that work your results will still depend on the parametric
assumptions made. Option 3 is actually equivalent to using influence functions, but the way most re-
searchers approach this method requires re-estimating the linear regression and autocorrelation. Again,
for more complicated estimators this can be time consuming.

Erickson and Whited (2002) show that influence functions provide an easy way to sidestep these three
time-consuming options. You calculate the empirical equivalents of the influence functions for each
estimate, and stack them. If you have estimators ✓1, . . . , ✓M and observations i = 1, . . . , N you create a
matrix:

 = [ ✓1 , . . . , ✓N ]N⇥M

This matrix  has columns corresponding to each estimator, and rows corresponding to each observation.
Every element of  ,  i,j is equal to  ✓j (xi). Since the distribution of each estimator is the same

as
1p
N

PN
i=1  ✓j (xi), we can use these to easily calculate a consistent estimate of the variance and

covariance of any set estimator of estimators by simply taking:

V =
1

N2

�
 T 

�

Moreover, this calculation of variance is computationally inexpensive, since influence functions are pro-
duced as a side product of many estimation routines (because of their application to Newton iterations)
and are generally easy to calculate.
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