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Q 1 Recall the definition of m-connectedness:

W (V V ) = W (V V ) +W (V V ) +W (V V ) (1)

And trek rule:

W (V
t

V ) =W (V $ V ) +W (V V $ V )

+W (V $ V V ) +W (V V $ V V )
(2)

(a) An arc can have zero or one bidirected edge. Two or more will create colliders.

(b) An arc can have one or two arrowheads at the two endpoints. A trek has two arrowheads at
the two endpoints.

(c) “)” a trek is an arc, thus the su�ciency is trivial.

“(” If an arc ⇡ is not already a trek, then we can construct the following:

⇡0 = j U t$ U k, (3)

and ⇡0 is a trek (we can do so because the arc we start with has two endpoint arrowheads,
which avoids creating extra colliders.

Q 2 We use the naming convention of Figure 1 and apply the result of Lemma 3.24 w.l.o.g. assuming
that X1, X2, X3, X4 are standardised. By the path analysis formula, we get the covariance matrix

X2

X1

F1 F2 X4

X3

�1

�2

�F

�3

�4

Figure 1: Graphical model of Question 2.

cov
�
(X1, X2, X3, X4)

T
�
=

0

BB@

1
�1�2 1

�1�F�3 �2�F�3 1
�1�F�4 �2�F�4 �3�4 1

1

CCA .

Using these relationships we can identify �F and �1 up to the sign as follows

�2
F =

cov(X1, X3) cov(X2, X4)

cov(X1, X2) cov(X3, X4)
,

�2
1 =

cov(X1, X2) cov(X1, X3)

cov(X2, X3)
.

The path coe�cients �2, �3 and �4 can be identified similarly.

Q 3 (a) Research question: Does academic self-concept have an impact on academic performance or
the other way around? Hence, the authors are interested in causal ordering.
Main conclusion: Based on this study, the academic self-concept influences grades, but grades
don’t influence the academic self-concept.
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(b) The variables in ovals are latent, that is not observed; the variables represented by boxes are
observed. Double-headed arrows represent the correlation between two variables.

(c) ∗ Model 1: no correlation between academic self-concepts

∗ Model 2: correlation between academic self-concepts

∗ Model 3: correlation between academic self-concepts and between two variables of aca-
demic ability

(d) According to Proposition 3.29 the path coe�cients in this case aren’t identifiable because each
factor has to have at least three measurements. The author agrees and sets this coe�cient
to 0.9. This issue is discussed in the last paragraph of the section “Tests of initial a priori
models” and in section “Sensitivity analysis”.

(e) If the latent grades are observed, then model 3 is identifiable. (Two measurements on academic
self-concept T4 balance with four in ability T1.)

Q 4 (a) First, we prove that conditional independence fulfills the graphoid axioms. Let X,Y, Z, and
W be random variables; we denote (conditional) densities by f .

∗ Symmetry: Assume Y ?? X|Z. Then,

f(x, y|z) = f(x|z) · f(y|z) = f(y|z) · f(x|z) = f(y, x|z).

Hence, X ?? Y |Z.

∗ Decomposition: Assume X ?? (Y,W )|Z. Then,

f(x, y|z) =
Z

f(x, y, w|z) dw =

Z
f(x|z)f(y, w|z) dw = f(x|z) · f(y|z).

Hence, X ?? Y |Z and X ??W |Z holds by the same argument.

∗ Weak Union: Assume X ?? (Y,W )|Z. By the decomposition property, we have f(x|z) =
f(x|z, w). Hence,

f(x, y|w, z) = f(x, y, w|z)
f(w|z) =

f(x|z)f(y, w|z)
f(w|z) = f(x|z, w)f(y|w, z).

Therefore, X ?? Y |Z,W .

∗ Contraction: Assume X ?? Y |Z and X ??W |Z, Y . Then,

f(x, y, w|z) = f(x,w|z, y)f(y|z) = f(x|z, y)f(w|z, y)f(y|z) = f(x|z)f(y, w|z),

which yields X ?? (Y,W )|Z.

∗ Intersection: Assume X ?? Y |Z,W and X ??W |Z, Y . This implies,

f(x, y, w|z) = f(x|z, w)f(y, w|z), f(x, y, w|z) = f(x|z, y)f(y, w|z), (4)

and, thus, f(x|z, y) = f(x|z, w) for all x, y and w. Therefore, we get

f(x|z) =
Z

f(x,w|z) dw =

Z
f(x|z, w)f(w|z) dw =

Z
f(x|z, y)f(w|z) dw = f(x|z, y).

Plugging this relationship into (4) proves X ?? (Y,W )|Z.

(b) Second, we prove that the separation of vertex sets fulfills the graphoid axioms. Let I, J,K
and L be disjoint sets of vertices in the undirected graph G.

∗ Symmetry: Assume I ?? J |K [G]. Since every path from a node in I to J is also a path
from a node in J to I, it holds J ?? I|K [G].

∗ Decomposition: Assume I ?? (J, L)|K [G]. The set of paths between I and (J, L) is a
superset of the set of paths between I and J and I and L. Hence, I ?? J |K [G] and
I ?? L|K [G].
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∗ Weak Union: Assume I ?? (J, L)|K [G]. All paths between I and J that don’t contain a
node in L are blocked by K, and also by (K,L), due to the decomposition property. All
paths between I and J that contain at least one node in L are blocked by L and, therefore,
also by (K,L). Hence, we have I ?? J |K,L [G].

∗ Contraction: Assume I ?? J |K [G] and I ?? L|K, J [G]. All paths between I and (J, L)
that don’t contain at least one vertex in J are blocked by K; otherwise, we could have an
open path between that vertex and I that contradicts I ?? J |K [G]. All paths between I
and (J, L) that don’t contain a vertex in J are a subset of paths between I and L and,
therefore, blocked by (K, J). Since these paths don’t contain nodes in J , they are also
blocked by K. In summary, we have I ?? (J, L)|K [G].

∗ Intersection: Assume I ?? J |K,L [G] and I ?? L|K, J [G]. Any path p starting at a vertex
in (J, L) and ending at a vertex in I has a “subpath” ps that starts at the last vertex of p
that is contained in (J, L). Clearly, if ps is blocked by K, so is p. Since ps contains only
one vertex in (J, L), it is either an element of J or L. In the former case, the subpath is
blocked by (K,L) and, because it doesn’t contain a vertex in L, also blocked by K. In the
latter case, it is blocked by (K, J) and, by the same argument, also blocked by K. Hence,
p is blocked by K and we get I ?? (J, L)|K [G].

(c) Lastly, we prove that the d-separation of vertex sets in DAGs satisfies the graphoid axioms:

∗ Symmetry: if J �? K|L, then the reverse should hold by definitionK �? J |L.
∗ Weak Union: if J �? K [M |L, then J �? K|L [M :
[Proof by contradiction] Suppose ⇡ 2W (J ? K|L [M).
If ⇡ has no collider in M , then J ? K|L should hold, which contradicts J �?
K|L.
If ⇡ has a collider in M , let ⇡0 be the subpath of ⇡ from J to the first vertex on ⇡ in M .
Then ⇡0 2W (J ? M |L), which contradicts J �? M |L.
In conclusion, this type of walk ⇡ doesn’t exist, and J �? K|L [M .

∗ Contraction: Assume J �? K|M and J �? L|M [ K, then J �?
L [K|M :
[Proof by contradiction] By assumption, J �? K|M , now suppose ⇡ 2 W (J
? L|M).
By this setup, we claim that ⇡ doesn’t have any vertex in K. Otherwise, considering
the subpath construction method mentioned in the previous proof, we can construct a
⇡0 2W (J ? K|M).
Based on this claim, the m-connectedness would still hold if we condition on an irrelevant
vertex set: ⇡ 2W (J ? L|M [K), which contradicts the assumption.
In conclusion, this type of walk ⇡ doesn’t exist, and J �? L [K|M .

∗ Intersection: Assume J �? K|L [M and J �? L|M [K, then J �?
L [K|M :
[Proof by contradiction] Suppose ⇡ 2W (J ? L [K|M).
Let ⇡0 be the subpath of ⇡ from J to the first vertex on L[K. Without loss of generality,
suppose the endpoint of ⇡0 is in L. Then ⇡ 2W (J ? L|M [K), which contradicts
the assumption.
In conclusion, this type of walk ⇡ doesn’t exist, and J �? L [K|M .

Q 5 We only present the detailed solution for (a) and give the conclusions for (b) - (e).
First, we use moralisation to investigate X2 ?? X6|X4. The ancestors of X2, X4 and X6 are X4, X1

and X3 and the moralized ancestral graph is depicted in Figure 2. We see that the path 2� 3� 6 is
unblocked. Turning to the d-separation perspective, we notice that the path 2  1 ! 3 ! 6 isn’t
blocked by 4 and thus X2 and X6 aren’t d-separated by X4. Both criteria agree that X2 ?? X6|X4

doesn’t hold.
Likewise for (b), (c) and (d) we can’t conclude that the respective conditional independence state-
ments hold. However, the relation X5 ?? X6|{X3, X4} in (e) is true.

Q 6 For the IC/SGS algorithm, we start with a fully connected undirected graph and remove the edge
between j and k if they are d-separated. Now we prove the first observation:
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Figure 2: Moralised graph of Question 4 (a).

“)” If j and k are adjacent, there exists an edge between them, i.e., j and k are directly connected,
without loss of generality, we assume j ! k, which is a d-connecting path between j and k that
can’t be blocked by any subset of V\{j, k}. Thus j and k cannot be d-separated by any subset of
V\{j, k}.
“(” We can write V in a topological order, and WLOG, we assume j /2 des(k). For j ? k,
if j and k are not adjacent, we claim that we can find a subset of V\{j, k} to block j to k, namely
the parents of k:

j �? k| pa(k)

Consider the case when there is no collider between j and k, then we could write the path between
j and k as j ? k, and condition on the parents of k can e↵ectively block the pathway:

j �? k| pa(k)

which contradicts the assumption that no subset of V\{j, k} can block j to k.

When j ? k, there is (at least) one collider l on the pathway. In this case, {l} 2 V\{j, k}
naturally blocks j to k.

j ? l k,

which is equivalent to:
j �? k

Besides, we want to prove that in this case, d-separation still holds after we condition on the parents
of k, which is equivalently saying that l is not an ancestor of k: Therefore, we can always condition

on pa(k) to block the walk from j to k, which contradicts that j and k cannot be d-separated by
any subset of V\{j, k}. Thus, j and k are adjacent.

Q 7 (0) We start with a fully connected, undirected graph.

(1) We remove all edges between i and j if Xi ?? Xj |XK for some K ✓ V \ {i, j}. For instance,
we remove the edges 1� 4, 1� 5, 1� 6 and 1� 7 because of X1 ?? {X4, X5, X6, X7}|{X2, X3}.
Proceeding with this method, we arrive at the skeleton depicted in Figure 3.

(2) We orient all paths i� k � j such that i and j aren’t adjacent as i ! k  j if Xi 6?? Xj |XK

for all K ✓ V \ {i, j} containing k. We find three such cases, namely 2 ! 4  3, 4 ! 7  5
and 5! 7 6, and orient the graph accordingly, see Figure 4.

(3) Last, we orient edges to avoid cycles or the introduction of new immoralities. We find that
4� 6 must be oriented 4 ! 6 to avoid the immorality 2 ! 4  6. Subsequently, we can also
orient 3� 6 as 3! 6 to avoid a cycle 3! 4! 6! 3. Thus, get the graph depicted in Figure
5.
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Figure 3: Skeleton (Step 1).
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Figure 4: Orientied immoralities (Step 2).

Q 8 Let (t1, . . . , tp) be a topological ordering of the DAG and define (t̃1, . . . , t̃p̃) = (ti)i2V \(J[K), where
p̃ = #(V \ (J [K)).
Base case For t̃1, we have pa(t̃1) \ (J [K) = ;. Hence, by definition we get

Xt̃1(xJ ,xK) = Xt̃1(xpa(t̃1)\J ,xpa(t̃1)\K) = Xt̃1(Xpa(t̃1)\J(xK),xpa(t̃1)\K) = Xt̃1(xK)

because of XJ(xK) = xJ .
Induction assumption For all l 2 [p̃], l  L < p̃, it holds Xt̃l(xJ ,xK) = Xt̃l(xK).
Induction step Since we have pa(t̃L+1)\ (J [K) ✓ {t̃s}1sL, we can use the induction assumption
and the definition of counterfactuals to complete the proof as follows

Xt̃L+1
(xJ ,xK) = Xt̃L+1

�
xpa(t̃L+1)\J ,xpa(t̃L+1)\K ,Xpa(t̃L+1)\(J[K)(xJ ,xK)

�

= Xt̃L+1

�
Xpa(t̃L+1)\J(xK),xpa(t̃L+1)\K ,Xpa(t̃L+1)\(J[K)(xK)

�
= Xt̃L+1

(xK).

Q 9 (a) Given the m-separation between sets J and K:

J �? K|L

If L \ N = ;, then the conclusion trivially holds. Now we assume L \ N 6= ;. Here we first
prove a claim that the walk between J and K doesn’t contain any vertices in N \ L.

Since N has no outgoing edges, all the vertices in N can only be colliders. By the m-separation
between sets J andK given L, we can make the following observations: (1) if there is no collider

1
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5

6

7

Figure 5: Markov equivalence class (Step 3).
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on the walk from J to K, then the walk between J and K doesn’t contain any vertices in N ,
thus no vertices in N \ L; (2) if there is (at least) one collider on the walk from J to K, then
it can’t be in L, thus no vertices in N \ L.

To summarize, the walk between J and K doesn’t contain any vertices in N \ L. Therefore,
by removing N \ L from L in the condition set, we won’t change the m-separation between
sets J and K, i.e.:

J �? K|L\N

(b) Suppose there exists a walk ⇡ 2 W (J ? m|L\N), where m 2 L \ N \ ch(K) and the
non-endpoints in ⇡ have no overlap with L\N \ ch(K) (intuitively, the shortest walk from J
to any element in L \N \ ch(K)).

In this case, because m 2 N \ ch(K), we can construct another walk by adding K:

⇡0 = J ? m K

In addition, because m 2 L, then ⇡0 is m-connected given L, which contradicts the original
assumption. Therefore, J �? L \N \ ch(K)|L\N

(c) See the written proof.

Q 10 (a) Performing interventions on A1 and A2, we get the SWIG is depicted in Figure 6. We can
read Y (a1, a2) ?? A1 directly o↵ the graph as there is no path between A1 and Y (a1, a2). If

Figure 6: SWIG for interventions on A1 and A2.

we only intervene on A2, we obtain the SWIG in Figure 7. We see that A1 and X block all

Figure 7: SWIG for intervention on A2.

paths between A2 and Y (a2) which implies that A2 and Y (a2) are d-separated and A2 ??
Y (a2)|A1, X.

(b) Using Corollary 5.21 with XI = Y , XJ = (A1, A2) and XK = X, we get

P(Y (a1, a2) = y) =
X

x

P(Y = y|A1 = a1, A2 = a2, X = x)P(X = x|A1 = a1)

and thus

E[Y (a1, a2)] =
X

y

y
X

x

P(Y = y|A1 = a1, A2 = a2, X = x)P(X = x|A1 = a1)

=
X

x

P(X = x|A1 = a1)E[Y |A1 = a1, A2 = a2, X = x].
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(c)

E[Y (a1, a2)]
cond. ind.

= E[Y (a1, a2)|A1 = a1]

consist.
= E[Y (a2)|A1 = a1]

tower rule
=

X

x

P(X = x|A1 = a1)E[Y (a2)|A1 = a1, X = x]

cond. ind.
=

X

x

P(X = x|A1 = a1)E[Y (a2)|A1 = a1, X = x,A2 = a2]

consist.
=

X

x

P(X = x|A1 = a1)E[Y |A1 = a1, X = x,A2 = a2]

(d) If there is an unmeasured parent of X and Y the (conditional) independences A1 ?? Y (a1, a2)
and A2 ?? Y (a2)|A1, X still hold. Therefore, the derivation in (c) is still valid.

Q 11 To identify ATT, we apply usual tools such as consistency and the tower law as well as the rela-
tionship A ?? Y (0) |X.

ATT = E[Y (1)� Y (0)|A = 1] = E[Y |A = 1]�
X

x

E[Y (0)|A = 1, X = x]P(X = x|A = 1)

= E[Y |A = 1]�
X

x

E[Y (0)|A = 0, X = x]P(X = x|A = 1)

= E[Y |A = 1]�
X

x

E[Y |A = 0, X = x]P(X = x|A = 1).

Q 12 The question is equivalent to:

W (j ? k) 6= ; , P (j ? k) 6= ; (5)

“(” A path is a walk, so this direction of the proof is trivial.

“)” suppose ⇡ 2 W (j ? k), and let r be the repeated vertex closest to the end. Note here
if r is an empty set, then “)” holds. Now we restrict r 6= ;, and rewrite ⇡ as:

⇡ = j r ? r k

where we can treat r ? r as a backtrack walk, and replace it by simply r. Thus, we can
construct another walk ⇡0 such that:

⇡0 = j r k

Notice that ⇡0 has no repeated vertexes, thus we obtain a path from j to k, i.e. ⇡0 2 P (j ? k).

Q 13 (a) W.l.o.g. we can assume that Z,A and Y are standardised. Hence, the covariance matrix is
given by

cov
�
(Z,A, Y )T

�
=

0

@
1

�ZA 1
�ZA�AY �AY + �UA�UY 1

1

A .

We can identify �AY using �AY = �ZA�AY

�ZA
= cov(Z,Y )

cov(Z,A) .

(b) First, we decompose the average treatment e↵ect, use consistency and the fact that E[Y |A =
a] = P(Y = 1|A = a) for a 2 {0, 1}:

ATE = E[Y (1)� Y (0)]

= E[Y (1)|A = 1]P(A = 1) + E[Y (1)|A = 0]P(A = 0)� E[Y (0)|A = 1]P(A = 1)� E[Y (0)|A = 0]P(A = 0)

= E[Y |A = 1]P(A = 1) + E[Y (1)|A = 0]P(A = 0)� E[Y (0)|A = 1]P(A = 1)� E[Y |A = 0]P(A = 0)

= P(Y = 1, A = 1) + E[Y (1)|A = 0]P(A = 0)� E[Y (0)|A = 1]P(A = 1)� P(Y = 1, A = 0)
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To get lower and upper bounds, we use 0  E[Y (1)|A = 0]  1 and 0  E[Y (0)|A = 1]  1:

ATE � P(Y = 1, A = 1)� P(A = 1)� P(Y = 1, A = 0) = �P(Y = 0, A = 1)� P(Y = 1, A = 0),

ATE  P(Y = 1, A = 1) + P(A = 0)� P(Y = 1, A = 0) = P(Y = 1, A = 1) + P(Y = 0, A = 0).

From the first estimation we see that the width between the upper and lower bound is
P(A = 0) + P(A = 1) = 1.

(c) By examining the SWIG resulting from an intervention on A, we see that Z ?? Y (a) for
a 2 {0, 1}. Applying the first rule of counterfactual calculus and consistency, we get

P(Y (1) = 1) = P(Y (1) = 1|Z = z) � P(Y (1) = 1, A = 1|Z = z) = p(1, 1|z)

for z 2 {0, 1}. Likewise, we can get a bound in the opposite direction

P(Y (1) = 1) = 1� P(Y = 0, A = 1|Z = z)� P(Y (1) = 0, A = 0|Z = z)  1� p(0, 1|z).

Using the same reasoning to P(Y (0) = 1), we obtain

p(1, 0|z)  P(Y (0) = 1)  1� p(0, 0|z)

and thus

p(1, 1|z)  E[Y (1)]  1� p(0, 1|z),
p(1, 0|z)  E[Y (0)]  1� p(0, 0|z).

Consequently, we can bound the average treatment e↵ect by

max
z,z02{0,1}

p(1, 1|z) + p(0, 0|z0)� 1  E[Y (1)� Y (0)]  min
z,z02{0,1}

1� p(0, 1|z)� p(1, 0|z0).

Spelling out the expressions for the lower and upper bound for all four combinations of z and
z0, we arrive at the bounds stated in the exercise. From the estimations above, we see

UB� LB = min
z1,z2,z3,z42{0,1}

2�
⇥
p(1, 1|z1) + p(0, 0|z2) + p(0, 1|z3) + p(1, 0|z4)

⇤

 min
z2{0,1}

2�
⇥
p(1, 1|z) + p(0, 0| 1� z) + p(0, 1|z) + p(1, 0| 1� z)

⇤

= min
z2{0,1}

2�
⇥
P(A = 1|Z = z) + P(A = 0|Z = 1� z)

⇤

= min
z2{0,1}

P(A = 0|Z = z) + P(A = 1|Z = 1� z)

= min
n
2�

�
P(A = 0|Z = 0) + P(A = 1|Z = 1)

�
,P(A = 0|Z = 0) + P(A = 1|Z = 1)

o

 1.

It follows that UB � LB = 1 implies P(A = 0|Z = 0) + P(A = 1|Z = 1) = 1. Thus, we have
P(A = 0|Z = 0) = P(A = 0|Z = 1) which leads to A ?? Z. The opposite direction follows
from the first of the upper system of equations. If A ?? Z, we obtain UB� LB = 2� 1 = 1.
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d-separa�on: How to determine which variables are independent in a Bayes net
(This handout is available at h�p://web.mit.edu/jmn/www/6.034/d-separa�on.pdf)

The Bayes net assump�on says: 

“Each variable is condi�onally independent of its non-descendants, given its parents.”

It’s certainly possible to reason about independence using this statement, but we can use 

d-separa�on as a more formal procedure for determining independence.  We start with an 

independence ques�on in one of these forms:

• “Are X and Y condi�onally independent, given {givens}?”

• “Are X and Y marginally independent?”

For instance, if we’re asked to 6gure out “Is P(A|BDF) = P(A|DF)?”, we can convert it into an 

independence ques�on like this: “Are A and B independent, given D and F?”

Then we follow this procedure:

1. Draw the ancestral graph.

Construct the “ancestral graph” of all variables men�oned in the probability expression. This is a

reduced version of the original net, consis�ng only of the variables men�oned and all of their 

ancestors (parents, parents’ parents, etc.)

2. “Moralize” the ancestral graph by “marrying” the parents.

For each pair of variables with a common child, draw an undirected edge (line) between them.  

(If a variable has more than two parents, draw lines between every pair of parents.)

3. "Disorient" the graph by replacing the directed edges (arrows) with undirected edges (lines).

4. Delete the givens and their edges.

If the independence ques�on had any given variables, erase those variables from the graph and 

erase all of their connec�ons, too.  Note that “given variables” as used here refers to the 

ques�on “Are A and B condi�onally independent, given D and F?”, not the equa�on “P(A|BDF) 

=? P(A|DF)”, and thus does not include B.  

5. Read the answer oE the graph.

• If the variables are disconnected in this graph, they are guaranteed to be independent.  

• If the variables are connected in this graph, they are not guaranteed to be independent.* 

Note that “are connected” means “have a path between them,” so if we have a path X-Y-Z, 

X and Z are considered to be connected, even if there’s no edge between them. 

• If one or both of the variables are missing (because they were givens, and were 

therefore deleted), they are independent.

* We can say “the variables are dependent, as far as the Bayes net is concerned” or “the Bayes 

net does not require the variables to be independent,” but we cannot guarantee dependency 

using d-separa�on alone, because the variables can s�ll be numerically independent (e.g. if

P(A|B) and P(A) happen to be equal for all values of A and B).  
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Prac�cing with the d-separa�on algorithm will eventually let you determine independence 

rela�ons more intui�vely. For example, you can tell at a glance that two variables with no 

common ancestors are marginally independent, but that they become dependent when given 

their common child node. 

Here are some examples of ques�ons we can answer about the Bayes net below, using 

d-separa�on:

1. Are A and B condi�onally independent, given D and F?  

(Same as “P(A|BDF) =? P(A|DF)” or “P(B|ADF) =? P(B|DF)”)

2. Are A and B marginally independent?  (Same as “P(A|B) =? P(A)” or “P(B|A) =? P(B)”)

3. Are A and B condi�onally independent, given C?

4. Are D and E condi�onally independent, given C?

5. Are D and E marginally independent?

6. Are D and E condi�onally independent, given A and B?

7. P(D|BCE) =? P(D|C)

Solu�ons are on the following pages.
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1. Are A and B condi�onally independent, given D and F?  

(Same as “P(A|BDF) =? P(A|DF)” or “P(B|ADF) =? P(B|DF)”)

Draw ancestral graph Moralize Disorient Delete givens

Answer: No, A and B are connected, so they are not required to be condi�onally independent 

given D and F.

2. Are A and B marginally independent?  (Same as “P(A|B) =? P(A)” or “P(B|A) =? P(B)”)

Draw ancestral graph Moralize Disorient Delete givens

Answer: Yes, A and B are not connected, so they are marginally independent.

3. Are A and B condi�onally independent, given C?

Draw ancestral graph Moralize Disorient Delete givens

Answer: No, A and B are connected, so they are not required to be condi�onally independent 

given C.

4. Are D and E condi�onally independent, given C?

Draw ancestral graph Moralize Disorient Delete givens

Answer: Yes, D and E are not connected, so they are condi�onally independent given C.
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5. Are D and E marginally independent?

Draw ancestral graph Moralize Disorient Delete givens

Answer: No, D and E are connected (via a path through C), so they are not required to be 

marginally independent.

6. Are D and E condi�onally independent, given A and B?

Draw ancestral graph Moralize Disorient Delete givens

Answer: No, D and E are connected (via a path through C), so they are not required to be 

condi�onally independent given A and B.

7. P(D|CEG) =? P(D|C)

Rewrite as independence ques�ons “Are X and Y condi�onally independent, given {givens}?”:

• Are D and E condi�onally independent, given C?  AND

• Are D and G condi�onally independent, given C?

(a) Are D and E condi�onally independent, given C?  Yes; see example 4.

(b) Are D and G condi�onally independent, given C?  No, because they are connected (via F):

Draw ancestral graph Moralize Disorient Delete givens

Overall answer: No.  D and E are condi�onally independent given C, but D and G are not 

required to be.  Therefore we cannot assume that P(D|CEG) = P(D|C).

6.034 – November 2015 Page 4 of 4



Ihm J >fuk/LE)JhxkIM

where M = L Wan (JUKUL) ((JUK).

If Suppose this is not true and let it be the shortest

walk in W(Jhu>key K(M).
So non-endprine(a) 1 (JUK) = 0.

Noce : MU (J Uk) = n (JUKUL).

D Th has no collider

Then t is like Jusk , Jark ,
JaK

.

# cannot contain a non-endpoint , otherwise it must

contain an edge like JEpa(j) or palk->K and

it cannot be m- connected given M.

So we are down to J-K , JFK
, JESK.

But none of this is possible because JG X KIL.

② it has 1 colliders·

Then it looks like Jhux Ms, K ,
J ht in > M &

> K
.

&

--1

A similar argument shows that each arc in in must

be a single edge , because non-endpoint() [an (JUKUM)
= an(JUk(L)

.

This shows in is the shortest in W(JK *7, KIM).

Consider any collider m on it. Define the following map
from t to it

:

1
. If me L ,

it = T
.




