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Q 1 Let Bi = Bi(x[n]) be the group (stratum) of unit i.

⇡(a[n]|x[n]) =

(Qm
j=1

� nj

n1j

��1

, if
Pn

i=1
aiI(Bi = j) = n1j and

Pn
i=1

(1� ai)I(Bi = j) = nj � n1j for all j 2 [n]

0, otherwise.

Q 2 It’s easy to show that F � F�1
(↵) � ↵ for all ↵ 2 [0, 1]. We have that if U ⇠ Unif[0, 1], then

F
�1

(U) ⇠ F . Therefore

P(F (T )  ↵) = P(F � F�1
(U)  ↵)

 P(U  ↵)
= ↵

Q 3 We denote n1 =
Pn

i Ai and n0 =
Pn

i=1
(1 � Ai). We drop conditioning on W in the following

derivation for notational convenience.

Step 1. Rewrite the estimator as:

�̂n =
1

n1

nX

i=1

AiYi �
1

n0

nX

i=1

(1�Ai)Yi

=
1

n

nX

i=1

✓
n

n1

AiY
1

i �
n

n0

(1�Ai)Y
0

i

◆

=
1

n

nX

i=1

✓
n

n1

AiY
1

i �
n

n0

(
n1 + n0

n
�Ai)Y

0

i

◆

=
1

n

nX

i=1

✓
n

n1

AiY
1

i �
n

n0

(
n1 + n0

n
�Ai)Y

0

i

◆

=
1

n

nX

i=1

0

BB@
n

n1

0

BB@Ai �
n1

n| {z }
Zi

+
n1

n

1

CCAY
1

i �
n

n0

0

BB@
n0

n
�

0

BB@Ai �
n1

n| {z }
Zi

1

CCA

1

CCAY
0

i

1

CCA

=
1

n

nX

i=1

(Y
1

i � Y
0

i ) +
1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆

= � +
1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆

Step 2. Thus far, we have shown that the di↵erence-in-means estimator is equivalent to:

�̂n = �n +
1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆
, (1)

in which the only random quantities are {Zi}ni=1
. Moreover, E[Zi] = 0, var[Zi] =

n1n0
n , and

cov[ZiZj ] = E[ZiZj ] = E[AiAj ]�
�
n1
n

�2
= � n1n0

n(n�1)
for i, j 2 [n], i 6= j.
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Step 3. Expand the variance form using the expectation, variance, and covariance we had in Step 2:

var(�̂n) = var

 
�n +

1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆!

= var

 
1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆!

= E
 
1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆!2

=

nX

i=1


1

nn1

� n1 � 1

n(n� 1)n1

�
(Y

1

i )
2
+

nX

i=1


1

nn0

� n0 � 1

n(n� 1)n0

�
(Y

0

i )
2
+

nX

i=1

2

n(n� 1)
Y

1

i Y
0

i

=
1

n1

S(1)
2
+

1

n0

S(0)
2 � 1

n
S(0, 1)

2
.

A bit of reflection Di↵erence-in-means estimator is unbiased for the sample average treatment e↵ect:

E[�̂] = E
"
�n +

1

n

nX

i=1

Zi

✓
n

n1

Y
1

i +
n

n0

Y
0

i

◆#

= �n,

where E[Zi] = 0 for all i 2 [n]. The following expressions are unbiased estimators for S
2

0
and

S
2

1
, respectively.

Ŝ
2

0
=

1

n0 � 1

nX

i=1

(1�Ai)(Yi � Ȳ0)
2

Ŝ
2

1
=

1

n1 � 1

nX

i=1

Ai(Yi � Ȳ1)
2

The last term in the estimation expression can be written as:

S(0, 1)
2
=

1

n� 1

nX

i=1

{Y 1

i � Y
0

i � �n}2

=
1

n� 1

nX

i=1

{Y 1

i � Y
0

i � �n}2

Q 4 We use the notation ⇡ := P(Ai = 1|Xi). First, we consider the most general case and set the

derivatives w.r.t. �3 and �3 to zero

@

@�3
E
⇥
(Y � ↵3 � �3A� �T3 X �A(�

T
3
X))

2
⇤
= E[XY ]� �3E[XX

T
]� ⇡�3E[XX

T
] = 0, (2)

@

@�3
E
⇥
(Y � ↵3 � �3A� �T3 X �A(�

T
3
X))

2
⇤
= E[AXY ]� ⇡�3E[XX

T
]� ⇡�3E[XX

T
] = 0. (3)

Subtracting (3) from (2), we get

E[XY ]� E[AXY ]� (1� ⇡)�3E[XX
T
] = 0 , �3 =

E[XX
T
]
�1E[(1�A)XY ]

1� ⇡ .

We cancel 1�⇡ and apply the tower property as well as Theorem 2.12 to get an expression in terms

of the counterfactual.

�3 =
E[XX

T
]
�1E[XY |A = 0](1� ⇡)

1� ⇡ = E[XX
T
]
�1E[XY |A = 0]

= E[XX
T
]
�1E

⇥
E[XY |A = 0, X]

⇤
= E[XX

T
]
�1E

⇥
X E[Y (0)|X]

⇤
= E[XX

T
]
�1E[Y (0)X].
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From (3), we get

�3 + �3 =
E[XX

T
]
�1E[AXY ]

⇡
, �3 =

E[XX
T
]
�1E[XY |A = 1]⇡

⇡
� �3.

By a similar reasoning as above, we arrive at

�3 = E[XX
T
]
�1
�
E[XY |A = 1]� E[XY |A = 0]

�
= E[XX

T
]
�1E[X(Y (1)� Y (0))].

For �2, we consider equation (2) and replace �3 by �2 and �3 by 0. Therefore, we get

�2 = E[XX
T
]
�1E[XY ] = E[XX

T
]
�1E

h
X
�
⇡E[Y (1)|X] + (1� ⇡)E[Y (0)|X]

�i

= E[XX
T
]
�1
�
⇡E[Y (1)X] + (1� ⇡)E[Y (0)X]

�

Q 5 We prove the most general case, i.e. m = 3, and introduce the notations Z = (1, A,X,AX)
T
,

✓ = (↵3,�3, �3, �3)
T
, ⌃ = XX

T
and "3 = Y � ✓TZ. Recall E[X] = 0, A ?? X, ⇡ = P(A = 1) and

A
2
= A. First, we use these relationships to find an expression for E[ZZ

T
]:

E[ZZ
T
] = . . . =

0

BB@

1 ⇡ 0 0

⇡ ⇡ 0 0

0 0 ⌃ ⇡⌃

0 0 ⇡⌃ ⇡⌃

1

CCA .

From Lemma 2.26, we know that

V3 =

h
E[ZZ

T
]
�1E[ZZ

T
"
2

3
]E[ZZ

T
]
�1

i

22

.

Since E[ZZ
T
] has a block structure, the formula for V3 reduces to

V3 =

"✓
1 ⇡

⇡ ⇡

◆�1

E
✓
"
2

3
A"

2

3

A"
2

3
A"

2

3

◆✓
1 ⇡

⇡ ⇡

◆�1
#

22

= . . . =
E[(A� ⇡)2"2

3
]

⇡2(1� ⇡)2 .

The derivation of V1 and V2 works analogously by replacing Z with (1, A)
T
and (1, A,X)

T
, respec-

tively.

The formula we have just derived yields that V1 = V2 = V3 if and only if E[(A � ⇡)
2
"1] =

E[(A� ⇡)2"2] = E[(A� ⇡)2"3]. From the proof of Theorem 2.30, we know that

"1 = "3 + �
T
3
X +A(�

T
3
X),

"2 = "3 + (�3 � �2)TX +A(�
T
3
X),

which implies that �2 = �3 = �3 = 0) V1 = V2 = V3.

We construct a counter-example to disprove V2 < V1. From the equations above, we get "1 =

"2 + �
T
2
X. Moreover, applying the formula for the variance yields

V1  V2 , E[(A� ⇡)2"2
1
]� E[(A� ⇡)2"2] = E[(A� ⇡)2(2�T

2
X"2 + �

T
2
XX

T
�2)]  0. (4)

We use the data-generating mechanism Y = � 3

4
X +AX with A ⇠ Bernoulli(1/4) and estimate �2

as

�2 =
E[XY ]

E[X2]
=

E[� 3

4
X

2
+AX

2
]

E[X2]
= �1

2
.

Hence, we obtain "2 = Y � �2X = � 1

4
X +AX and insert it into (4)

E
⇣

A� 1

4

⌘2⇣1
4
X

2 �AX
2
+

1

4
X

2

⌘�
= E[X2

]E
⇣

A� 1

4

⌘2⇣1
2
�A

⌘�
= � 1

32
E[X2

] < 0.

Remark. The randomization assumption is not violated by the counterexample. By consistency,

we have Y (A) = Y = � 3

4
X + AX and, hence, Y (1) = � 3

4
X + X. Then, Y (1) ?? A follows from

A ?? X and Y (0) ?? A works analogously.
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Q 6 The conditional distribution of N11 given the column margins N.0 and N.1 is:

N01 ⇠ Bin(N0.,⇡0)

N11 ⇠ Bin(N1.,⇡1)

N.1 = N01 +N11

Therefore, the conditional density under the null (i.e. ⇡0 = ⇡1 = ⇡) can be written as:

P(N11|N.1, N.0) =

✓
N1.

N11

◆
⇡
N11(1� ⇡)N10

✓
N0.

N01

◆
⇡
N01(1� ⇡)N00

✓
N..

N.1

◆
⇡N.1(1� ⇡)N.0

=

✓
N1.

N11

◆✓
N0.

N01

◆

✓
N..

N.1

◆ =

✓
N1.

N10

◆✓
N0.

N00

◆

✓
N..

N.0

◆

which takes the same form as Fisher’s exact test in the randomization model shown in the lecture

notes.

Q 7 (a) If A is randomized by sampling without replacement, the treatment assignments are exchange-

able, that is

(A1, . . . , Aj , . . . , An)
D
= (A�(1), . . . , A�(j), . . . , A�(n))

for any permutation �. Define  i :=  (i/n) and  
r
i :=  (ri/n) for i 2 [n]. Conditional on W,

the  
r
i are fixed and there exists a permutation � such that  i =  

r
�(i) for all i 2 [n]. Hence,

P(T (A,W)  t|W) = P
⇣ nX

i=1

Ai 
r
i  t

��W
⌘
= P

⇣ nX

i=1

A�(i) i  t
��W
⌘

= P
⇣ nX

i=1

Ai i  t
��W
⌘
= P

⇣ nX

i=1

Ai i  t

⌘
,

where the penultimate equality follows from exchangeability and the last equality follows from

A ?? W. Hence, conditional on W, the distribution of T (A,W) does not depend on the

ranks W.

(b) When  (r) = r, we are looking at a Wilcoxon rank sum statistic defined as:

T (A,W) =

nX

i=1

Ai
ri

n
=

1

n

nX

i=1

Airi

Recall that 1 + 2 + . . . + k = k(k + 1)/2. If the treated subjects (assume total n1 units) have

the smallest possible ranks, 1 to n1, then

T =
1

n
(1 + 2 + . . . + n1) =

n1(n1 + 1)

2n
.

If the treated subjects have the largest possible ranks, n� n1 + 1 to n, then

T =
1

n
(n� n1 + 1 + n� n1 + 2 + · · ·+ n) =

n1(2n� n1 + 1)

2n
.

All the integers between n1(n1 +1)/2 and n1(2n� n1 +1) are possible values of nT . The null

distribution of T under the sharp null hypothesis is symmetric about
n1(n+1)

2n , and thus:

T̄ =
n1(n+ 1)

2n
(5)
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Another way to think about this problem is by using the linearity of expectation, which tells

us that

T̄ =
1

n

nX

i=1

E[Airi] = E[Airi] = E[Ai]E[ri] =
n1(n+ 1)

2n

Now we consider the variance. This follows from the fact that the variance of the sample

sum of a simple random sample of size n1 from a list of n numbers is:

var(nT ) =
(n� n1)n1 var(ri)

n� 1

where ri is uniformly distributed, thus var(ri) =
(n�1)(n+1)

12
. In conclusion:

var(T ) =
(n� n1)n1(n+ 1)

12n2

By CLT, when n is “large enough”, the distribution of test statistics T could be approximated

by a normal distribution:

N
✓
n1(n+ 1)

2n
,
(n� n1)n1(n+ 1)

12n2

◆
(6)

Equivalently:

Tn � n1(n+1)

2nq
(n�n1)n1(n+1)

12n2

⇠d N (0, 1) (7)

We can base a test of the sharp null hypothesis on T . To test against the alternative that

treatment tends to increase responses, we would reject large values of T . To test against the

alternative that treatment tends to decrease responses, we would reject small values of T .

The critical value of the test is set using the probability distribution of T on the assumption

that the sharp null hypothesis is true. For a level-alpha test against the alternative that

treatment increases responses, we would find the smallest c such that, if the sharp null is true,

P (T � c)  ↵. We will reject the sharp null if the observed value of T is c or greater.

Q 8 (a) First, we compute E for the di↵erence-in-means estimator:

E
⇥
T (A,X,Y(0))|X,Y(0)

⇤
= E

"
1

n1

nX

i=1

AiYi(0)�
1

n� n1

nX

i=1

(1�Ai)Yi(0)

���X,Y(0)

#
= 0,

since E[Ai] =
n1
n for all i 2 [n]. According to the definition, the Hodges-Lehmann estimator

needs to fulfill

1

n1

nX

i

Ai(Yi � �̂HLAi)�
1

n0

nX

i=1

(1�Ai)(Yi � �̂HLAi) = 0.

As Ai(1�Ai) = 0 and
Pn

i=1
A

2

i = n1, we arrive at

�̂HL =
1

n1

nX

i

AiYi �
1

n0

nX

i=1

(1�Ai)Yi.

(b) Let j1 and j2 be the indices of the two observations belonging to the pair Dj , j 2 [m]. By

definition of the treatment assignment mechanism, we have Dj = (Aj1 � Aj2)(Yj1 � Yj2) for

j 2 [m]. Analogously to (a), we compute E for the sign statistic:

E
⇥
T (A,X,Y(0))

��X,Y(0)
⇤
= E

 mX

j=1

sign
�
(Aj1 �Aj2)(Yj1(0)� Yj2(0))

���X,Y(0)

�

=

mX

j=1

E[sign(Aj1 �Aj2)] = 0,
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as for every pair Dj , Aj2 = 1�Aj1 and, thus, P(Aj1 �Aj2 = 1) = P(Aj1 �Aj2 = �1) = 1

2
. It

is easy to check that T (A,X,Y��A) =
Pm

j=1
sign(Dj��). Therefore, the Hodges-Lehmann

estimator is given by

�̂HL =

(
D
(

m+1
2 )

, if m is odd,

1

2
D
(

m
2 )

+
1

2
D
(

m
2 +1)

, if m is even.

(c) This directly follows from Theorem 2.19:

P(� 2 C↵) = P(P (�) � ↵) � 1� ↵.

If the randomization distribution T (A,X,Y(0))|W does not depend on W, then it has the

same distribution for every choice of � in the null hypothesis. Hence, if we test a range of

di↵erent �-values, we need to compute the quantiles of the distribution only once instead of

for every � individually. This lowers the computational costs considerably.

Q 9 For a directed graph G = ([p], E) we prove: acyclicity, there is a topological ordering of the nodes.

( by contradition: Suppose there exists a topological ordering of G, i.e. a permutation of (k1, . . . , kp)

of (1, . . . , p) such that (i, j) 2 E implies ki < kj . Further, assume that the graph is not acyclic,

that is there is a cycle ki ! kj ! . . .! ki. This leads to the contradiction ki < ki.

) by induction over the vertices:

– Base case p = 1: obviously true

– Induction hypothesis: For any DAG with l vertices, there is a topological ordering.

– Induction step l ! l + 1: Any DAG with l + 1 vertices has at least one vertex without

incoming edges. Take one such vertex and call it k1. Define the graph G0
= (V

0
, E

0
) by

deleting k1 and the associated edges from G. By the induction hypothesis, G0
has a topological

ordering(k2, . . . , kp). Hence, (k1, . . . , kp) is a topological ordering of the original graph G.

We prove that for every J ⇢ [p] there exists l 2 J \ [p] such that de(l) ✓ J . We denote the

topological ordering (k1, . . . , kp) and set i = max{j 2 [p] : kj /2 J}. By definition, l = ki can only

have descendants in J .

Q 10

Q 11 Wright’s path analysis assumes all vertices are standardized. Thus we now have var(A) = var(X) =

var(Y ) = 1.

First, consider the paths starting from A to Y (or conveniently refer to the lecture notes), we have:

A!M ! Y

A X ! Y

A X ! Y

A X Y

6



Second, consider the trek rule:

A A!M ! Y

A X X ! A!M ! Y

A X ! A!M ! Y

A X A!M ! Y

A X X ! Y

A X ! Y

A X Y

The top four treks correspond to the first path (using � algebra defined on the lecture notes they

would give us the same value), and the fifth trek corresponds to the second path. The rest are the

same. Thus the trek rule and Wright’s path analysis to find Cov(A, Y ) yield the same solution.

Q 12 First, we can write out the expression of the partial correlation between V1 and V2 given V3:

corr(V1, V2|V3) = corr(V1 � ⌃13⌃
�1

33
V3, V2 � ⌃23⌃

�1

33
V3)

=
⌃12 � ⌃13⌃

�1

33
⌃32q

⌃11 � ⌃13⌃
�1

33
⌃31

q
⌃22 � ⌃23⌃

�1

33
⌃32

Now we work on the inverse of matrix ⌃, first treat the

⌃ =

0

@
⌃11 ⌃12 ⌃13

⌃21 ⌃22 ⌃23

⌃31 ⌃32 ⌃33

1

A =

✓
E F

G H

◆

Thus by using the formula for block matrix inversion, we have:

⌦ = ⌃
�1

=

✓
S
�1 �S�1

FH
�1

�H�1
GS

�1
H

�1
+H

�1
GS

�1
FH

�1

◆
=

0

@
⌦11 ⌦12 ⌦13

⌦21 ⌦22 ⌦23

⌦31 ⌦32 ⌦33

1

A

Here only the upper left matrix inverse is of interest because it has the following elements:

S = E � FH
�1

G

=

✓
⌃11 � ⌃13⌃

�1

33
⌃31 ⌃12 � ⌃13⌃

�1

33
⌃32

⌃21 � ⌃23⌃
�1

33
⌃31 ⌃22 � ⌃23⌃

�1

33
⌃32

◆

Now we are dealing with a 2⇥ 2 matrix. Recall the previous expression of the partial correlation,

we can pinpoint a few terms from the matrix S. We again use shorthand notation for the elements

in S:

S =

✓
a b

c d

◆
, corr(V1, V2|V3) = b/

p
ad

Move forward, we just need to inverse S:

S
�1

=
1

ad� bc

✓
d �b
�c a

◆
=

✓
⌦11 ⌦12

⌦21 ⌦22

◆

And it’s obvious to show that:

� ⌦12p
⌦11⌦22

=
bp
ad

= corr(V1, V2|V3)
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2.2 Randomization inference: Estimation 21

Neyman (1923) considered the following simple di↵erence-in-means estimator:

�̂DIM = Ȳ1 � Ȳ0 where Ȳ1 =

P
n

i=1
AiYiP

n

i=1
Ai

, Ȳ0 =

P
n

i=1
(1�Ai)YiP

n

i=1
1�Ai

. (2.5)

For the rest of this section, we will abbreviate �̂DIM as �̂. Neyman studied the
conditional distribution of �̂ given the potential outcomes schedule. We refer to
this as the randomization distribution of �̂, because the only randomness here
comes from randomizing the treatment A. Of course, the randomization distri-
bution depends on the randomization scheme. Neyman considered sampling A

without replacement.
Let us first introduce some additional notation. Let the sample mean and vari-

ance of the potential outcome be

Ȳ (a) =
1

n

nX

i=1

Yi(a), S2(a) =
1

n� 1

nX

i=1

{Yi(a)� Ȳ (a)}2, a = 0, 1.

Further, let the sample variance of the individual treatment e↵ects be

S2(0, 1) =
1

n� 1

nX

i=1

{Yi(1)� Yi(0)� �n}2.

Neyman’s main result is summarized in the next theorem.

Theorem 2.2.1 Consider the Neyman-Rubin causal model and suppose A is
randomized by sampling without replacement with the constraint that

P
n

i=1
Ai =

n1 (Example 2.1.3). Let W = (Yi(a))i2[n],a2{0,1} be the potential outcomes sched-

ule. Then the mean and variance of the randomization distribution of �̂ are given
by

E(�̂ | W ) =
1

n

nX

i=1

Yi(1)� Yi(0) = �n, (2.6)

Var
�
�̂ | W

�
=

1

n0

S2(0) +
1

n1

S2(1)� S2(0, 1)

n
, (2.7)

where n0 = n� n1.

Proof First, by using the consistency assumption, we may rewrite the di↵erence-
in-means estimator as

�̂ =
1

n1

nX

i=1

AiYi�
1

n0

nX

i=1

(1�Ai)Yi =
1

n1

nX

i=1

AiYi(1)�
1

n0

nX

i=1

(1�Ai)Yi(0). (2.8)
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By the linearity of expectation and E(Ai) = n1/n, the mean of �̂ is given by

E(�̂ | W ) =
1

n1

nX

i=1

E(Ai)Yi(1)�
1

n0

nX

i=1

E(1�Ai)Yi(0)

=
1

n1

nX

i=1

n1

n
Yi(1)�

1

n0

nX

i=1

n0

n
Yi(0)

=
1

n

nX

i=1

Yi(1)� Yi(0).

To prove (2.7), we follow the strategy outlined in Cox (2009, sec. 3.2).5 Equation
(2.8) shows that �̂ is a linear function of W , so Var

�
�̂ | W

�
is a quadratic func-

tion of W . Because the randomization scheme and the estimator �̂ are invariant
to permuting the units, the variance of �̂ given W must also be permutation-
invariant. Furthermore, in the special case that all the units have the same po-
tential outcomes (i.e. Y1(0) = · · · = Yn(0) and Y1(1) = · · · = Yn(1)), we have
Var(�̂ | W ) = 0. There, the randomization variance can be written as

Var
�
�̂ | W

�
= c0S

2(0) + c1S
2(1) + c01S

2(0, 1), (2.9)

where c0, c1, and c01 are constants to be determined. Now consider the following
bivariate normal model:

(Yi(0), Yi(1)) ⇠ N

✓✓
0
0

◆
,

✓
�2

0
⇢�0�1

⇢�0�1 �2

1

◆◆
independently, i = 1, . . . , n.

By the law of total variation, (2.6), and (2.9), we have

Var(�̂) = E(Var(�̂ | W )) + Var(E(�̂ | W ))

=
⇥
c0 E(S

2(0)) + c1 E(S
2(1)) + c01 E(S

2(0, 1))
⇤
+Var(�n)

= c0 Var(Y1(0)) + c1 Var(Y1(1)) +
⇣
c01 +

1

n

⌘
Var (Y1(1)� Y1(0))

= c0�
2

0
+ c1�

2

1
+

⇣
c01 +

1

n

⌘
(�2

0
+ �2

1
� 2⇢�0�1).

On the other hand, consider first conditioning on A. By noticing that E(�̂ | A) =
0 under the bivariate normal model, we have

Var(�̂) = E(Var(�̂ | A))

= E

⇣ nX

i=1

1

n2

1

A2

i
�2

1
+

1

n2

0

(1�Ai)
2�2

0
� 2

n0n1

Ai(1�Ai)⇢�0�1

⌘

= E

⇣ nX

i=1

1

n2

1

Ai�
2

1
+

1

n2

0

(1�Ai)�
2

0

⌘

=
1

n1

�2

1
+

1

n0

�2

0
,

5 Cox (2009) assumed constant treatment e↵ect (so S2(0, 1) = 0) but considered the more general

randomized block design.
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where the third equality uses Ai 2 {0, 1}. Equating the two expressions of Var(�̂)
shows that c0 = 1/n0, c1 = 1/n1, and c01 = �1/n, which concludes our proof.

Remark 2.2.2 To prove (2.7), a simpler but perhaps less illuminating approach
involves directly computing the covariance matrix of A; see Exercise 2.4. Our
proof above is less straightforward but explains why the constants for S2

0
and S2

1

in (2.7) match those obtained from the normal theory (see also Imbens and Rubin,
2015, chap. 6, app. B) and can be more easily extended to other randomization
schemes (Exercise 2.6).

The fact that potential outcomes appear on the right hand side of (2.6) and
(2.7) should not come as a surprise, as the randomization distribution conditions
on the potential outcomes schedule W . This allows us to conclude from (2.6)
that �̂ is unbiased for �n regardless of what the potential outcomes are. On the
other hand, estimating the variance of �̂ is di�cult because the right-hand side
of (2.7) depends on unknown potential outcomes. In particular, there is no hope
to estimate S2(0, 1) because we can never observe any individual treatment e↵ect
Yi(1)� Yi(0) due to the fundamental problem of causal inference.

Fortunately, we can get a conservative estimator of Var
�
�̂ | W

�
by pretending

that S2

01
= 0, i.e. there is no variation in individual treatment e↵ects. The first two

terms in (2.7) can be estimated by the sample variance of the observed outcomes
within each treatment group

Ŝ2

1
=

1

n1 � 1

nX

i=1

Ai(Yi � Ȳ1)
2, Ŝ2

0
=

1

n0 � 1

nX

i=1

(1�Ai)(Yi � Ȳ0)
2. (2.10)

It is straightforward to verify that E(Ŝ2

a
| W ) = S2(a), a = 0, 1 (Exercise 2.5).

Putting these together, we obtain an variance estimator

V̂ = Ŝ2

0
/n0 + Ŝ2

1
/n1

that is conservative in the sense that E(V̂ | W )  Var
�
�̂ | W

�
. Under additional

assumptions that restrict the variability of the potential outcomes, one can es-
tablish a central limit theorem for �̂ (Li and Ding, 2017, thm. 5): for all “nice”
W ,

�̂ � �nq
Var

�
�̂ | W

� ! N(0, 1) in distribution as n ! 1. (2.11)

This can then be used to construct asymptotic tests and confidence intervals of
�n.

Note that in the central limit theorem in (2.11), the potential outcomes sched-
ule W = (Yi(a))i2[n],a2{0,1} is fixed and the only random quantity on the left

hand side is �̂ (through its dependence on the treatment A). In other words,
equation (2.11) says �̂ is asymptotically normal as long as the potential out-
comes are not too variable. So even though the sample size n increases in infinity,
equation (2.11) is inherently a finite-population statement. In contrast, the super-
population (or repeated sampling) theory of statistical inference assumes that the


