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1. In lectures, we discussed design and modelling bias of causal estimators. How large are these biases
for the regression adjustment estimators for Bernoulli trials?

2. Suppose the treatment A is binary. Let π(x) = P(A = 1 | X = x) be the propensity score. Under the
no unmeasured confounders assumption, prove that

A ⊥⊥ Y (a) | π(X), for a = 0, 1.

A function of the covariates b(X) is called a balancing score if it satisfies A ⊥⊥ X | b(X). Show that
π(X) is a balancing score and can be written as a function of any other balancing score b(X).

3. Consider the matched pair design of observational studies in which observation i is matched to obser-
vation i + n1, i = 1, . . . , n1. Suppose the data are iid and there are no unmeasured confounders. Let
Ci = (Xi, Yi(0), Yi(1)) and

M = {a[2n1] ∈ {0, 1}2n1 | ai + ai+n1
= 1,∀i ∈ [n1]}

be all the treatment assignments such that exactly one observation receives the treatment in each
matched pair. Show that if π(Xi) = π(Xi+n1

) for all i ∈ [n1], matching recreates a pairwise randomised
experiment in the sense that

P
(
A[2n1] = a

∣∣∣C[2n1],A[2n1] ∈M
)
=

{
2−n1 , if a ∈M,

0, otherwise.

4. Find the influence function for the regression estimator β̂1 in the analysis of Bernoulli trials. Veryify
that it has mean 0.

5. Let the parameter β be defined as the unique solution to

EP{m(β;V )} = 0.

Show that the influence function of β is given by

ϕP(V ) = −EP

[{ ∂

∂β
m(β, V )

}−1]
m(β, V ).

In your derivation, you may assume suitable differentiability of the function m and any differentiation
can be interchanged with expectation.

6. Consider an i.i.d. sample Vi = (Xi, Ai, Yi), i = 1, . . . , n with binary Ai. Suppose X is discrete. For
any a and x, let

π̂a(x) =

∑n
i=1 1{Ai=a,Xi=x}∑n

i=1 1{Xi=x}
,

and

µ̂a(x) =

∑n
i=1 1{Ai=a,Xi=x}Yi∑n
i=1 1{Ai=a,Xi=x}

be nonparametric estimators of πa(x) = P(A = 1 | X = x) and µa(x) = E[Y | A = a,X = x] (suppose
the denominators in the above expressions are positive). Show that the outcome regression estimator

β̂OR =
1

n

n∑
i=1

µ̂1(Xi)− µ̂0(Xi)
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is equal to the inverse probability weighted estimator

β̂IPW =
1

n

n∑
i=1

[ Ai

π̂(Xi)
− 1−Ai

1− π̂(Xi)

]
Yi.

Furthremore, show that for any a and function µ(x),

1

n

n∑
i=1

1{Ai=a}

π̂a(Xi)
µ(Xi) =

1

n

n∑
i=1

µ(Xi).

7. Continuing from the last question, let

ma(V ;µa, πa) =
1{A=a}

πa(X)

(
Y − µa(X)

)
+ µa(X), a = 0, 1.

(a) Under the positivity assumption πa(x) > 0,∀x, show that for any functions µ̃a(x) and π̃a(x),

βa := E[µa(X)] = E
[1{A=a}

πa(X)
Y
]
= E[ma(D;µa, πa)] = E[ma(D;µa, π̃a)] = E[ma(D; µ̃a, πa)].

(b) Consider the estimator

β̂a,DR =
1

n

n∑
i=1

ma(Vi; µ̂a, π̂a),

where µ̂a(x) and π̂a(x) are obtained by fitting some parametric models. Outline an argument

that shows β̂a,DR is doubly robust in the sense that β̂a,DR consistently estimates βa if at least one
of the parametric models for µ̂a(x) and π̂a(x) are correctly specified.

8. Consider the instrumental variables estimator

β̂g =
1
n

∑n
i=1(Yi − Ȳ )g(Zi)

1
n

∑n
i=1(Ai − Ā)g(Zi)

.

(a) Veryify that if Z is binary,

Cov(Z, Y )

Cov(Z,A)
=

E[Y | Z = 1]− E[Y | Z = 0]

E[A | Z = 1]− E[A | Z = 0]
.

(b) Prove the asymptotic normality of β̂g by showing the influence function of β̂g is given by

ψg(Z,A, Y ) =
[{Y − E(Y )} − β{A− E(A)}][g(Z)− E{g(Z)}]

Cov(A, g(Z))
.

(c) Derive the above expression again by applying the calculus of influence functions to the functional
β(P) = Cov(Y, g(Z))/Cov(A, g(Z)).

9. Consider a sensitivity analysis that specifies δa(x) = E[Y (a) | A = 1, X = x] − E[Y (a) | A = 0, X =
x], a = 0, 1. Show that the design bias for estimating the average treatment effect is given by

E{E[Y | A = 1, X]} − E{E[Y | A = 0, X]} − E[Y (1)− Y (0)] = E
[
(1− π(X))δ1(X) + π(X)δ0(X)

]
.

Use this to suggest an outcome regression estimator and a doubly robust estimator for the average
treatment effect.
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10. Consider the causal diagram below where U is unobserved. Suppose the negative control outcome W
has the same confounding bias as Y in the following sense:

E[Y (0) | A = 1]− E[Y (0) | A = 0] = E[W (0) | A = 1]− E[W (0) | A = 0].

Show that the so-called parallel trend assumption

E[Y (0)−W | A = 1] = E[Y (0)−W | A = 0]

is satisfied, and use it to show that the average treatment effect on the treated is identified by the
difference-in-differences estimator:

E[Y (1)− Y (0) | A = 1] = E[Y −W | A = 1]− E[Y −W | A = 0].

WY

U

A

11. Continuing from Question 3, suppose there exists an unmeasured confounder U ∈ [0, 1] so that A ⊥⊥
{Y (0), Y (1)} | X,U . Let πi = P(Ai = 1 | Xi, Ui). Show that the logistic regression model

P(A = 1 | X,U) = expit(g(X) + γU), 0 ≤ γ ≤ log Γ,

where g(·) is an arbitrary function, expit(η) = eη/(1+eη) and Γ ≥ 1 is a constant, implies Rosenbaum’s
sensitivity model

1

Γ
≤ πi/(1− πi)

πn1+i/(1− πn1+i)
≤ Γ, ∀i ∈ [n1].

For the sign test (see ES1 Q8b), derive a “upper bounding” asymptotic randomization p-value for this
model. This p-value should be valid for all randomization distributions in the above sensitivity model.
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