
CAUSAL INFERENCE Part III / Michaelmas 2023
Example Sheet 1 (of 3)

All questions below on randomized experiments assume the Neyman-Rubin causal model (which en-
tails consistency of potential outcomes and identity exposure mapping) and exogeneity of randomiza-
tion. Additional terminology and notation can be found in http://www.statslab.cam.ac.uk/~qz280/

teaching/causal-2023/slides.pdf.

1. Consider a stratified randomised experiment with m groups. Suppose group j has nj units, among
which n1j receive the treatment at random. What is the treatment assignment mechanism of this
experiment?

2. Let T be a real-valued random variable and F be its cumulative distribution function: F (t) =
P(T ≤ t). Show that F (T ) stochastically dominates the uniform distribution over [0, 1] in the sense
that

P(F (T ) ≤ α) ≤ α for all 0 ≤ α ≤ 1.

Further, show that this inequality becomes an equality when F is continuous. (Hint : Consider the
quantile function: F−(α) = inf{t : F (t) ≥ α}.)

3. In this question we assume A = {0, 1} and the treatment is assigned by sampling without replace-
ment, that is, n1 out of the n units receive the treatment at random. Show that the variance of
the difference-in-means estimator

β̂ =
1

n1

n∑
i=1

AiYi −
1

n0

n∑
i=1

(1−Ai)Yi

in its randomzation distribution given the potential outcomes schedule W is given by

Var
(
β̂ | W

)
=

1

n0
S(0)2 +

1

n1
S(1)2 − 1

n
S(0, 1)2. (1)

4. Consider the repeated sampling setting: A = {0, 1}, (Xi, Ai, (Yi(a))a∈A) are i.i.d, and let (X,A, Y )
be a generic random vector from the same distribution. Further, suppose A ⊥⊥ X and E(X) = 0.
Define

(α1, β1) = argmin
α,β

E[(Y − α− βA)2],

(α2, β2, γ2) = argmin
(α,β,γ)

E[(Y − α− βA− γX)2],

(α3, β3, γ3, δ3) = argmin
(α,β,γ,δ)

E[(Y − α− βA− γX −A · (δX))2].

Express γ2, γ3, and δ3 in terms of the distribution of (X,A, Y ). Then express them in terms of the
distribution of (X,A, Y (0), Y (1)).

5. In the same setting as above, let β̂m, m = 1, 2, 3, be the least squares estimator of β in the mth
regression problem. It has been shown in the lectures that

√
n(β̂m − β)

d→ N(0, Vm), where Vm =
E[(A− π)2ϵ2m]

π2(1− π)2
, m = 1, 2, 3,

where ϵm is the residual in the corresponding regression problem. When do we have V1 = V2 = V3?
Give a counterexample that shows V2 ≤ V1 is not always true.

6. Consider the independence testing problem in 2×2 contigency tables with counts (N00, N01, N10, N11).
Suppose the row margins N0· = N00 +N01 and N1· = N10 +N11 are fixed, and N01 ∼ Bin(N0·, π0)
is independent of N11 ∼ Bin(N0·, π1). Show that Fisher’s exact test is still valid for testing the
null hypothesis H0 : π0 = π1 by deriving the conditional distribution of N11 given the column
margins N·0 and N·1. Compare this with Fisher’s exact test in the randomization model discussed
in lectures.
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7. When the treatment is binary (i.e. A = {0, 1}), a popular choice of randomization test statistic is
the signed rank:

T (A,W ) =

n∑
i=1

Aiψ
(ri
n

)
, where ri = rank of |Yi(0)| among |Y1(0)|, . . . , |Yn(0)|, (2)

and ψ : (0, 1) → R is a transformation of the normalized rank. For example, the identity transfor-
mation ψ(r) = r corresponds to Wilcoxon’s rank sum statistic.

(a) Show that, if A is randomized by sampling without replacement, the signed rank statistic
T (A,W ) is distribution-free in the sense that its randomization distribution does not depend
on W .

(b) With the choice ψ(r) = r, use your results in part (a) to derive an asymptotic z-test of Fisher’s
sharp null hypothesis: H0 : Yi(0) = Yi(1) for all i. This test should compare T with quantiles
of the standard normal distribution after scaling.

8. Continuing from Question 7, we will consider how to invert the randomization test to obtain point
estimators and confidence intervals for the treatment effect. We assume the treatment effect is
a constant β, i.e. Yi(1) − Yi(0) = β, i = 1, . . . , n, but β is unknown. Consider the test statistic
T (A,X,W ) = T (A,X,Y (0)) where Y (0) = (Y1(0), . . . , Yn(0)) = Y − βA.

The Hodges-Lehmann estimator β̂HL is given by the value of β such that the observed test statistic
is equal to its expectation

T (A,X,Y − βA) = E
[
T (A,X,Y (0)) | X,Y (0)

]
.

For many test statistics, the right hand side (let’s call it E) does not depend on Y (0). However,
the solution to the above equation may not always exist. In that case, we define

β̂HL =
inf{β : T (A,X,Y − βA) < E}+ sup{β : T (A,X,Y − βA) > E}

2
,

if T (A,X,Y − βA) is decreasing in β.

(a) Suppose treatment is assigned by sampling without replacement (that is, n1 out of the n units
receive the treatment at random), and the test statistic is the difference-in-means estimator:

T (A,X,Y ) =
1

n1

n∑
i=1

AiYi −
1

n− n1

n∑
i=1

(1−Ai)Yi.

Show that the corresponding Hodges-Lehmann estimator is also the difference-in-means esti-
mator.

(b) In a pairwise randomised experiment, let 1 ≤ Xi ≤ m = n/2 denote the pair which unit i is
assigned to. Let Dj be the treated-minus-control difference in the jth pair

Dj =

n∑
i=1

1{Xi=j} · (2Ai − 1)Yi, j = 1, . . . ,m.

The sign statistic is given by

T (A,X,Y ) =

m∑
j=1

sgn(Dj),

where sgn is the sign function

sgn(x) =


−1, if x < 0,

0, if x = 0,

1, if x > 0.

Show that the Hodges-Lehmann estimator for this test is the sample median

β̂HL =

{
D(m+1

2 ), if m is odd,
1
2{D(m

2 ) +D(m
2 +1)}, if m is even,

where D(j) denotes the jth order statistic of D1, . . . , Dm.
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(c) Consider the set estimator Cα = {β | P ≥ α} (usually an interval) where P = P (β) is the
randomization p-value for the null hypothesis H0 : Yi(1) − Yi(0) = β,∀i. Show that Cα is a
confidence set for β with confidence level at least (1 − α). Explain how the distribution-free
property in Question 7 may be useful to compute Cα.

9. Show that a directed mixed graph G = (V = [p],D,B) is acyclic if and only if the vertices can be
relabelled in a way that the edges are monotone in the label (this is called a topological ordering).
In other words, there exists a permutation (k1, . . . , kp) of (1, . . . , p) such that (i, j) ∈ D implies
ki < kj . Then use this topological ordering to show that for any strict subset J ⊂ [p], there exists
i ̸∈ J such that all the descendants of i in G are in J .

10. How would you represent a randomized experiment with a generic exposure mapping using a graph?
Your graph should contain the following vertices: pre-treatment covariates X1, . . . , Xn, treatment
Z, exposures A1, . . . , An, and outcomes Y1, . . . , Yn.

11. Consider a linear SEM corresponding to the following acyclic directed mixed graph (ADMG). Use
both the trek rule and Wright’s path analysis to find Cov(A, Y ) and verify that the two expressions
are the same.

X

A M Y

12. Consider the partition of a random vector V = (V1, V2,V3), and denote its covariance and inverse
covariance matrix as (assuming the covariance matrix is indeed invertible)

Cov(V ) = Σ =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 , Σ−1 = Ω =

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 .

The partial correlation of V1 and V2 given V3 is defined as

Cor(V1, V2 | V3) = Cor(V1 −Σ13Σ
−1
33 V3, V2 −Σ23Σ

−1
33 V3).

Show that Cor(V1, V2 | V3) = −Ω12/
√
Ω11Ω22. [Hint: You may find the block matrix inversion

formula given in the lectures useful.]
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