Two high-profile examples of selection bias

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

May 11, 2022 @ CSSS Seminar, University of Washington

Selection bias: An umbrella term

- The Cambridge Dictionary of Statistics: "The bias that may be introduced into all types of scientific investigations whenever a treatment is chosen by the individual involved or is subject to constraints that go unobserved by the researcher".
- Wikipedia: "the bias introduced by the selection of individuals, groups or data for analysis in such a way that proper randomization is not achieved, thereby ensuring that the sample obtained is not representative of the population intended to be analyzed."
- Wikipedia collects many types of selection bias:
 - (Non-random) sampling bias;
 - Time interval (censoring/truncation);
 - Susceptibility bias;
 - Indication bias;
 - Data dredging;
 - Attrition/survivorship bias;
 - Observer selection bias;
 - Volunteer bias;
 - Berkson's paradox (collider bias).

This talk: Two topical examples

Initial estimates of COVID-19's infectiousness and incubation period.

- Z., N Ju, S Bacallado, R Shah. (2021). BETS: The dangers of selection bias in early analyses of the coronavirus disease (COVID-19) pandemic. Annals of Applied Statistics 15(1).
- Z. (2021). Small data, big time—a retrospect of the first weeks of COVID-19 (with discussion and rejoinder), Journal of the Royal Statistical Society (Series A, Statistics in Society), in press.
- ② Racial bias in policing.
 - Z., L Keele, D S Small, M M Joffe. (2021). A note on post-treatment selection in studying racial discrimination in policing. *American Political Science Review*, 116(1).

Acknowledgement

Many people who have offered helpful suggestions: Cindy Chen, Yang Chen, Yunjin Choi, Hera He, Michael Levy, Marc Lipsitch, James Robins, Andrew Rosenfeld, Dylan Small, Yachong Yang, Zilu Zhou; Dean Knox, Joshua Loftus, and Jonathan Mummolo.

Initial COVID-19 studies

- Many were based on "exported" cases from Wuhan.
- Extremely influential.
- Many types of selection bias incurred:
 - Under-ascertainment;
 - Non-random sample selection;
 - Right-truncation;
 - ► Ignoring travel restrictions and fast epidemic growth on unobserved data.
- Common mistake: New data + Existing model = Wrong results.

Data collection

- 14 locations where the local health agencies published full case reports.
- 1,460 COVID-19 cases that were confirmed by February 29 for locations in mainland China (February 15 for international locations).
- 378 exported cases from Wuhan.

Overview of the dataset

Column name	Description	Example	Summary statistics
Case	Unique identifier for each case	HongKong-05	1460 in total
Residence	Nationality or residence of the case	Wuhan	21.5% reside in Wuhan
Gender	Gender	Male /Female	52.1%/47.7% (0.2% NA)
Age	Age	63	Mean=45.6, IQR=[34, 57]
Known Contact	Known epidemiological contact?	Yes /No	84.7%/15.3%
Cluster	Relationship with other cases	Husband of	32.1% known
		HongKong-04	
Outside	Transmitted outside Wuhan?	Yes/ Likely /No	58.5%/7.7%/33.8%
Begin Wuhan	Begin of stay in Wuhan (B)	30-Nov ⁴	
End Wuhan	End of stay in Wuhan (E)	22-Jan	
Exposure	Period of exposure	1-Dec to 22-Jan	58.9% known period/date 8.2% known date
Arrived	Final arrival date at the location	22-Jan	40.6% did not travel
	where confirmed a COVID-19 case		
Symptom	Date of symptom onset (S)	23-Jan	9.0% NA
Initial	Date of first medical visit	23-Jan	6.5% NA
Confirmed	Date confirmed	24-Jan	

Naive method

- Wu, J. T. et al. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. *The Lancet*, 395(10225).
- They used a SEIR (Susceptible-Exposed-Infectious-Recovered) model for the epidemic in Wuhan and a Poisson process to model case exportation.
- They fitted the model using **17** (!) international cases who showed symptoms before January 20, 2020.
- To replicate their analysis, I fitted some simple Poisson log-linear models.

Initial doubling time

- Blue (using symptom onsets before January 20): 5.9 days (95% CI 3.4–15.7).
- Red (before January 24): 3.9 days (2.9–5.5).
- Original study: 6.4 days (5.8–7.1).

Qingyuan Zhao (Stats Lab, Cambridge)

Problems

These models

- Do **NOT** take into account Wuhan's travel ban on January 23.
- Ignore the rich information available for the individual cases.

Let's start from the first principles

Four crucial epidemiological events

- B: Beginning of stay in Wuhan;
- E: End of stay in Wuhan;
- T: Time of transmission (unobserved);
- S: Time of symptom onset.

Below we will:

- Define the support \mathcal{P} of (B, E, T, S) for the Wuhan-exposed population;
- Construct a generative model for (B, E, T, S);
- Define the sample selection set \mathcal{D} corresponds to Wuhan-exported cases;
- Derive likelihood functions to adjust for sample selection.

Wuhan-exposed population \mathcal{P}

Intuitively, $\mathcal{P} = All$ people who stayed in Wuhan between 12am December 1, 2019 (time 0) and 12am January 24, 2020 (time *L*, the lockdown).

Conventions

- B = 0: Started their stay in Wuhan before time 0.
- *E* = ∞: Did not arrive in the 14 locations we are considering before time *L*. (We do not differentiate between people who stayed in Wuhan or went to a different location).
- $T = \infty$: Were not infected during their stay in Wuhan. (We do not differentiate between infection outside Wuhan and never infected.)
- $S = \infty$: Did not show symptoms of COVID-19 (never infected or asymptomatic).

Under these conventions.

$$\mathcal{P} = \Big\{ (b,e,t,s) \mid b \in [0,L], e \in [b,L] \cup \{\infty\}, t \in [b,e] \cup \{\infty\}, s \in [t,\infty] \Big\}.$$

A generative BETS model

 $f(b, e, t, s) = \underbrace{f_B(b) \cdot f_E(e \mid b)}_{\text{travel}} \cdot \underbrace{f_T(t \mid b, e)}_{\text{disease transmission}} \cdot \underbrace{f_S(s \mid b, e, t)}_{\text{disease progression}}.$

To allow extrapolation, the BETS model makes two basic assumptions

Assumption 1: Disease transmission independent of travel

$$f_T(t \mid b, e) = egin{cases} g(t), & ext{if } b < t < e \ 1 - \int_b^e g(x) \, dx, & ext{if } t = \infty. \end{cases}$$

Here $g(\cdot)$ models the **epidemic growth** in Wuhan before the lockdown.

Assumption 2: Disease progression independent of travel

$$f_{\mathcal{S}}(s \mid b, e, t) = egin{cases}
u \cdot h(s-t), & ext{if } t < s < \infty, \\
1 -
u, & ext{if } s = \infty. \end{cases}$$

Here $h(\cdot)$ is the density of the **incubation period** S - T (for symptomatic cases).

Graphical model representation

- This is in temporal/causal order if we view *E* as the **planned** traveling date.
- Assumption 1 restricts the density of T given B, E.
- Assumption 2 says that $S \perp B, E \mid T$.

Parametric assumptions

To ease the interpretation and simply the likelihood functions, we assume

Assumption 3: Exponential growth

$$g(t) = g_{\kappa,r}(t) \stackrel{\Delta}{=} \kappa \cdot \exp(rt), \ t \leq L,$$

Assumption 4: Gamma-distributed incubation period

$$h(s-t) = h_{\alpha,\beta}(s-t) \stackrel{\Delta}{=} rac{eta^{lpha}}{\Gamma(lpha)}(s-t)^{lpha-1} \exp\{-eta(s-t)\}.$$

• Assumptions 3 & 4 are relaxed in a Bayesian nonparametric analysis (see the paper).

The event of observing Wuhan-exported cases can be written as

$$\mathcal{D} = \{(b, e, t, s) \in \mathcal{P} \mid b \leq t \leq e \leq L, t \leq s < \infty\}.$$

This makes three further restrictions on \mathcal{P} :

- **(**) $B \leq T \leq E$, because we only use cases who contracted the virus during their stay in Wuhan;
- **2** $E \leq L$, because the case can only be observed if they left Wuhan before the travel ban;
- **③** $S < \infty$, because we only consider COVID-19 cases who showed symptoms.

Which likelihood function?

For a moment, let's pretend that the transmission time T is observed.

X Sample from \mathcal{P} $\prod_{i=1}^{n} f(B_i, E_i, T_i, S_i)$

✓ Sample from D (Unconditional likelihood)

$$\prod_{i=1}^{n} f(B_i, E_i, T_i, S_i \mid \mathcal{D}), \text{ where } f(b, e, t, s \mid \mathcal{D}) \triangleq \frac{f(b, e, t, s) \cdot 1_{\{(b, e, t, s) \in \mathcal{D}\}}}{\mathbb{P}((B, E, T, S) \in \mathcal{D})}$$

✓ Sample from D (Conditional likelihood)

$$\prod_{i=1}^{n} f(T_i, S_i \mid B_i, E_i, \mathcal{D}), \text{ where } f(t, s \mid b, e, \mathcal{D}) \triangleq \frac{f(t, s \mid B = b, E = e) \cdot 1_{\{(b, e, t, s) \in \mathcal{D}\}}}{\mathbb{P}((B, E, T, S) \in \mathcal{D} \mid B = b, E = e)}.$$

Unobserved T

In reality, the time of transmission T is unobserved. We can either treat T as a latent variable and use e.g. an EM algorithm, or use the **integrated likelihood**:

Unconditional likelihood

$$L_{uncond}(\theta) = \prod_{i=1}^{n} \int f(B_i, E_i, t, S_i \mid D) dt,$$

where $\theta = (f_B(\cdot), f_E(\cdot | \cdot), g(\cdot), h(\cdot)).$

Conditional likelihood

$$L_{\text{cond}}(heta) = \prod_{i=1}^n \int f(t, S_i \mid B_i, E_i, D) dt,$$

where $\theta = (g(\cdot), h(\cdot))$.

The conditional likelihood is less efficient because it does not use information in f(b, e | D); but it is robust to misspecifying the travel models $f_B(\cdot), f_E(\cdot | \cdot)$.

Qingyuan Zhao (Stats Lab, Cambridge)

Conditional likelihood function

Proposition

Under Assumptions 1-4,

$$\begin{split} &L_{\text{cond}}(r,\alpha,\beta) = \\ & \begin{cases} r^n \Big(\frac{\beta}{\beta+r}\Big)^{n\alpha} \cdot \prod_{i=1}^n \frac{\exp(rS_i) \big[H_{\alpha,\beta+r}(S_i-B_i) - H_{\alpha,\beta+r}((S_i-E_i)_+)\big]}{\exp(rE_i) - \exp(rB_i)}, & \text{for } r > 0, \\ & \prod_{i=1}^n \frac{H_{\alpha,\beta}(S_i-B_i) - H_{\alpha,\beta}((S_i-E_i)_+)}{E_i - B_i}, & \text{for } r = 0, \end{cases} \end{split}$$

where $H_{\alpha,\beta}(\cdot)$ is the CDF of Gamma (α,β) and $(\cdot)_+ = \max(\cdot,0)$.

- This does not depend on ν (proportion of symptomatic cases) and κ (baseline transmission).
- When r = 0, this reduces to the likelihood function in Reich et al. (2009) Statistics in Medicine, 28.
- The unconditional likelihood function assuming "stable travel" can be found in the paper.

Results

Lander	Sample Doubling time		Incubation period		
Location	size	(in days)	Median	95% quantile	
Conditional likelihood					
China - Hefei	34	2.1 (1.2–3.7)	4.3 (2.9-6.0)	12.0 (9.1–17.3)	
China - Shaan×i	53	1.7 (1.0-2.8)	4.5 (3.1–6.2)	14.6 (11.5–19.8)	
China - Shenzhen	129	2.2 (1.7-3.0)	3.5 (2.8-4.3)	11.2 (9.5-13.6)	
China - Xinyang	74	2.3 (1.5-3.5)	6.8 (5.4–8.2)	16.4 (13.8–20.1)	
China - Other	42	2.0 (1.1-3.4)	5.1 (3.6-6.7)	12.3 (9.8-16.4)	
International	46	2.1 (1.4-3.4)	3.8 (2.5–5.3)	10.9 (8.4–15.1)	
All locations	378	2.1 (1.8–2.5)	4.5 (4.0-5.0)	13.4 (12.2–14.8)	
Unconditional likelihood					
China - Hefei	34	1.8 (1.4–2.4)	4.1 (2.8–5.5)	11.9 (9.0–17.2)	
China - Shaanxi	53	2.5 (2.0-3.1)	5.3 (3.9–6.8)	15.0 (12.0-20.0)	
China - Shenzhen	129	2.4 (2.1–2.8)	3.6 (2.9–4.3)	11.3 (9.6–13.7)	
China - Xinyang	74	2.4 (2.0-2.9)	6.8 (5.6-8.1)	16.4 (13.9-20.2)	
China - Other	42	2.1 (1.7-2.8)	5.3 (4.0-6.6)	12.4 (10.0-16.4)	
International	46	2.0 (1.6-2.6)	3.7 (2.5–5.0)	10.8 (8.4–15.1)	
All locations	378	2.3 (2.1–2.5)	4.6 (4.1–5.1)	13.5 (12.3–14.9)	

(Point estimates obtained by MLE. Confidence intervals obtained by inverting LRT.)

What's wrong with simple exponential growth?

X Density of S in \mathcal{P}

It is reasonable to assume incidence of symptom onset is growing exponentially in Wuhan-exposed population \mathcal{P} :

 $f(s \mid \mathcal{P}) \underset{\sim}{\propto} \exp(rs), \text{ for } s \leq L.$

But the observations are from the Wuhan-exported cases \mathcal{D} .

✓ Density of *S* in D

Under Assumptions 1-4 and reasonable approximations,

$$f(t \mid \mathcal{D}) \underset{\sim}{\propto} \exp(rt) \left(L - t \right) \mathbb{1}_{\{t \leq L\}},$$

We can further derive the theoretical $f_S(s \mid D)$; in particular,

$$f_{\mathcal{S}}(s \mid \mathcal{D}) \underset{\sim}{\propto} \exp(rs) \left(L + \frac{\alpha}{\beta + r} - s \right), \text{ for } s \leq L.$$

Illustration of the selection bias

- Histogram: Symptom onsets of Wuhan-exported cases;
- Orange curve: Theoretical fit $f_{\mathcal{S}}(s \mid D)$ using the MLE of (r, α, β) .
- Blue dashed line: January 23, 2020 (time L).

Incubation period estimates

An experiment

- For each day between January 23 and February 18, obtain the subset of cases confirmed by that day.
- Fit the parametric BETS model by using one of the following likelihoods:
 - **O** Adjusted for nothing: $L_{cond}(0, \alpha, \beta)$ (likelihood function in Reich et al. (2009) used in other studies).
 - **2** Adjusted for growth: $L_{cond}(r, \alpha, \beta)$.
 - **③** Adjusted for growth and right-truncation: $L_{\text{cond,trunc}}(r, \alpha, \beta; M)$ (conditional on $S \leq M$).
- Obtain point estimates by MLE and CIs by nonparametric Bootstrap.
- Compare with previous studies:
 - Sacker, J. A. et al. *Eurosurveillance*, 25(5), 2020. PubMed: 32046819.
 - 2 Lauer, S. A. et al. Annals of Internal Medicine, 2020. PubMed: 32150748.
 - Sinton, N. M. et al. Journal of Clinical Medicine, 9(2), 2020. PubMed: 32079150.

Likelihood adjusted for a Nothing a Growth a Growth and truncation

Ignore epidemic growth \implies Overestimate incubation period. Ignore right-truncation \implies Underestimate incubation period.

Questions about the first example?

Second example: Racial bias in policing

This work is motivated by a back-and-forth Twitter discussion between the authors of

- D Knox, W Lowe, J Mummolo (2020) Administrative records mask racially biased policing. *American Political Science Review* 114(3).
- J Gaebler, W Cai, G Basse, R Shroff, S Goel, J Hill. (2022) A causal framework for observational studies of discrimination. *Statistics and Public Policy* 9(1).

Setup in Knox et al.

- D: binary, 1 means minority.
- M: binary, 1 means police detainment.
- Y: binary, 1 means use of force.

Key challenges

- Only observe data with M = 1 in police admin data.
- **②** There can be unmeasured M-Y confounders.
- \implies Collider bias (when conditioning on M = 1) in influential studies.

What can be learned from police admin data?

Let Y(d) be the potential outcome for race D = d.

Two methods in Knox et al.

Partial identification of

$$\begin{aligned} \mathsf{ATE}_{M=1} &= \mathbb{E}[Y(1) - Y(0) \mid M = 1], \\ \mathsf{ATT}_{M=1} &= \mathbb{E}[Y(1) - Y(0) \mid M = 1, D = 1]. \end{aligned}$$

Identification of ATE =
$$\mathbb{E}[Y(1) - Y(0)]$$

Key assumptions in Knox et al.

- **O** Mandatory reporting: Y(M = 0) = 0 and all police stops are recorded.
- **2** Treatment ignorability: $D \perp M(d), Y(d, m)$.
- **9** Mediator monotonicity: $M(1) \ge M(0)$. (Not needed for ATE.)

Our results

- ATE_{M=1} and ATT_{M=1} can be difficult to interpret: They may have a different sign even if the natural direct and indirect effects have the same sign.
- **2** As noticed by Knox et al., ATE estimation requires estimating the magnitude of $\mathbb{P}(M = 1)$:

$$\mathsf{ATE} = \mathbb{E}[Y \mid D = 1, M = 1]\mathbb{P}(M = 1 \mid D = 1) - \mathbb{E}[Y \mid D = 0, M = 1]\mathbb{P}(M = 1 \mid D = 0).$$

This can be circumvented by considering the risk ratio:

$$\mathsf{RR} = \frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]} = \underbrace{\frac{\mathbb{E}[Y \mid D = 1, M = 1]}{\mathbb{E}[Y \mid D = 0, M = 1]}}_{\text{naive estimator}} \cdot \underbrace{\left\{\frac{\mathbb{P}(D = 1 \mid M = 1)}{\mathbb{P}(D = 0 \mid M = 1)}\right\} / \left\{\frac{\mathbb{P}(D = 1)}{\mathbb{P}(D = 0)}\right\}}_{\text{selection bias factor}}.$$

How large is the selection bias?

$$\mathsf{RR} = \frac{\mathbb{E}[Y(1)]}{\mathbb{E}[Y(0)]} = \underbrace{\frac{\mathbb{E}[Y \mid D = 1, M = 1]}{\mathbb{E}[Y \mid D = 0, M = 1]}}_{\text{naive estimator}} \cdot \underbrace{\left\{\frac{\mathbb{P}(D = 1 \mid M = 1)}{\mathbb{P}(D = 0 \mid M = 1)}\right\} / \left\{\frac{\mathbb{P}(D = 1)}{\mathbb{P}(D = 0)}\right\}}_{\text{selection bias factor}}.$$

- Police admin data: NYPD stop-and-frisk.
- We estimated $\mathbb{P}(D=1)$ using two external surveys.

External dataset	Estimated risk ratio	95% Confidence interval				
Naive estimator						
None	1.29	1.28-1.30				
Adjusted for selection bias						
CPS	13.6	12.8-14.3				
PPCS	32.3	31.3-33.3				
PPCS (Large Metro)	16.7	15.4-18.4				

• The selection bias could be > 10-fold!!

Summary

- Extremely large selection bias in naive analyses of two topical problems.
- These examples bring discredit on our professions—statistics, epidemiology, social science, data science,
- Things are much better in well established research topics, but we cannot be complacent.
- Graphical models seem to provide useful tools to visualize the structure of selection.
- But is there a general solution besides starting from the first principles of statistical modelling?

Thank you!