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What is an individualized treatment rule (ITR)?

As the name suggests, treatment is individualized according to the subject’s characteristics.

A recent example: WHO interim guideline on dexamethasone

“WHO strongly recommends that corticosteroids (i.e. dexamethasone, hydrocortisone or
prednisone) be given orally or intravenously for the treatment of patients with severe and
critical COVID-19.”

“WHO advises against the use of corticosteroids in the treatment of patients with non-severe
COVID-19, unless the patient is already taking this medication for another condition.”a

ahttps://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-dexamethasone
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Optimal treatment regimes with observational data

Optimal treatment regime = ITR with the best value.

Dynamic treatment regimes = extension to multiple decision points.

This is central to the “new” initiative of precision medicine and has been widely studied.

Existing methods usually assume (sequentially) randomized experiments, or observational studies
that satisfy (sequential) ignorability. This allows us to estimate the value of any ITR.

This talk: realistic decisions about static ITRs with unmeasured confounders.
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Sensitivity analysis for observational studies

If we acknowledge the possibility of unmeasured confounders, how will them change the
conclusions of an observational study?

Cornfield et al. (1959): In order for a confounder genotype to fully explain the association
between smoking and lung cancer, it must increase the propensity of smoking by at least nine
fold!

We will use the following model:

Rosenbaum’s sensitivity model

In words, this model assumes that the odds ratio of receiving the treatment for any two individuals
with the same observed covariates is bounded between 1/Γ and Γ (Rosenbaum 1987).

Γ ≥ 1; Γ = 1 corresponds to no unmeasured confounders.
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This talk

Problem
How do we select and rank ITRs under Rosenbaum’s sensitivity model?

Motivation: Effect modification and the power of sensitivity analysis

Hsu et al. (2013) found that subgroups with a larger treatment effect may be more robust/less
sensitivity to unmeasured confounders.

Important consequence: ITR with a larger value (estimated from observational data assuming
ignorability) could be more sensitive to unmeasured confounders.
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Value 6= Robustness

The estimated value from some observational data assuming ignorability is a poor indicator for
robustness.

A counter-intuitive example

Let r2 �Γ r1 or simply r2 � r1 denote that the value of r2 is always greater than r1 under the
Γ-sensitivity model.
Then, it is possible that

Under Γ = 1, r2 � r1 � r0 (so r2 � r0);

Under some Γ > 1, r1 � r0 but r2 6� r0.

Why? Value is only partially identified in Rosenbaum’s sensitivity model and induces a partial order
between ITRs.
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Related work

Maximize the estimated value assuming ignorability (Qian and Murphy 2011; Y. Zhao et al. 2012;
Dud́ık et al. 2014; Athey and Wager 2017).

Selecting and ordering subpopulations—an old and well studied topic involves many interesting
objectives but assumes a total order (Gibbons et al. 1999).

Screening hypotheses in sensitivity analysis (Heller et al. 2009; Q. Zhao et al. 2018).

Kallus and Zhou (2018) consider a similar problem but with a different sensitivity model.
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Notation

Running example: Malaria in West Africa

Dataset from Hsu et al. (2013): 1560 matched pairs of Nigerians.

A ∈ A = {0, 1} is a binary treatment. A = 1: receives treatment (insecticide spray + drug).

X ∈ X is a vector of pre-treatment covariates (gender and age);

Y ∈ R is the outcome (amount of malaria-causing parasites in blood).

r : X → A is an individualized treatment rule (ITR). We will consider six rules: r0, r1, . . . , r5,
where ri assigns treatment to the youngest i × 20%.

Let Y (0) and Y (1) be the potential outcomes under control and treatment. This induces the
definition: Y (r) = Y (0)1{r(X )=0} + Y (1)1{r(X )=1}.

The value function is defined as V (d) = E[Y (d)].
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Comparing two ITRs: No unmeasured confounders

The value difference is V (r2)− V (r1) = E[Y (r2)− Y (r1) | r2 6= r1] · P(r2 6= r1).

In our example (nested ITRs), V (r2)− V (r1) = E[Y (1)− Y (0) |Age ∈ [7, 20)] · P(Age ∈ [7, 20)).

Standard assumptions for identifying V (r) from observational data

1 Positivity: π(a, x) = P(A = a |X = x) > 0 for all a and x ;

2 Consistency/SUTVA: Y = Y (A);

3 Ignorability/no unmeasured confounders: Y (a) |= A |X for all a.

Under these assumptions, V (r) = E
[Y 1{A=r(X )}

π(A,X )

]
defines a total order.
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Comparing two ITRs: Unmeasured confounders

Rosenbaum’s sensitivity model

Suppose Y (a) |= A |X ,U. Then we assume

Γ−1 ≤ OR
(
P(A = 1 |X = x ,U = u1),P(A = 1 |X = x ,U = u2)

)
≤ Γ, ∀x , u1, u2,

where OR(p1, p2) = {p1/(1− p1)}/{p2/(1− p2)} is the odds ratio.

Definition: r1 ≺Γ,δ r2 (omit Γ if Γ = 1 and δ if δ = 0) if V (r2)− V (r1) > δ for all distributions in
the Γ-sensitivity model.

Can verify that ≺Γ satisfies irreflexivity (r1 6≺Γ r1), transitivity (r1 ≺Γ r2 and r2 ≺Γ r3 imply
r1 ≺Γ r3), and asymmetry (r1 ≺Γ r2 implies r2 6≺Γ r1). So it is a partial order.

Fogarty (2020) has proposed a studentized test for Neyman’s null hypothesis that the average

treatment effect is zero, (2n)−1
∑

Yij(1)− Yij(0) = 0.

This test can be adapted to test r1 ≺Γ,δ r2 (see our paper for detail).

Qingyuan Zhao (Stats Lab, Cambridge) ITRs with unmeasured confounders January 14, 2021 11 / 25



Power of the sensitivity analysis
A hallmark of Rosenbaum’s sensitivity analysis—the tipping point or sensitivity value:

Γ∗α(r1 ≺ r2) = sup{Γ ≥ 1 | V (r1) ≥ V (r2) is rejected at level α under the Γ-sensitivity model}.

Asymptotic distribution of the sensitivity value (Q. Zhao 2019): Suppose r1(x) ≤ r2(x), ∀x , then

√
n

{
Γ∗α(r1 ≺ r2)− Γ̄

}
d→ N(−zαµ, σ2),

where µ, σ2 depends on the distribution of Di = (Ai1 − Ai2)(Yi1 − Yi2) and

Γ̄ =
E[|Di | | r1 < r2] + E[Di | r1 < r2]

E[|Di | | r1 < r2]− E[Di | r1 < r2]

is called the design sensitivity (Rosenbaum 2004).

Therefore, the power is determined by Γ with a phase transition at Γ̄.

This poses challenges to multiple hypothesis testing.
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Objectives

Related problem: selecting subpopulations

Suppose we observe Yi
ind.∼ N(µi , 1) for subpopulation i .

Gibbons et al. (1999) has defined seven possible goals for ranking and selecting subpopulations.

Given R = {r0, r1, . . . , rK}, three goals are relevant for comparing multiple ITRs:

1 What is the ordering of all the ITRs?

2 Which ITRs are among the best?

3 Which ITRs are better than the control rule r0?

We cannot directly use existing methods because ≺Γ is not a total order.
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Objectives

Some definitions
The maximal rules are the ones not dominated by others,

Rmax,Γ = {ri | ri 6≺Γ rj , ∀j}.

The positive rules are the ones which dominate the control. The null rules are the ones which
don’t dominate the control.

Rpos,Γ = {ri | r0 ≺Γ ri}, Rnul,Γ = R \Rpos,Γ.

1 Construct a set of ordered ITR pairs, ÔΓ ⊂ {(ri , rj), i , j = 0, . . . ,K , i 6= j}, such that

P(ri ≺Γ rj , ∀(ri , rj) ∈ ÔΓ) ≥ 1− α.

2 Construct R̂max,Γ ⊆ R such that P(Rmax,Γ ⊆ R̂max,Γ) ≥ 1− α.

3 Construct R̂pos,Γ ⊆ R such that P(R̂pos,Γ ∩Rnull,Γ =6 ∅) ≥ 1− α.
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Objective 1: Ordering the ITRs

Can apply Bonferroni’s procedure to control the family-wise error rate, but this is very conservation
because the sensitivity analysis considers the worst case scenario.

Better alternative: reduce the number of tests using a planning sample (Heller et al. 2009; Q. Zhao
et al. 2018).

Our proposal

Step 1: Split the data into two parts: one for planning and one for testing.

Step 2: For every pair of ITRs, use the planning sample to estimate the asymptotic distribution
of Γ∗ and the power of testing Hij : ri 6≺Γ rj .

Step 3: Order the hypotheses by estimated power from the highest to the lowest.

Step 4: Fixed sequence testing: sequentially test the ordered hypotheses using the testing sample
at level α, until one hypothesis is rejected.

Step 5: Use transitivity of ≺Γ and output a Hasse diagram.
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Objective 1: Malaria example

Ordered hypotheses after using the planning sample

Γ = 1: H01,H02,H03,H04,H05,H13,H12,H14,H15,H23, . . . .

Γ = 2: H02,H01,H03,H04,H05,H12,H13,H14,H15,H45, . . . .

r1 r2 r3 r4 r5

r0

|Ô| = 5

r2 r3

r1r4 r5

r0

|Ô| = 7

Hasse diagrams for Γ = 2: Bonferroni’s correction (left) and our proposal (right).
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Objective 2: Selecting the best ITRs

Key observation: P(ri 6≺Γ rj is rejected | ri ∈ Rmax,Γ) ≤ α.

This motivates us to use all the “leaves” in the Hasse diagram as the maximal elements:

R̂max,Γ = {ri | (ri , rj) 6∈ ÔΓ, ∀j}.

An example

r2 r3

r1r4 r5

r0

=⇒ R̂max = {r2, r3, r4, r5}

This satisfies P(Rmax,Γ 6⊆ R̂max,Γ) ≤ α if the FWER for ÔΓ is less than α.

Can “trim” hypotheses using the following: ri 6∈ R̂max,Γ if Hij : ri 6≺Γ rj is rejected for a single rj .
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Objective 2: Malaria example

Ordered and trimmed hypotheses for Γ = 2: H02,H12,H45,H35,H53,H21.

Table: R̂max,Γ for different choices of Γ.

Γ R̂max,Γ Γ R̂max,Γ

1.0 {r3, r4, r5} 2.5 {r2, r3, r4, r5}
1.3 {r3, r4, r5} 3.0 {r1, r2, r3, r4, r5}
1.5 {r2, r3, r4, r5} 3.5 {r1, r2, r3, r4, r5}
1.8 {r2, r3, r4, r5} 4.0 {r1, r2, r3, r4, r5}
2.0 {r2, r3, r4, r5} 6.0 {r0, r1, r2, r3, r4, r5}
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Objective 3: Selecting the positive ITRs

Simply needs to test the hypotheses H0i : r0 6≺Γ ri , i = 1, . . . ,K .

Can use the same multiple testing procedure above.

Results for the malaria example

Γ = 1 Γ = 1.3 Γ = 1.5 Γ = 1.8

δ = 0 {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5}
δ = 2 {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5}
δ = 6 {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r2, r3, r4, r5} {r2}

Γ = 2.0 Γ = 2.5 Γ = 3.0

δ = 0 {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5} {r1, r2, r3, r4, r5}
δ = 2 {r1, r2, r3, r4, r5} {r1, r2, r3} {r1, r2}
δ = 6 ∅ ∅ ∅

Γ = 3.5 Γ = 4.0 Γ = 6.0

δ = 0 {r1, r2, r3} {r1, r2} ∅
δ = 2 ∅ ∅ ∅
δ = 6 ∅ ∅ ∅
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Retirement timing on health outcome

Setup

Treatment: late retirement (retire between 65 and 70).

Outcome: self-reported health status at 70.

Covariates: year of birth, gender, education, race, occupation, partnered, annual income, smoking.

Optimal matching (exactly on year, gender, occupation, partnered): 1858 matched pairs.

We considered 4 subgroups: male, white-collar workers (G1), female, white-collar workers (G2),
male, blue-collar workers (G3), and female, blue-collar workers (G4).

16 regimes with binary coding. For example, r9 = r1001 treats G1 and G4.

Results

Γ R̂max,Γ R̂pos,Γ

1.0 {r11, r13, r15} {r1, r3, r5, r7, r8, . . . , r15}
1.2 {r9, r11, r13, r15} {r1, r3, r5, r7, r8, . . . , r11, r13, r14, r15}

1.35 {r1, r3, r5, r7, r9, r11, r13, r15} {r1, r9}
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Discussion

Robustness to unmeasured confounders: another dimension in decision making.

Best ITR (largest value assuming ignorability) is often not the most robust.

Many possible objectives for selection and ranking.

Selective inference for partially identified/ordered problems: a potentially new topic?

Our method cannot handle too many ITRs. Better alternatives?
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Take-home message: Precision medicine or Jenga?
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