Selecting and ranking individualized treatment rules with unmeasured confounding

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

January 14, 2021 @ Selective Inference Webinar

Based on joint work with Bo Zhang, Jordan Weiss, and Dylan Small to be published in a special JASA issue on precision medicine. More information can be found on http://www.statslab.cam.ac.uk/~qz280/.

What is an individualized treatment rule (ITR)?

As the name suggests, treatment is individualized according to the subject's characteristics.

A recent example: WHO interim guideline on dexamethasone

- "WHO strongly recommends that corticosteroids (i.e. dexamethasone, hydrocortisone or prednisone) be given orally or intravenously for the treatment of patients with severe and critical COVID-19."
- "WHO advises against the use of corticosteroids in the treatment of patients with non-severe COVID-19, unless the patient is already taking this medication for another condition." ^a

^ahttps://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-dexamethasone

Optimal treatment regimes with observational data

- **Optimal treatment regime** = ITR with the best *value*.
- Dynamic treatment regimes = extension to multiple decision points.
- This is central to the "new" initiative of precision medicine and has been widely studied.
- Existing methods usually assume (sequentially) randomized experiments, or observational studies that satisfy (sequential) ignorability. This allows us to estimate the value of any ITR.
- This talk: realistic decisions about static ITRs with unmeasured confounders.

Sensitivity analysis for observational studies

- If we acknowledge the possibility of unmeasured confounders, how will them change the conclusions of an observational study?
- Cornfield *et al.* (1959): In order for a confounder genotype to fully explain the association between smoking and lung cancer, it must increase the propensity of smoking by at least nine fold!

We will use the following model:

Rosenbaum's sensitivity model

In words, this model assumes that the odds ratio of receiving the treatment for any two individuals with the same observed covariates is bounded between $1/\Gamma$ and Γ (Rosenbaum 1987).

• $\Gamma \geq 1$; $\Gamma = 1$ corresponds to no unmeasured confounders.

This talk

Problem

How do we select and rank ITRs under Rosenbaum's sensitivity model?

Motivation: Effect modification and the power of sensitivity analysis

Hsu *et al.* (2013) found that subgroups with a larger treatment effect may be more robust/less sensitivity to unmeasured confounders.

• Important consequence: ITR with a larger value (estimated from observational data assuming ignorability) could be more sensitive to unmeasured confounders.

$\mathsf{Value} \neq \mathsf{Robustness}$

The estimated value from some observational data assuming ignorability is a poor indicator for robustness.

A counter-intuitive example

Let $r_2 \succ_{\Gamma} r_1$ or simply $r_2 \succ r_1$ denote that the value of r_2 is *always* greater than r_1 under the Γ -sensitivity model.

Then, it is possible that

- Under $\Gamma = 1$, $r_2 \succ r_1 \succ r_0$ (so $r_2 \succ r_0$);
- Under some $\Gamma > 1$, $r_1 \succ r_0$ but $r_2 \not\succ r_0$.

Why? Value is only **partially identified** in Rosenbaum's sensitivity model and induces a **partial order** between ITRs.

- Maximize the estimated value assuming ignorability (Qian and Murphy 2011; Y. Zhao *et al.* 2012; Dudík *et al.* 2014; Athey and Wager 2017).
- Selecting and ordering subpopulations—an old and well studied topic involves many interesting objectives but assumes a total order (Gibbons *et al.* 1999).
- Screening hypotheses in sensitivity analysis (Heller et al. 2009; Q. Zhao et al. 2018).
- Kallus and Zhou (2018) consider a similar problem but with a different sensitivity model.

Notation

Running example: Malaria in West Africa

Dataset from Hsu et al. (2013): 1560 matched pairs of Nigerians.

- $A \in A = \{0, 1\}$ is a binary treatment. A = 1: receives treatment (insecticide spray + drug).
- $X \in \mathcal{X}$ is a vector of pre-treatment covariates (gender and age);
- $Y \in \mathbb{R}$ is the outcome (amount of malaria-causing parasites in blood).
- $r : \mathcal{X} \to \mathcal{A}$ is an individualized treatment rule (ITR). We will consider six rules: r_0, r_1, \ldots, r_5 , where r_i assigns treatment to the youngest $i \times 20\%$.
- Let Y(0) and Y(1) be the potential outcomes under control and treatment. This induces the definition: Y(r) = Y(0)1_{r(X)=0} + Y(1)1_{r(X)=1}.
- The value function is defined as $V(d) = \mathbb{E}[Y(d)]$.

Comparing two ITRs: No unmeasured confounders

- The value difference is $V(r_2) V(r_1) = \mathbb{E}[Y(r_2) Y(r_1) | r_2 \neq r_1] \cdot \mathbb{P}(r_2 \neq r_1).$
- In our example (nested ITRs), $V(r_2) V(r_1) = \mathbb{E}[Y(1) Y(0) | Age \in [7, 20)] \cdot \mathbb{P}(Age \in [7, 20)).$

Standard assumptions for identifying V(r) from observational data

- **9 Positivity**: $\pi(a, x) = \mathbb{P}(A = a | X = x) > 0$ for all *a* and *x*;
- **Omega Consistency/SUTVA**: Y = Y(A);

Ignorability/no unmeasured confounders: $Y(a) \perp A \mid X$ for all *a*.

Under these assumptions,
$$V(r) = \mathbb{E}\Big[rac{Y \mathbbm{1}_{\{A=r(X)\}}}{\pi(A,X)}\Big]$$
 defines a total order.

Comparing two ITRs: Unmeasured confounders

Rosenbaum's sensitivity model

Suppose $Y(a) \perp A \mid X, U$. Then we assume

$$\Gamma^{-1} \leq \mathsf{OR}\Big(\mathbb{P}(A=1 \,|\, X=x, U=u_1), \mathbb{P}(A=1 \,|\, X=x, U=u_2)\Big) \leq \Gamma, \,\, \forall x, u_1, u_2,$$

where $OR(p_1, p_2) = \{p_1/(1 - p_1)\}/\{p_2/(1 - p_2)\}$ is the odds ratio.

- Definition: $r_1 \prec_{\Gamma,\delta} r_2$ (omit Γ if $\Gamma = 1$ and δ if $\delta = 0$) if $V(r_2) V(r_1) > \delta$ for all distributions in the Γ -sensitivity model.
- Can verify that \prec_{Γ} satisfies irreflexivity $(r_1 \not\prec_{\Gamma} r_1)$, transitivity $(r_1 \prec_{\Gamma} r_2 \text{ and } r_2 \prec_{\Gamma} r_3 \text{ imply} r_1 \prec_{\Gamma} r_3)$, and asymmetry $(r_1 \prec_{\Gamma} r_2 \text{ implies } r_2 \not\prec_{\Gamma} r_1)$. So it is a partial order.
- Fogarty (2020) has proposed a studentized test for Neyman's null hypothesis that the average treatment effect is zero, $(2n)^{-1} \sum Y_{ij}(1) Y_{ij}(0) = 0.$
- This test can be adapted to test $r_1 \prec_{\Gamma,\delta} r_2$ (see our paper for detail).

Power of the sensitivity analysis

• A hallmark of Rosenbaum's sensitivity analysis—the tipping point or sensitivity value:

 $\Gamma^*_{\alpha}(r_1 \prec r_2) = \sup\{\Gamma \ge 1 \mid V(r_1) \ge V(r_2) \text{ is rejected at level } \alpha \text{ under the } \Gamma \text{-sensitivity model}\}.$

• Asymptotic distribution of the sensitivity value (Q. Zhao 2019): Suppose $r_1(x) \le r_2(x), \forall x$, then

$$\sqrt{n}\left\{\Gamma^*_{\alpha}(r_1\prec r_2)-\bar{\Gamma}\right\}\stackrel{d}{\rightarrow} \mathrm{N}(-z_{\alpha}\mu,\sigma^2),$$

where μ, σ^2 depends on the distribution of $D_i = (A_{i1} - A_{i2})(Y_{i1} - Y_{i2})$ and

$$\bar{\Gamma} = \frac{\mathbb{E}[|D_i| \mid r_1 < r_2] + \mathbb{E}[D_i \mid r_1 < r_2]}{\mathbb{E}[|D_i| \mid r_1 < r_2] - \mathbb{E}[D_i \mid r_1 < r_2]}$$

is called the **design sensitivity** (Rosenbaum 2004).

- Therefore, the power is determined by Γ with a phase transition at $\bar{\Gamma}.$
- This poses challenges to multiple hypothesis testing.

Objectives

Related problem: selecting subpopulations

- Suppose we observe $Y_i \stackrel{\text{ind.}}{\sim} \operatorname{N}(\mu_i, 1)$ for subpopulation *i*.
- Gibbons et al. (1999) has defined seven possible goals for ranking and selecting subpopulations.

Given $\mathcal{R} = \{r_0, r_1, \dots, r_K\}$, three goals are relevant for comparing multiple ITRs:

- What is the ordering of all the ITRs?
- Which ITRs are among the best?
- **③** Which ITRs are better than the control rule r_0 ?

We cannot directly use existing methods because \prec_{Γ} is not a total order.

Objectives

Some definitions

• The maximal rules are the ones not dominated by others,

$$\mathcal{R}_{\max,\Gamma} = \{ r_i \mid r_i \not\prec_{\Gamma} r_j, \forall j \}.$$

• The **positive rules** are the ones which dominate the control. The **null rules** are the ones which don't dominate the control.

$$\mathcal{R}_{\mathsf{pos},\Gamma} = \{ r_i \mid r_0 \prec_{\Gamma} r_i \}, \ \mathcal{R}_{\mathsf{nul},\Gamma} = \mathcal{R} \setminus \mathcal{R}_{\mathsf{pos},\Gamma}.$$

() Construct a set of ordered ITR pairs, $\hat{\mathcal{O}}_{\Gamma} \subset \{(r_i, r_j), i, j = 0, \dots, K, i \neq j\}$, such that

$$\mathbb{P}(\mathbf{r}_i \prec_{\Gamma} \mathbf{r}_j, \forall (\mathbf{r}_i, \mathbf{r}_j) \in \hat{\mathcal{O}}_{\Gamma}) \geq 1 - \alpha.$$

Onstruct Â_{max,Γ} ⊆ R such that P(R_{max,Γ} ⊆ Â_{max,Γ}) ≥ 1 − α.
Construct Â_{pos,Γ} ⊆ R such that P(Â_{pos,Γ} ∩ R_{null,Γ} = 𝔅) ≥ 1 − α.

Objective 1: Ordering the ITRs

- Can apply Bonferroni's procedure to control the family-wise error rate, but this is very conservation because the sensitivity analysis considers the worst case scenario.
- Better alternative: reduce the number of tests using a planning sample (Heller *et al.* 2009; Q. Zhao *et al.* 2018).

Our proposal

- Step 1: Split the data into two parts: one for planning and one for testing.
- Step 2: For every pair of ITRs, use the planning sample to estimate the asymptotic distribution of Γ^* and the power of testing H_{ij} : $r_i \not\prec_{\Gamma} r_j$.
- Step 3: Order the hypotheses by estimated power from the highest to the lowest.
- Step 4: Fixed sequence testing: sequentially test the ordered hypotheses using the testing sample at level α , until one hypothesis is rejected.

Step 5: Use transitivity of \prec_{Γ} and output a Hasse diagram.

Objective 1: Malaria example

Ordered hypotheses after using the planning sample

- $\Gamma = 1$: $H_{01}, H_{02}, H_{03}, H_{04}, H_{05}, H_{13}, H_{12}, H_{14}, H_{15}, H_{23}, \dots$
- $\Gamma = 2$: $H_{02}, H_{01}, H_{03}, H_{04}, H_{05}, H_{12}, H_{13}, H_{14}, H_{15}, H_{45}, \dots$

$$\begin{vmatrix} r_1 & r_2 & r_3 & r_4 & r_5 \\ r_1 & & & r_2 & & r_4 & r_5 \\ \hline & & & & & r_4 & & r_1 & & r_5 \\ \hline & & & & & & & r_6 \\ |\hat{\mathcal{O}}| = 5 & & & |\hat{\mathcal{O}}| = 7 \end{vmatrix}$$

Hasse diagrams for $\Gamma = 2$: Bonferroni's correction (left) and our proposal (right).

Objective 2: Selecting the best ITRs

- Key observation: $\mathbb{P}(r_i \not\prec_{\Gamma} r_j \text{ is rejected } | r_i \in \mathcal{R}_{\max,\Gamma}) \leq \alpha$.
- This motivates us to use all the "leaves" in the Hasse diagram as the maximal elements:

$$\hat{\mathcal{R}}_{\max,\Gamma} = \{ r_i \mid (r_i, r_j) \notin \hat{\mathcal{O}}_{\Gamma}, \ \forall j \}.$$

An example

$$\begin{array}{ccc} r_2 & r_3 \\ & & \swarrow & \\ r_4 & r_1 & r_5 \\ & & & \searrow & \hat{\mathcal{R}}_{\max} = \{r_2, r_3, r_4, r_5\} \\ & & & & & \\ r_0 & & & \end{array}$$

• This satisfies $\mathbb{P}(\mathcal{R}_{\max,\Gamma} \not\subseteq \hat{\mathcal{R}}_{\max,\Gamma}) \leq \alpha$ if the FWER for $\hat{\mathcal{O}}_{\Gamma}$ is less than α .

• Can "trim" hypotheses using the following: $r_i \notin \hat{\mathcal{R}}_{\max,\Gamma}$ if $H_{ij}: r_i \not\prec_{\Gamma} r_j$ is rejected for a single r_j .

Objective 2: Malaria example

• Ordered and trimmed hypotheses for $\Gamma = 2$: H_{02} , H_{12} , H_{45} , H_{35} , H_{53} , H_{21} .

Г	$\hat{\mathcal{R}}_{max,F}$	Г	$\hat{\mathcal{R}}_{max,\Gamma}$
1.0	$\{r_3, r_4, r_5\}$	2.5	$\{r_2, r_3, r_4, r_5\}$
1.3	$\{r_3, r_4, r_5\}$	3.0	$\{r_1, r_2, r_3, r_4, r_5\}$
1.5	$\{r_2, r_3, r_4, r_5\}$	3.5	$\{r_1, r_2, r_3, r_4, r_5\}$
1.8	$\{r_2, r_3, r_4, r_5\}$	4.0	$\{r_1, r_2, r_3, r_4, r_5\}$
2.0	$\{r_2, r_3, r_4, r_5\}$	6.0	$\{r_0, r_1, r_2, r_3, r_4, r_5\}$

Table: $\hat{\mathcal{R}}_{max,\Gamma}$ for different choices of Γ .

Objective 3: Selecting the positive ITRs

- Simply needs to test the hypotheses H_{0i} : $r_0 \not\prec_{\Gamma} r_i$, $i = 1, \dots, K$.
- Can use the same multiple testing procedure above.

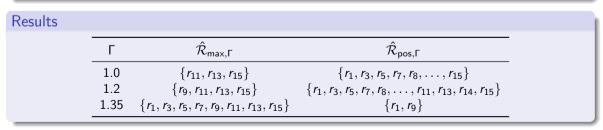
Results for the malaria example

	$\Gamma = 1$	$\Gamma = 1.3$	$\Gamma = 1.5$	$\Gamma = 1.8$
$\delta = 0$ $\delta = 2$ $\delta = 6$	$ \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_1, r_2, r_3, r_4, r_5 \} $	$ \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_1, r_2, r_3, r_4, r_5 \} $	$ \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_1, r_2, r_3, r_4, r_5 \} \{ r_2, r_3, r_4, r_5 \} $	$ \{ r_1, r_2, r_3, r_4, r_5 \} \\ \{ r_1, r_2, r_3, r_4, r_5 \} \\ \{ r_2 \} $
	Γ = 2.0	$\Gamma = 2.5$	$\Gamma = 3.0$	
$\delta = 0$ $\delta = 2$ $\delta = 6$	$\begin{cases} \{r_1, r_2, r_3, r_4, r_5\} \\ \{r_1, r_2, r_3, r_4, r_5\} \\ \emptyset \end{cases}$	$ \{ \begin{matrix} r_1, r_2, r_3, r_4, r_5 \\ \{ r_1, r_2, r_3 \\ \emptyset \end{matrix} \} $	$ \{ \begin{matrix} r_1, r_2, r_3, r_4, r_5 \\ \{ r_1, r_2 \\ \emptyset \end{matrix} $	
	$\Gamma = 3.5$	$\Gamma = 4.0$	$\Gamma = 6.0$	
$\delta = 0$ $\delta = 2$ $\delta = 6$	$\begin{cases} r_1, r_2, r_3 \\ \emptyset \\ \emptyset \end{cases}$	$ \begin{cases} r_1, r_2 \\ \emptyset \\ \emptyset \end{cases} $	Ø Ø Ø	

Retirement timing on health outcome

Setup

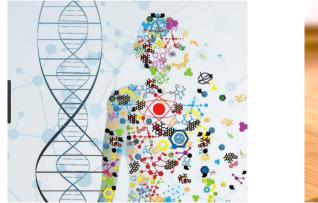
- Treatment: late retirement (retire between 65 and 70).
- Outcome: self-reported health status at 70.
- Covariates: year of birth, gender, education, race, occupation, partnered, annual income, smoking.
- Optimal matching (exactly on year, gender, occupation, partnered): 1858 matched pairs.
- We considered **4** subgroups: male, white-collar workers (G_1) , female, white-collar workers (G_2) , male, blue-collar workers (G_3) , and female, blue-collar workers (G_4) .
- 16 regimes with binary coding. For example, $r_9 = r_{1001}$ treats G_1 and G_4 .



Discussion

- Robustness to unmeasured confounders: another dimension in decision making.
- Best ITR (largest value assuming ignorability) is often not the most robust.
- Many possible objectives for selection and ranking.
- Selective inference for partially identified/ordered problems: a potentially new topic?
- Our method cannot handle too many ITRs. Better alternatives?

Take-home message: Precision medicine or Jenga?



References

- S. Athey, S. Wager, arXiv preprint arXiv:1702.02896 (2017).
- J. Cornfield et al., Journal of the National Cancer Institute 22, 173-203 (1959).
- M. Dudík, D. Erhan, J. Langford, L. Li, et al., Statistical Science 29, 485-511 (2014).
- C. B. Fogarty, Journal of the American Statistical Association 115, 1518–1530 (531 2020).
- J. D. Gibbons, I. Olkin, M. Sobel, Selecting and ordering populations: A new statistical methodology, (SIAM, 2nd, 1999).
- R. Heller, P. R. Rosenbaum, D. S. Small, Journal of the American Statistical Association 104, 1090–1101 (2009).
- J. Y. Hsu, D. S. Small, P. R. Rosenbaum, Journal of the American Statistical Association 108, 135-148 (2013).
- N. Kallus, A. Zhou, presented at the Advances in Neural Information Processing Systems 2018, pp. 9269-9279.
- M. Qian, S. A. Murphy, The Annals of Statistics 39, 1180-1210 (2011).
- P. R. Rosenbaum, Biometrika 74, 13-26 (1987).
- P. R. Rosenbaum, Biometrika 91, 153-164 (2004).
- Q. Zhao, Journal of the American Statistical Association 114, 713-722 (2019).
- Q. Zhao, D. S. Small, P. R. Rosenbaum, Journal of the American Statistical Association 113, 1070–1084 (2018).
- Y. Zhao, D. Zeng, A. J. Rush, M. R. Kosorok, *Journal of the American Statistical Association* **107**, 1106–1118 (2012).