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The concept of design

▶ In statistics, design is usually associated with randomized experiments.
▶ R. A. Fisher’s Design of Experiments (1935).
▶ Parallel literature of survey sampling.

▶ There is growing awareness that design is a much broader concept.

▶ My tentative definition:

Design = HOW data are collected and preprocessed.

▶ There is very little formal discussion about design in AI and machine learning, although it
seems crucial in many trendy topics such as transfer learning, domain adaptation,
distribution shift, generalizability, transportability, fairness, accountability, explanability. . .



This talk

Examples from my recent work, otherwise completely unrelated, echo a common theme:

Design trumps analysis.1

1. Meta-research of biodiversity conservation.

2. Early outbreak analysis of COVID-19 in China.

3. Racial discrimination in policing in New York City.

4. Mendelian randomization—a popular method in genetic epidemiology.

5. Graphical approaches to confounder selection in observational studies.

1This motto is taken from D. B. Rubin’s 2008 article “For objective causal inference, design trumps
analysis”, although a much broader concept of “design” will be used here.



Example 1: Meta-research of biodiversity conservation

Based on:

▶ Alec P. Christie, ..., Qingyuan Zhao, and William J. Sutherland (2020). “Quantifying and
Addressing the Prevalence and Bias of Study Designs in the Environmental and Social
Sciences”. In: Nature Communications 11.1, p. 6377. doi:
10.1038/s41467-020-20142-y.

▶ This was a collaboration with ecologists at Cambridge who made painstaking effort to
build a database of conservation studies.

▶ Check out their website: https://www.conservationevidence.com/.

https://doi.org/10.1038/s41467-020-20142-y
https://www.conservationevidence.com/


Common study designs in ecology



Prevalence of study designs



Statistical model

We fitted a hierarchical Bayesian model for within-study comparisons.

▶ Data: β̂ij effect size estimator in study i with design j ∈ {BA,CI,BACI DiD,BACI CA},2

with standard error β̂ij obtained from a generalized linear (mixed) model.

▶ Bayesian model (prior is omitted):

β̂ij = βi + γij + ϵij ,

βi ∼ N(0, σ2
β), γij ∼ N(0, σ2

j ), ϵi ∼ N(0,Λ),

Λ = λ · diag(σ̂i ) Ωdiag(σ̂i ).

▶ The most interesting parameters are σ2
j , which describes the average magnitude of bias for

design j .

2DiD = Difference in Differences; CA = Covariate Adjustment.



Results

▶ Takeaway: having a control group makes a huge difference; randomization reduces bias.

▶ Limitations: strong assumptions on the bias and noise correlation.



Example 2: Early outbreak analysis of COVID-19 in China

Based on:

▶ Qingyuan Zhao, Yang Chen, and Dylan S Small (Feb. 2020). “Analysis of the Epidemic
Growth of the Early 2019-nCoV Outbreak Using Internationally Confirmed Cases”. In:
doi: 10.1101/2020.02.06.20020941.

▶ Qingyuan Zhao, Nianqiao Ju, Sergio Bacallado, and Rajen D. Shah (2021). “BETS: The
Dangers of Selection Bias in Early Analyses of the Coronavirus Disease (COVID-19)
Pandemic”. In: Annals of Applied Statistics 15.1, pp. 363–390. doi:
10.1214/20-aoas1401.

▶ Qingyuan Zhao (2022). “Small Data, Big Time—A Retrospect of the First Weeks of
COVID-19 (with Discussion)”. In: Journal of the Royal Statistical Society (Series A,
Statistics in Society) 185.4, pp. 1793–1814. doi: 10.1111/rssa.12874.

https://doi.org/10.1101/2020.02.06.20020941
https://doi.org/10.1214/20-aoas1401
https://doi.org/10.1111/rssa.12874


What went wrong?

▶ medRxiv paper: “Our estimated epidemiological parameters are higher than an earlier
report using confirmed cases in Wuhan. This indicates the 2019-nCoV could have been
spreading faster than previous estimates.”

▶ AoAS paper: “We gave a detailed illustration of why some early and highly influential
analyses of the COVID-19 pandemic were severely biased.”

▶ JRSSA paper: “Further reanalyses of some published COVID-19 studies show that the
epidemic growth was dramatically underestimated by compartmental models, and the
lack of fit could have been clearly identified by simple data visualization.”



Naive method

▶ Joseph T. Wu, Kathy Leung, and Gabriel M. Leung (Feb. 2020). “Nowcasting and
Forecasting the Potential Domestic and International Spread of the 2019-nCoV Outbreak
Originating in Wuhan, China: A Modelling Study”. In: The Lancet 395.10225,
pp. 689–697. issn: 0140-6736, 1474-547X. doi: 10.1016/S0140-6736(20)30260-9.

▶ They used a SEIR (Susceptible-Exposed-Infectious-Recovered) model for the
epidemic in Wuhan and a Poisson process to model case exportation.

▶ They fitted the model using 17 (!) international cases who showed symptoms before
January 20, 2020.

▶ To replicate their analysis, I fitted some simple Poisson log-linear models.

https://doi.org/10.1016/S0140-6736(20)30260-9
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▶ Blue (symptom onsets before January 20): 5.9 days (95% CI 3.4–15.7).

▶ Red (symptom onsets before January 24): 3.9 days (2.9–5.5).

▶ Original study: 6.4 days (5.8–7.1).



What else was wrong?

The model employed by Wu, Leung, and Leung (2020)

▶ does NOT take into account Wuhan’s travel ban on January 23.

▶ ignores the rich information available for the individual cases.



Data collection
▶ Nianqiao Ju and I spent a lot of time collecting a total of 1,460 individual case reports.

▶ Confirmed before 29th Feb for mainland China and 15th Feb for international locations.

▶ We found 378 cases exported from Wuhan.
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Overview of the dataset

Column name Description Example Summary statistics

Case Unique identifier for each case HongKong-05 1460 in total

Residence Nationality or residence of the case Wuhan 21.5% reside in Wuhan

Gender Gender Male /Female 52.1%/47.7% (0.2% NA)

Age Age 63 Mean=45.6, IQR=[34, 57]

Known Contact Known epidemiological contact? Yes /No 84.7%/15.3%

Cluster Relationship with other cases Husband of 32.1% known

HongKong-04

Outside Transmitted outside Wuhan? Yes/ Likely /No 58.5%/7.7%/33.8%

Begin Wuhan Begin of stay in Wuhan (B) 30-Nov4

End Wuhan End of stay in Wuhan (E) 22-Jan

Exposure Period of exposure 1-Dec to 22-Jan 58.9% known period/date

8.2% known date

Arrived Final arrival date at the location 22-Jan 40.6% did not travel

where confirmed a COVID-19 case

Symptom Date of symptom onset (S) 23-Jan 9.0% NA

Initial Date of first medical visit 23-Jan 6.5% NA

Confirmed Date confirmed 24-Jan



Design

▶ The most time-consuming part was to transcribe paragraphs of text to a data frame.

The other two cases are a married couple of residents of in Wuhan, a 62-year-old
female [HongKong-04] and a 63-year-old male [HongKong-05], with good prior health
conditions. Based on information provided by the patients, They took a high-speed
train departing from Wuhan at 2:20pm, January 22, and arrived at the West Kowloon
station around 8pm. The female patient had a fever since yesterday with no respiratory
symptoms. The male patient started to cough yesterday and had a fever today. They
went to the emergency department at the Prince of Wales Hospital yesterday and were
admitted to the hospital for treatment in isolation. Currently their health conditions
are stable. Respiratory samples of the two patients were tested positive for the novel
coronavirus.

▶ Actually even more time-consuming and mentally defeated was to define the columns.



Generative BETS model (T = time of transmission)

f (b, e, t, s) = fB(b) · fE (e | b)︸ ︷︷ ︸
travel

· fT (t | b, e)︸ ︷︷ ︸
disease transmission

· fS(s | b, e, t)︸ ︷︷ ︸
disease progression

.

To allow extrapolation, the BETS model makes two basic assumptions

Assumption 1: Disease transmission independent of travel

fT (t | b, e) =

g(t), if b < t < e,

1−
∫ e

b

g(x) dx , if t = ∞.

Here g(·) models the epidemic growth in Wuhan before the lockdown.

Assumption 2: Disease progression independent of travel

fS(s | b, e, t) =

{
ν · h(s − t), if t < s < ∞,

1− ν, if s = ∞.

Here h(·) is the density of the incubation period S − T (for symptomatic cases).



Results

Location
Sample Doubling time Incubation period

size (in days) Median 95% quantile

China - Hefei 34 2.1 (1.2–3.7) 4.3 (2.9–6.0) 12.0 (9.1–17.3)

China - Shaanxi 53 1.7 (1.0–2.8) 4.5 (3.1–6.2) 14.6 (11.5–19.8)

China - Shenzhen 129 2.2 (1.7–3.0) 3.5 (2.8–4.3) 11.2 (9.5–13.6)

China - Xinyang 74 2.3 (1.5–3.5) 6.8 (5.4–8.2) 16.4 (13.8–20.1)

China - Other 42 2.0 (1.1–3.4) 5.1 (3.6–6.7) 12.3 (9.8–16.4)

International 46 2.1 (1.4–3.4) 3.8 (2.5–5.3) 10.9 (8.4–15.1)

All locations 378 2.1 (1.8–2.5) 4.5 (4.0–5.0) 13.4 (12.2–14.8)

(Point estimates obtained by MLE. Confidence intervals obtained by inverting LRT.)

Takeaway

▶ The paper identifies five sources of biases: under-ascertainment, non-random sample
selection, travel quarantine, epidemic growth, right-truncation.

▶ A really interesting experiment on estimating the incubation period: upward bias due to
epidemic growth and downward bias due to right-truncation.



Example 3: Racial discrimination in policing in New York City

Based on

▶ Qingyuan Zhao, Luke J Keele, Dylan S Small, and Marshall M Joffe (2021). “A Note on
Posttreatment Selection in Studying Racial Discrimination in Policing”. In: American
Political Science Review 116.1, pp. 337–350. doi: 10.1017/s0003055421000654.

▶ This started from a friend telling me about a heated exchange on Twitter between two
groups of political scientists, one taking the potential outcomes approach (Gaebler, Cai,
Basse, Shroff, Goel, and Hill 2022) and one taking the graphical approach (Knox, Lowe,
and Mummolo 2020).

https://doi.org/10.1017/s0003055421000654


Setup in Knox, Lowe, and Mummolo (2020)

D M

U

Y

▶ D: binary, 1 means minority.

▶ M: binary, 1 means police detainment.

▶ Y : binary, 1 means use of force.

Key challenges

1. Only observe data with M = 1 in police admin data.

2. There can be unmeasured M-Y confounders.

=⇒ Collider bias (when conditioning on M = 1) in previous studies.



Our reanalysis of the NYPD stop-and-frisk dataset

▶ New identification formula:

Causal risk ratio =
E[Y (1)]

E[Y (0)]
=

E[Y | D = 1,M = 1]

E[Y | D = 0,M = 1]︸ ︷︷ ︸
naive estimator

·
{P(D = 1 | M = 1)

P(D = 0 | M = 1)

}/{P(D = 1)

P(D = 0)

}
︸ ︷︷ ︸

selection bias factor

.

▶ We estimated P(D = 1) using two external surveys (CPS and PPCS).

External dataset Estimated risk ratio 95% Confidence interval

Naive estimator
None 1.29 1.28–1.30

Adjusted for selection bias
CPS 13.6 12.8–14.3
PPCS 32.3 31.3–33.3
PPCS (Large Metro) 16.7 15.4–18.4

▶ The selection bias could be > 10-fold!!



Example 4: Mendelian randomization

Based on

▶ Qingyuan Zhao, Jingshu Wang, Gibran Hemani, Jack Bowden, and Dylan S. Small (2020).
“Statistical Inference in Two-Sample Summary-Data Mendelian Randomization Using
Robust Adjusted Profile Score”. In: Annals of Statistics 48.3, pp. 1742–1769. doi:
10.1214/19-aos1866.

▶ Matthew J Tudball, George Davey Smith, and Qingyuan Zhao (2022). “Almost Exact
Mendelian Randomization”. In: arXiv: 2208.14035 [stat.ME].

▶ This is an extremely popular design in genetic epidemiology that leverages the natural
“experiment” in genetic inheritance.

https://doi.org/10.1214/19-aos1866
https://arxiv.org/abs/2208.14035


Illustration: Causal effect of the LDL-cholesterol

▶ Basic idea: People who inherited certain alleles of rs17238484 and rs12916 have naturally
lower LDL cholesterol that mimic the effect of statin.



Population-based Mendelian randomization (MR)

▶ MR can be understood as using genetic variants as instrumental variables.

▶ Issue: Pleiotropy (same gene affects multiple phenotypes).

Model for MR using summary data of genome-wide association studies (GWAS)

▶ γ̂j
ind.∼ N(γj , σ

2
1j): genetic effect on treatment A.

▶ Γ̂j
ind.∼ N(Γj , σ

2
2j): genetic effect on outcome Y .

▶ We assume
Γj = βγj + αj , j = 1, . . . , p.

▶ β is causal effect of A on Y .

▶ αj ∼ N(0, τ 2) is direct pleiotropic effect of jth genetic variant on Y .



Example of population-based MR

▶ GWAS summary data from UK BioBank. Sample size around 500,000. 160 SNPs.

▶ “Treatment” is Body Mass Index (BMI); Outcome is systolic blood pressure (SBP).
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Figure: Left: Γ̂j vs γ̂j ; Right: Q-Q plot for α̂j = Γ̂j − β̂γ̂j after standardisation.

▶ Estimated β̂ = 0.402 (standard error = 0.106). BMI and SBP were standardised.



Within-family MR

▶ Genes are not randomized at the population level.

▶ Rather, in Mendel’s model they are randomized conditional on parent’s haplotypes.

▶ Thus, MR is best justified in within-family design (Davey Smith and Ebrahim 2003).

Almost exact MR (Tudball, Davey Smith, and Zhao 2022)

1. Use graphical models to identify the exact “natural experiment”.

2. Precisely describe various sources of biases in population-based MR: population
structure, assortative mating, dynastic effects, and horizontal pleiotropy.

3. Use randomization as the sole basis of inference.



Example 5: Graphical approaches to confounder selection

Based on

▶ F. Richard Guo, Anton Rask Lundborg, and Qingyuan Zhao (2022). Confounder Selection:
Objectives and Approaches. arXiv: 2208.13871 [stat.ME].

▶ F. Richard Guo and Qingyuan Zhao (Oct. 2023). Confounder Selection via Iterative Graph
Expansion. doi: 10.48550/arXiv.2309.06053. arXiv: 2309.06053 [math, stat].

▶ This started from a question by Anton’s medical client in our Statistics Clinic.

https://arxiv.org/abs/2208.13871
https://doi.org/10.48550/arXiv.2309.06053
https://arxiv.org/abs/2309.06053


Confounder selection

▶ Arguably the most important task in observational studies.

▶ Many criteria and methods, often loosely stated, sometimes ill-advised.

“Guideline” used by Anton’s client
Austin (2011) claimed that there are four choices:

1. all measured baseline covariates;

2. all baseline covariates that are associated with treatment assignment;

3. all covariates that affect the outcome (i.e., the potential confounders),

4. all covariates that affect both treatment assignment and the outcome (i.e., the true
confounders).

Citing simulation studies, he concluded that “there were merits to including only the
potential confounders or the true confounders in the propensity score model.”



Two common heuristics

The conjunction heuristic (a.k.a. the common cause principle)
Contrlling for all covariates “related” to both the treatment and the outcome.

▶ Very common in practice (Glymour, Weuve, and Chen 2008) and methodological
development (Koch, Vock, Wolfson, and Vock 2020; Shortreed and Ertefaie 2017).

▶ Well known that this may select too few.

The pre-treatment heuristic
Controlling for all covariates that precede the treatment temporally.

▶ Defended in Rubin (2009): “I cannot think of a credible real-life situation where I would
intentionally allow substantially different observed distributions of a true covariate in the
treatment and control groups.”

▶ Counter-examples from graphical models: e.g. M-bias (Greenland, Pearl, and Robins
1999).



Graphical approaches

Theorem (Back-door criterion (Pearl 1993, 2009))
Given a treatment X and an outcome Y , a set of covariates S controls for confounding if

1. S contains no descendant of X ;

2. S blocks all back-door paths from X to Y .

▶ This is complete in the sense that if S is a sufficient adjustment set, then S \ de(X )
satisfies the backdoor criterion (Shpitser, VanderWeele, and Robins 2010).

▶ Limitation: requires “full” structural knowledge.

Theorem (Disjunctive criterion (VanderWeele and Shpitser 2011))
Suppose the causal graph is faithful. If at least one subset of S controls for confounding, then
S ∩ [(X ) ∪ (Y )] controls for confounding.

▶ Limitation: verifying the assumption can be as difficult as the task of confounder
selection itself.



Our approach in a nutshell
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A more complex example

Suppose we are interested in whether WarmUp has a causal effect on Injury. We managed to
collect a dataset with the following variables:

▶ WarmUp;

▶ Injury;

▶ Coach;

▶ PreviousInjury;

▶ ContactSport;

▶ NeuromuscularFatigue;

▶ ConnectiveTissueDisorder.

Demo link: https://ricguo.shinyapps.io/InteractiveConfSel/

https://ricguo.shinyapps.io/InteractiveConfSel/


“True” full graph behind the demo (Shrier and Platt 2008)



Summary

▶ All five examples echo a common theme: design trumps analysis.

1. Meta-research of biodiversity conservation.
2. Early outbreak analysis of COVID-19 in China.
3. Racial discrimination in policing in New York City.
4. Mendelian randomization—a popular method in genetic epidemiology.
5. Graphical approaches to confounder selection in observational studies.

▶ As a principle of statistics, design is well understood in some contexts:
▶ Randomized experiments and survey sampling;
▶ Causal identification theory (using potential outcomes/graphs).



Discussion

▶ But design is a much broader concept. Related discussion include
▶ Exploratory data analysis (Tukey 1977).
▶ Design sensitivity and evidence factors (Rosenbaum 2010, 2021).
▶ Triangulation in social science (Campbell and Fiske 1959; Mathison 1988) and epidemiology

(Lawlor, Tilling, and Davey Smith 2016).
▶ Measurement theory in psychometrics.

▶ Design is still and perhaps will always be elusive, but that is the beauty of statistics.
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