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Hierarchy of evidence

When the goal is to infer causation...

Expert opinions, case reports, animal studies

Observational studies
(case-control and cohort design)

Natural experiments

(Mendelian randomization)

RCTs

Q
ual

ity
of

ev
id

en
ce

This lecture

Figure: (A rough) Hierarchy of evidence in medical studies.1

1
Based on: American Academy of Pediatrics clinical guidelines. Gidding, et al. (2012). “Developing the

2011 Integrated Pediatric Guidelines for Cardiovascular Risk Reduction.” Pediatrics 129(5).
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Fundamental challenge of observational studies

“Correlation does not imply causation”.

Observational studies = Enumerating confounders

I Idea: Conditioning on possible sources of spurious correlation.

I Example: Possible confounders between smoking and lung cancer:
I Age.
I Sex.
I Urban/Rural.
I Working environment.
I Socioeconomic class.
I . . .

I Fundamental challenge: We can never be sure this list is
complete.

I The promise of instrumental variables: unbiased estimation of causal
effect without enumerating confounders.
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What is an instrument variable (IV)?
Causal diagram for IV

Instrument Z Exposure X Outcome Y

Confounder C

1

2
××

3
×

Core IV assumptions

1. Relevance: Z is associated with the exposure (X ).

2. Effective random assignment: Z is independent of the
unmeasured confounder (C ).

3. Exclusion restriction: Z cannot have any direct effect on the
outcome (Y ).

Wald’s estimator based on Intention-to-treat (ITT) analysis

Causal effect of X on Y ≈ ITT Effect of Z on Y

ITT Effect of Z on X
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IV in Economics: Effect of military service on earnings2

Lottery number Z Military service X Earning Y

Confounder C

1

2
××

3
×

I In 1970, the U.S. government conducted draft lottery to determine
priority of conscription for the Vietnam war.

I Exercise: Justify the core IV assumptions.

I The draft lottery can be regarded as a “natural experiment” of
military service.

2
Angrist, J. (1990). Lifetime earnings and the Vietnam era draft lottery: evidence from social security

administrative records. American Economic Review, 80(3), 313–336.
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Results of the Vietnam-war lottery study
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IV in Public Health: Effectiveness of vaccine3

Encouragement Z Vaccine X Infection Y

Confounder C

1

2
××

3
×

I This is also called randomized encouragement design.

I The same idea can be applied to RCTs with non-compliance.

3
Hirano, K. et al. (2000). Assessing the effect of an influenza vaccine in an encouragement design.

Biostatistics, 1(1), 69–88.
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IV in Human Genetics: Gene testing4

cis-SNPs Z Gene expression X Disease Y

Confounder C

1

2
××

3
×

I Compared to trans-SNPs, cis-SNPs are more likely to satisfy
exclusion restriction (criterion 3).

I This is a special case of “Mendelian randomization” where genetic
variation is used as IV and typically X is an epidemiological risk
factor (more downstream).

4
Gamazon, E. et al. (2015). A gene-based association method for mapping traits using reference

transcriptome data. Nature Genetics, 47(9).
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Linear IV model

I The Wald ratio estimator becomes inadequate when Z and X are
multivariate.

I The most commonly used IV estimators are based on the following
linear model:

Yi = XT
i β + ZT

i α+ Ui ,

Xi = ZT
i γ + Vi .

IV assumptions in the linear model

1. Relevance: γ 6= 0;

2. Exogeneity: Zi ⊥⊥ (Ui ,Vi );

3. Exclusion restriction: α = 0.

I The exposure variable Xi is called confounded or endogenous if it is
correlated with Ui (or equivalently, if Vi is correlated with Ui ).
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Identification of causal effect
Under the linear IV model, the causal effect β satisfies

E[Z i (Yi − XT
i β)] = 0.

I Notice how this is different from the usual normal equation

E[X i (Yi − XT
i β)] = 0.

I To identify β, we need dim(Zi ) ≥ dim(Xi ).

I Just-identified case: When dim(Zi ) = dim(Xi ), we can estimate β
by solving

n∑
i=1

Zi (Yi − XT
i β) = 0.

The solution in matrix-form is

β̂ = (ZTX )−1ZTY .

I Over-identified case: When dim(Zi ) > dim(Xi ), we have some
freedom to choose which (linear combinations of) equations to solve.
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Two-stage least squares (TSLS)
I In the over-identified case, here is a general class of IV estimator:

Let f : Rdim(Zi ) 7→ Rdim(Xi ) be any function that maps from the
space of Z to X . Then β satisfies

E[f (Zi ) · (Yi − XT
i β)] = 0.

I The most efficient choice of f is f (Zi ) = E[Xi |Zi ] = ZT
i γ.

I The nuisance parameter γ is not known but can be estimated from
the data. The most common estimator is least squares:

γ̂ = (ZTZ )−1ZTX .

I Thus the IV estimator of β is given by (let PZ = Z (ZTZ )−1ZT )

β̂ =
[
(Z γ̂)TX

]−1
(Z γ̂)TY = (XTPZX )−1(XTPZY ).

I This is called two-stage least squares, because (let X̂ = PZX )

β̂ = lm(Y ∼ X̂ ) = lm(Y ∼ predict(lm(X ∼ Z )))

I However, standard error of β̂ cannot be obtained directly from lm

because γ̂ is estimated from the data.



15/40

Limited information maximum likelihood (LIML)

I Recall the linear IV model:

Yi = XT
i β + Ui ,

Xi = ZT
i γ + Vi .

I The LIML estimator assumes the noise variables (Ui ,Vi ) are jointly
normal with mean 0 and covariance Σ.

I LIML maximizes the log-likelihood of this problem:

l(β,γ,Σ) = −1

2

n∑
i=1

log |Σ−1|+
(
Yi − XT

i β

Xi − ZT
i γ

)T

Σ−1

(
Yi − XT

i β

Xi − ZT
i γ

)
.

I TSLS and LIML are asymptotically equivalent (when n→∞ and
dim(Xi ) and dim(Zi ) are fixed).

I LIML is more robust to weak instruments (small γ).
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MR = Using genetic variation as IV

Z (Gene) X (HDL) Y (Heart disease)

C (Confounder)

1

2
××

3
×

Examine the core IV assumptions

Criterion 1 X Modern GWAS have identified many causal variants

Criterion 2 X
Almost Comes for free due to Mendel’s Second Law

Minor concern: population stratification

Criterion 3 ?
Problematic because of wide-spread pleiotropy

(multiple functions of genes).

I Exercise: what if there are two SNPs in LD?
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Non-conventional challenges in MR

Weak instruments Many genetic variants are only weakly associated with
the exposure.

I Solution: Use LIML-type estimator instead of TSLS.

Two-sample IV/MR Association data for X and Y often come from
different population.

I Need to justify the causal structure is invariant.5

Summary-data MR Most GWAS data come in summary-statistics format
due to privacy.

I Solution: Develop statistical methods that can be applied to
summary statistics.

Pleiotropy Exclusion restriction is likely violated for many genetic IVs.

I Solution: Use more robust methods that account for pleiotropy.

5
Zhao, Q. et al. (2017). Two-sample instrumental variable analyses using heterogeneous samples.

arXiv:1709.00081.
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A general workflow of two-sample summary-data MR

1. Select independent IVs for the exposure (using GWAS-E1).

2. Extract GWAS summary statistics of the selected IVs for the
exposure (using GWAS-E2).

3. Extract GWAS summary statistics of the selected IVs for the
outcome (using GWAS-O).

4. Harmonize data in steps 2 and 3 so the reference allele is the same.

5. Perform statistical analysis.

Open-source software
A one-stop solution is being developed in the R package TwoSampleMR:6

I A large number of public GWAS summary datasets being collected.

I Convenient wrapper of LD clumping and data harmonization.

I Functions for statistical analysis.

Caveat
TwoSampleMR does not differentiate between GWAS-E1 and GWAS-E2,
which may introduce selection bias (also called winner’s curse).

6
https://github.com/MRCIEU/TwoSampleMR

https://github.com/MRCIEU/TwoSampleMR


20/40

Modeling assumptions for GWAS summary data
Dataset: estimated effects (γ̂, Γ̂) and standard errors (σX ,σY ).

Assumption 1: Measurement error model(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
,

(
ΣX 0
0 ΣY

))
,

ΣX = diag(σ2
X1, . . . , σ

2
Xp),

ΣY = diag(σ2
Y 1, . . . , σ

2
Yp).

Pre-processing warrants Assumption 1
I Large sample size ⇒ CLT.

I (Approximate) independence due to

1. Non-overlapping samples (in GWAS-E1, GWAS-E2, GWAS-O).
2. Independent SNPs.

Assumption 2: Linking the genetic associations (ITT effects)
The causal effect β satisfies Γ ≈ βγ. In particular, we have found a
reasonable model for α = Γ− βγ is universal pleiotropy with outliers

1. Most αj ⊥⊥ γj and αj
i.i.d.∼ N(0, τ 2) for some small τ 2.

2. A few |αj | might be very large.
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Statistical problem

Genetic association
inference

=⇒ Epidemiological causation

(γ̂j , Γ̂j , σXj , σYj)j=1:p =⇒ β0

Z (Gene) X (HDL) Y (Heart disease)

C (Confounder)

1

2
××

3
×

γ̂ = lm(X ∼ Z)

Γ̂ = lm(Y ∼ Z)

β0???
Genetic

association

Epidemiological
causation
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Meta-analysis methods

I Each SNP produces an independent Wald estimator: β̂j = Γ̂j/γ̂j .

I Using Delta method and assuming Γj ≡ β0γj , we can obtain

β̂j =
Γ̂j

γ̂j
=

Γj + εYj
γj + εXj

≈ N

(
Γj

γj
,
σ2
Xj + β2σ2

Yj

γ2
j

:= σ2
j

)
.

I Next combine the individual estimates using meta-analysis:

1. Inverse-variance weighting:

β̂IVW = Mean(β̂j , weights =1/σ2
j ).

2. Weighted median:

β̂WMED = Median(β̂j , weights =1/σ2
j ).

3. MR-Egger regression:

β̂Egger = lm(Γ̂j ∼ γ̂j , weights =1/σ2
j ).
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Weak instrument bias
I The main issue of meta-analysis methods is that the Delta method

approximation is not accurate if |γj |/σXj is small.

I In general, the distribution of β̂j = Γ̂j/γ̂j is a mixture of Cauchy
distribution and a bi-modal distribution.7

> p <- 100000; r <- (2 + rnorm(p))/(1 + rnorm(p));
> hist(r[abs(r) < 15], 100); abline(v = 2, lty = "dashed", col = "red", lwd = 3);
> median(r)
[1] 1.327066

Histogram of r[abs(r) < 15]

r[abs(r) < 15]
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I This problem is known as weak instrument bias in the IV literature.
7

Marsaglia, G. (2006). Ratios of normal variables. Journal of Statistical Software, 16(4), 1–10.
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Likelihood methods8

I Using the ratio Γ̂j/γ̂j is a little silly if γ̂j is small.

I We can pool information from multiple weak IVs using the likelihood.

I Assuming Γj ≡ βγj , the log-likelihood of SNP j is

lj(β,γ) = −(γ̂j − γj)2/(2σ2
Xj)− (Γ̂j − γjβ)2/(2σ2

Yj).

I Sufficient statistic for γj : γ̂j,MLE(β) =
γ̂j/σ

2
Xj + βΓ̂j/σ

2
Yj

1/σ2
Xj + β2/σ2

Yj

.

I Conditional score is defined as

Cj(β) =
∂

∂β
lj(β,γ)− E

[
∂

∂β
lj(β,γ)

∣∣∣∣ γ̂j,MLE(β)

]
=
γj (Γ̂j − βγ̂j)
σ2
Yj + β2σ2

Xj

.

I Observation 1: γj only appears as weight to “residual” Γ̂j − βγ̂j.

I Observation 2: γ̂j,MLE(β) is independent of Γ̂j − βγ̂j.

8
Based on Lindsay, B. (1985). “Using empirical partially Bayes inference for increased efficiency”. Annals

of Statistics, 13, and Zhao, Q. et al. (2018). arXiv:1804.07371 (to appear in IJE).
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Increased efficiency and robustness
I The observations above motivate a general class of unbiased

estimating equations:
p∑

j=1

fj (γ̂j ,MLE(β)) ·ψ
( Γ̂j − βγ̂j√

σ2
Yj + β2σ2

Xj

)
= 0

I Heuristic: choose fj to increase efficiency; choose bounded ψ to be
robust against outliers.

I Example: fj(γ̂j,MLE) is the spike-and-slab shrinkage estimate of γj .
I Example: ψ is Huber’s score function.
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An overdispersion phenomenon
I So far we have assumed Γj = βγj (at least for most j).

I However we have found that αj = Γj − β̂γj seems to be

approximately normal when β̂ is obtained as above.

A real data example: Effect of BMI on SBP

I Left (p = 25, psel < 5 · 10−8): scatter-plot of GWAS summary data;

I Right (p = 160, psel < 10−4): Q-Q plot of standardized residuals.
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Adjusting the score of overdispersion parameter

I A reasonable model is most αj ∼ N(0, τ 2).

I Statistical estimation of τ 2 is non-trivial due to the Neyman-Scott
phenomenon.

Neyman-Scott problem (a simplified scenario)
Suppose we observe independent pairs

Xij ∼ N(γi , τ
2), i = 1, . . . , n, j = 1, 2.

The goal is to estimate τ 2, but the MLE is inconsistent:

τ̂ 2 =
1

2n

n∑
i=1

2∑
j=1

(Xij − X̄i·)
2 =

1

4n

n∑
i=1

(Xi1 − Xi2)2 p→ τ 2/2.

An easy fix in this case is to use 2τ̂ 2. However the inconsistency of MLE
is common in many other problems involving a large number nuisance
parameters, and the fix is usually complicated.

I There is a relatively simple fix in the MR problem (details omitted).
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Some background about blood lipids

Left: Lipoprotein particles transport fat molecules in our body.9

Right: They can be categorized based on density and size.10

9
https://www.labce.com/spg659279_lipoprotein_particles.aspx.

10
Nakajima, K. “Remnant Lipoproteins: A Subfraction of Plasma Triglyceride-Rich Lipoproteins

Associated with Postprandial Hyperlipidemia.” Clinical & Experimental Thrombosis and Hemostasis 1.2
(2014): 45-53.

https://www.labce.com/spg659279_lipoprotein_particles.aspx
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Blood test for lipid profile

Traditional lipid traits

Three main traits: LDL-C (“bad” cholesterol), HDL-C (“good”
cholesterol), total triglycerides.

Advanced lipoprotein testing
A “new” technology—Nuclear Magnetic Resonance (NMR)—can now
measure subclass traits such as

S-LDL-P Concentration of small LDL particles.

M-HDL-C Total cholesterol in medium HDL particles.
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Lipid hypothesis

Conventional wisdom (from observational studies)

State-of-the-art perspective
In a plenary award lecture in ASHG 201811, I saw this slide:

11
http://www.ashg.org/2018meeting/listing/NumberedSessions.shtml#sess3

http://www.ashg.org/2018meeting/listing/NumberedSessions.shtml#sess3
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New MR results for LDL-C and HDL-C12

I For HDL-C, log odds ratio β̂ = −0.245 (SE = 0.035) is highly
significant.

I It is too hasty to dismiss the HDL hypothesis!

However, strong and weak IVs don’t agree on HDL-C.
(Unlike BMI and LDL-C)

12
Zhao, Q. et al. (2018). arXiv:1804.07371 (to appear in IJE)
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A more formal (falsification) test
Under our assumptions

Γ̂j − β0γ̂j√
σ2
Yj + τ 2

0 + β2
0σ

2
Xj

∣∣∣ γ̂j,MLE(β0, τ
2
0 )

·∼ N(0, 1).

I This can be empirically tested (e.g. using regression splines).

Example: Effect of HDL cholesterol on CAD

The diagnostic plot shows evidence of heterogeneity.
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Multiple genetic pathways ⇒ Multiple modes of β

SNP 1 SNP 2 SNP 3

Pathway A Pathway B Pathway C

Exposure (risk factor)

Outcome (disease)

AE BE CE

1A 2B 3C

BO CO

β0

Exposure effect γ Outcome effect Γ Ratio

SNP 1 1A · AE 1A · AE · β0 β0

SNP 2 2B · BE 2B · BE · β0 + 2B · BO β0 + (BO/BE)

SNP 3 3C · CE 3C · CE · β0 + 3C · CO β0 + (CO/CE)
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Multiple genetic pathways ⇒ Multiple modes of β

SNP 1 SNP 2 SNP 3... ... ... ... ... ...

Pathway A Pathway B Pathway C

Exposure (risk factor)

Outcome (disease)

AE BE CE

BO CO

β0

Exposure effect γ Outcome effect Γ Ratio

SNP 1 1A · AE 1A · AE · β0 β0

SNP 2 2B · BE 2B · BE · β0 + 2B · BO β0 + (BO/BE)

SNP 3 3C · CE 3C · CE · β0 + 3C · CO β0 + (CO/CE)
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Detection via modal plot

I l(β) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)
2

σ2
Yj + β2σ2

Xj

penalizes too much on “outliers”.

I We can plot “robust” log-likelihood and search for multiple modes:

lρ(β) = −
p∑∑∑

j=1

ρ

(
Γ̂j − βγ̂j√
σ2

Yj + β2σ2
Xj

)
.

Example: Effect of HDL cholesterol on CAD
Left: loss function ρ; Right: robust log-likelihood.
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Compare with the modal plot for LDL-C

LDL-C

HDL-C



38/40

Mechanistic heterogeneity

This phenomenon can occur even if all the IVs are valid.

Heuristic: Local/Complier average treatment effect

I Under the monotonicity assumption

P
(
X (z = 1) ≥ X (z = 0)

)
= 1,

Angrist, Imbens, and Rubin (1996) showed that

β0 = E
[
Y (x = 1)− Y (x = 0) |X (z = 1) > X (z = 0)

]
.

I Multiple modes can occur if the genetic instruments affect X in
multiple pathways, thus correspond to different “complier groups”
{X (z = 1) > X (z = 0)}.
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MR screening for lipoprotein subclasses

Scientific Takeaway
I The new results show clear heterogeneity among HDL

subclasses, confirming our observations above.

I The actual causal agent may be medium (and possibly small)
HDL particles, which may be connected to the “HDL function
hypothesis” being developed currently.
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Final messages

IV methods and Mendelian randomization are very useful tools to infer
causality and are becoming widely used in epidemiology and human
genetics.

I hope this is only the beginning of your journey with IVs and MR. Here
are some suggested readings:

I Chapter 4 of Angrist and Pischke’s book Mostly Harmless
Econometrics: An Empiricist’s Companion.

I A tutorial of IV methods for biostatisticians in Statistics in Medicine
(2014) by Baiocchi, Cheng and Small.

I A special lecture on MR in International Journal of Epidemiology
(2003) by Davey Smith and Ebrahim.

I Webpage for my research on IV and MR:
http://www-stat.wharton.upenn.edu/~qyzhao/MR.html.

http://www-stat.wharton.upenn.edu/~qyzhao/MR.html
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