The Statistics of Summary-Data MR

Qingyuan Zhao

Department of Statistics, Wharton School, University of Pennsylvania (From August 1st: Statistical Laboratory, University of Cambridge)

July 17, 2019 @ MRC-IEU Mendelian randomization conference, Bristol

Slides and more information are available at http://www-stat.wharton. upenn.edu/~qyzhao/MR.html.

Outline of this talk

Design

I Three-sample MR: winner's curse.
II Genome-wide MR: exploit weak instruments.

Model

I Measurement error in GWAS summary data: NOME assumption.
II Both systematic and idiosyncratic pleiotropy.
Analysis
I Robust adjusted profile score (RAPS): robust and efficient inference.
II Extension to multivariate MR and sample overlap.
Diagnostics
I Q-Q plot and InSIDE plot: falsify modeling assumptions.
II Modal plot: discover mechanistic heterogeneity.

Design I: Three-sample MR

Example: LDL-CAD

- Genetic instruments $Z_{1}, Z_{2}, \ldots, Z_{n}$;
- Exposure X : LDL-cholesterol;
- Outcome Y : coronary artery disease (CAD).

Data pre-processing

Name	Selection GWAS	Exposure GWAS	Outcome GWAS
Dataset	GLGC (2010)	GLGC (2013)	CARDloGRAM + C4D + UKBB
GWAS	Linear regression	Linear regression	Logistic regression
	$X \sim Z_{j}$	$X \sim Z_{j}$	$Y \sim Z_{j}$
Coefficient	Used for selection	$\hat{\gamma}_{j}$	$\hat{\Gamma}_{j}$
Std. Err.		$\sigma_{X_{j}}$	$\sigma_{Y j}$

- Use selection GWAS to select independent instruments that are associated with the exposure (p-value $\leq p_{\text {sel }}$).

Selection GWAS must be independent

Common misconception

We do not need the third selection GWAS if only "genome-wide significant" SNPs are used (e.g. p-value $\leq 5 \times 10^{-8}$).

This is wrong because, although the SNPs are most likely "true hits", the associations are still overestimated due to selection.

A simple example

```
> z <- rnorm(10^6); z[1:100] <- z[1:100] + 5
> pval <- 2*pnorm(-abs(z))
> sum(pval < 5e-8)
[1] }3
> mean(z[pval < 5e-8])
[1] 6.112361
```


Selection GWAS must be independent (cont.)

A real data example: BMI-BMI

- Exposure $X=$ Outcome $Y=\mathrm{BMI}$, so true "causal effect" $=1$.
- Selection GWAS = Exposure GWAS using 50\% UKBB;

Outcome GWAS computed using the other 50%.

$p_{\text {sel }}$	\# SNPs	Mean F	IVW	W. Median	W. Mode
$1 \mathrm{e}-8$	168	57.00	$0.823(0.017)$	$0.8(0.022)$	$0.885(0.053)$
$1 \mathrm{e}-6$	305	43.92	$0.761(0.015)$	$0.736(0.019)$	$0.865(0.079)$
$1 \mathrm{e}-4$	652	30.68	$0.678(0.012)$	$0.616(0.015)$	$0.593(0.122)$
$1 \mathrm{e}-2$	1289	20.70	$0.592(0.01)$	$0.528(0.013)$	$0.554(0.093)$
$p_{\text {sel }}$	\# SNPs	Median F	Egger	PS	RAPS
$1 \mathrm{e}-8$	168	41.12	$1.018(0.046)$	$0.848(0.014)$	$0.831(0.018)$
$1 \mathrm{e}-6$	305	33.68	$1.006(0.041)$	$0.793(0.011)$	$0.763(0.016)$
$1 \mathrm{e}-4$	652	23.23	$0.89(0.033)$	$0.724(0.009)$	$0.66(0.014)$
$1 \mathrm{e}-2$	1289	15.26	$0.749(0.025)$	$0.657(0.008)$	$0.541(0.012)$

Design II: Genome-wide MR

Instrument selection

- No p-value threshold is used when selecting IVs.
- The only requirement is that the SNPs are independent.

Weak IV bias?

Wait... Didn't you just show that weaker IVs bring more bias?

Three sources of bias
(1) Winner's curse.

Solution: Three-sample design.
(2) Weak IV bias (dividing by a small number).

Solution: Use appropriate model and statistical methods.

- Weak IVs have more pleiotropic effect.
"Solution": InSIDE assumption..

Validation of genome-wide MR

The BMI-BMI example

- Exposure $X=$ Outcome $Y=\mathrm{BMI}$, so true "causal effect" $=1$.
- Selection GWAS = GIANT consortium;
- Exposure GWAS using 50% UKBB;
- Outcome GWAS computed using the other 50%.

$p_{\text {sel }}$	\# SNPs	Mean F	IVW	W. Median	W. Mode
$1 \mathrm{e}-8$	58	69.2	$0.983(0.024)$	$0.945(0.039)$	$0.939(0.044)$
$1 \mathrm{e}-6$	126	44.1	$0.986(0.022)$	$0.944(0.034)$	$0.931(0.038)$
$1 \mathrm{e}-4$	287	26.1	$0.981(0.017)$	$0.941(0.031)$	$0.929(0.035)$
$1 \mathrm{e}-2$	812	12.7	$0.928(0.014)$	$0.879(0.023)$	$0.739(7.130)$
$p_{\text {sel }}$	\# SNPs	Median F	Egger	PS	RAPS
$1 \mathrm{e}-8$	58	42.0	$0.928(0.050)$	$0.999(0.023)$	$0.998(0.025)$
$1 \mathrm{e}-6$	126	27.4	$0.881(0.043)$	$1.017(0.019)$	$1.009(0.023)$
$1 \mathrm{e}-4$	287	15.8	$0.921(0.031)$	$1.023(0.017)$	$1.018(0.018)$
$1 \mathrm{e}-2$	812	5.6	$0.909(0.022)$	$1.010(0.015)$	$1.005(0.015)$

Validation of genome-wide MR (cont.)

In many (but not all) real examples, the MR results are stable across different instrument strength.

Example: LDL-CAD

Selection threshold	RAPS Results	
	Only	Cumulative
$0 \leq p \leq 10^{-8}$	$0.48(0.04)$	$0.48(0.04)$
$10^{-8} \leq p \leq 10^{-4}$	$0.36(0.11)$	$0.46(0.04)$
$10^{-4} \leq p \leq 1$	$0.34(0.26)$	$0.48(0.03)$

Example: BMI-CAD

Selection threshold	RAPS Results	
	Cumulative	
$0 \leq p \leq 10^{-8}$	$0.34(0.13)$	$0.34(0.13)$
$10^{-8} \leq p \leq 10^{-4}$	$0.34(0.15)$	$0.34(0.09)$
$10^{-4} \leq p \leq 1$	$0.45(0.11)$	$0.39(0.07)$

Model I: Measurement error in GWAS summary data

Simplifying requirement

Exposure GWAS and outcome GWAS have no sample overlap.

Assumption 1

Let $\hat{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{n}\right)$ be the vector of exposure coefficients (similarly $\hat{\Gamma}$):

$$
\binom{\hat{\gamma}}{\hat{\Gamma}} \sim N\left(\binom{\gamma}{\Gamma}, \operatorname{diag}\left(\sigma_{X 1}^{2}, \ldots, \sigma_{X n}^{2}, \sigma_{Y 1}^{2}, \ldots, \sigma_{Y_{n}}^{2}\right)\right)
$$

Three-sample design warrants Assumption 1

Name	Selection GWAS	Exposure GWAS	Outcome GWAS
GWAS	$\operatorname{Im}\left(X \sim Z_{j}\right)$	$\operatorname{Im}\left(X \sim Z_{j}\right)$	$\operatorname{Im}\left(Y \sim Z_{j}\right)$
Coefficient	Used for selection	$\hat{\gamma}_{j}$	$\hat{\Gamma}_{j}$
			$\sigma_{X_{j}}$

- Large sample size \Rightarrow normal distribution (central limit theorem).
- Independence (diagonal covariance matrix) due to
(1) Non-overlapping samples (between all three GWAS).
(2) Independent SNPs.

Ideal setting

The causal effect β satisfy $\Gamma_{j}=\beta \gamma_{j}$ for all j if

- All the genetic IVs are valid and mutually independent;
- The variables follow a linear structural model;

Heuristic

$$
\begin{aligned}
& X=\sum_{j=1}^{p} \gamma_{j} Z_{j}+\eta_{X} U+E_{X}, \\
& Y=\beta X+\sum_{j=1}^{p} \alpha_{j} Z_{j}+\eta_{Y} U+E_{Y}
\end{aligned}
$$

$$
=\sum_{j=1}^{p} \underbrace{\left(\boldsymbol{\beta} \gamma_{j}\right) Z_{j}}_{\Gamma_{j}}+\underbrace{\sum_{j=1}^{p} \alpha_{j} Z_{j}}_{0 \text { by exclusion restriction }}+\underbrace{f\left(U, E_{X}, E_{Y}\right)}_{\text {independent of } Z}
$$

Model II: Invalid IV

Pleiotropy \Longrightarrow Violation of exclusion restriction

Assumption 2

Let $\alpha_{j}=\Gamma_{j}-\beta \gamma_{j}$ be the "direct effect". We allow for two kinds of deviation: Systematic pleiotropy For most $j, \alpha_{j} \Perp \gamma_{j}$ (InSIDE) and $\alpha_{j} \sim \mathrm{~N}\left(0, \tau^{2}\right)$. Idiosyncratic pleiotropy For a few $j,\left|\alpha_{j}\right|$ might be much larger.

Both kinds of pleiotropy exist in exploratory data analysis.

Invariance to allele coding

Assumption 2

Let $\alpha_{j}=\Gamma_{j}-\beta \gamma_{j}$ be the "direct effect". We assume
Systematic pleiotropy For most $j, \alpha_{j} \Perp \gamma_{j}(\operatorname{InSIDE})$ and $\alpha_{j} \sim \mathbf{N}\left(\mathbf{0}, \tau^{2}\right)$. Idiosyncratic pleiotropy For a few $j,\left|\alpha_{j}\right|$ might be much larger.

No "directional" pleiotropy?

Why do you assume the mean of α_{j} is 0 ?

Allele recoding

In GWAS, switching effective allele \leftrightarrow reference allele of SNP j amounts to:

$$
\hat{\gamma}_{j} \leftarrow-\hat{\gamma}_{j}, \hat{\Gamma}_{j} \leftarrow-\hat{\Gamma}_{j}, \text { thus } \alpha_{j} \leftarrow-\alpha_{j} .
$$

- "Directional" pleiotropy is always relative to the allele coding we use.
- Instead, RAPS is invariant to allele coding.

Analysis I: RAPS

Heuristics

In the ideal setting where $\alpha_{j} \equiv 0$, we would like to solve the equation:

$$
\sum_{j=1}^{n} \text { Estimated IV strength }_{\mathrm{j}}(\beta) \cdot{\text { Estimated direct } \operatorname{effect}_{\mathrm{j}}(\beta)=0 ~}_{\text {. }}
$$

Statistical equivalence:

$$
\hat{\gamma}_{j, M L E}\left(\beta, \tau^{2}\right)=\frac{\hat{\gamma}_{j} / \sigma_{X j}^{2}+\beta \hat{\Gamma}_{j} /\left(\sigma_{Y j}^{2}+\tau^{2}\right)}{1 / \sigma_{X j}^{2}+\beta^{2} /\left(\sigma_{Y j}^{2}+\tau^{2}\right)} \Perp \hat{\alpha}_{j}\left(\beta, \tau^{2}\right)=\frac{\hat{\Gamma}_{j}-\beta \hat{\gamma}_{j}}{\sqrt{\sigma_{Y j}^{2}+\beta^{2} \sigma_{X j}^{2}+\tau^{2}}}
$$

Robust adjusted profile score (invariant to allele coding!)

$$
\begin{aligned}
& \frac{1}{n} \sum_{j=1}^{n} f\left(\hat{\gamma}_{j, \mathrm{MLE}}\left(\beta, \tau^{2}\right)\right) \cdot \psi\left(\hat{\alpha}_{j}\left(\beta, \tau^{2}\right)\right)=0 \\
& \frac{1}{n} \sum_{j=1}^{n} \hat{\alpha}_{j}\left(\beta, \tau^{2}\right) \cdot \psi\left(\hat{\alpha}_{j}\left(\beta, \tau^{2}\right)\right)=\mathbb{E}[T \cdot \psi(T)], \text { for } T \sim \mathrm{~N}(0,1)
\end{aligned}
$$

ψ is the derivative of a robust loss function and f is (empirical Bayes) shrinkage.

Analysis II: Extensions

Multivariate MR

Modify the RAPS equations straightforwardly.

Sample overlap

- The modified RAPS equations depend on $\operatorname{cor}\left(\hat{\Gamma}_{j}, \hat{\gamma}_{j}\right)$.
- If no missing data, one can show quite generally

$$
\operatorname{cor}\left(\hat{\Gamma}_{j}, \hat{\gamma}_{j}\right) \approx \sqrt{n^{2} /\left(n_{X} n_{Y}\right)} \cdot \operatorname{cor}(X, Y)
$$

does not depend on j (n is the \#overlap, n_{X} and n_{Y} are the total \#sample).

- Can thus estimate $\operatorname{cor}\left(\hat{\Gamma}_{j}, \hat{\gamma}_{j}\right)$ by sample correlation of the "null" SNPs (or the intercept in LD-score regression).

Diagnostics I: Falsifications

Key implication of Assumption 1

$$
\hat{\alpha}_{j}\left(\beta, \tau^{2}\right)=\frac{\hat{\Gamma}_{j}-\beta \hat{\gamma}_{j}}{\sqrt{\sigma_{Y_{j}}^{2}+\beta^{2} \sigma_{X j}^{2}+\tau^{2}}}
$$

Under the measurement error model, $\hat{\alpha}_{j}\left(\beta, \tau^{2}\right)$ at the truth $\sim N(0,1)$.
Quantile-Quantile plot: $\left|\hat{\alpha}_{j}\left(\hat{\beta}, \hat{\tau}^{2}\right)\right|$ against $|N(0,1)|$

LDL-CAD

Diagnostics I: Falsifications

Key implication of Assumption 2

Under the InSIDE assumption,

$$
\hat{\gamma}_{j, \operatorname{MLE}}\left(\beta, \tau^{2}\right)=\frac{\hat{\gamma}_{j} / \sigma_{X j}^{2}+\beta \hat{\Gamma}_{j} /\left(\sigma_{Y_{j}}^{2}+\tau^{2}\right)}{1 / \sigma_{X j}^{2}+\beta^{2} /\left(\sigma_{Y_{j}}^{2}+\tau^{2}\right)} \Perp \hat{\alpha}_{j}\left(\beta, \tau^{2}\right)=\frac{\hat{\Gamma}_{j}-\beta \hat{\gamma}_{j}}{\sqrt{\sigma_{Y j}^{2}+\beta^{2} \sigma_{X j}^{2}+\tau^{2}}} .
$$

InSIDE plot: $\hat{\alpha}_{j}\left(\hat{\beta}, \hat{\tau}^{2}\right)$ against $\hat{\gamma}_{j}\left(\hat{\beta}, \hat{\tau}^{2}\right)$

Falsification \neq Validation stamp

Diagnostics CAN tell us

Our assumptions reasonably model GWAS summary data for the selected SNPs:
(1) $\binom{\hat{\gamma}}{\hat{\Gamma}} \sim \mathrm{N}\left(\binom{\gamma}{\Gamma}, \operatorname{diag}\left(\sigma_{X 1}^{2}, \ldots, \sigma_{X_{n}}^{2}, \sigma_{Y 1}^{2}, \ldots, \sigma_{Y_{n}}^{2}\right)\right)$;
(2) For most j and some $\tilde{\beta}, \alpha_{j}=\Gamma_{j}-\tilde{\beta} \gamma_{j}$ (InSIDE) and $\alpha_{j} \sim \mathrm{~N}\left(0, \tau^{2}\right)$;

Diagnostics CANNOT tell us

InSIDE assumption is satisfied (aka $\tilde{\boldsymbol{\beta}}=\beta$), because

$$
\tilde{\boldsymbol{\beta}}=\underbrace{\beta}_{\text {causal effect }}+\underbrace{\operatorname{slope}\left(\alpha_{j} \sim \gamma_{j}\right)}_{\text {InSIDE assumes }=0} .
$$

It is impossible to distinguish between

- True causal effect β;
- Correlation between γ_{j} and α_{j}.

Motivations for mechanistic heterogeneity

Multiple genetic pathways \Rightarrow Multiple modes of β

	Exposure effect γ	Outcome effect「	Ratio
SNP 1	$1 A \cdot A E$	$1 A \cdot A E \cdot \beta_{0}$	$\boldsymbol{\beta}_{0}$
SNP 2	$2 B \cdot B E$	$2 B \cdot B E \cdot \beta_{0}+2 B \cdot B O$	$\boldsymbol{\beta}_{0}+(B O / B E)$
SNP 3	$3 C \cdot C E$	$3 C \cdot C E \cdot \beta_{0}+3 C \cdot C O$	$\boldsymbol{\beta}_{0}+(C O / C E)$

Diagnostics II: Modal plot

Plot robust profile likelihood

$$
I_{\rho}(\beta)=-\sum_{j=1}^{p} \rho\left(\frac{\hat{\Gamma}_{j}-\beta \hat{\gamma}_{j}}{\sqrt{1+\beta^{2}}}\right) \text { for robust loss function } \rho \text {. }
$$

Simulation example

$$
\gamma_{j} \sim \mathrm{~N}(0,4), \Gamma_{j}=\gamma_{j} \text { for } 1 \leq j \leq 15, \Gamma_{j}=-\gamma_{j} \text { for } 16 \leq j \leq 50, \sigma_{X_{j}}=\sigma_{Y_{j}}=1
$$

Identify causal direction

Heuristic

When reversing the role of exposure and outcome, the modal plot should show two modes:

- A smaller one at $1 / \beta$ (SNPs associated with the true exposure);
- A larger one at 0 (all other genetic determinants of the true outcome).

Example: LDL-CAD

Summary

Design

I Three-sample MR: winner's curse.
II Genome-wide MR: exploit weak instruments.

Model

I Measurement error in GWAS summary data: NOME assumption.
II Both systematic and idiosyncratic pleiotropy.
Analysis
I Robust adjusted profile score (RAPS): robust and efficient inference.
II Extension to multivariate MR and sample overlap.
Diagnostics
I Q-Q plot and InSIDE plot: falsify modeling assumptions.
II Modal plot: discover mechanistic heterogeneity.

Summary

Acknowledgement

- Jingshu Wang, Dylan Small, Nancy Zhang (University of Pennsylvania);
- Jack Bowden, Gib Hemani (MRC-IEU);
- Yang Chen (University of Michigan).

References

- Zhao et al. (2019+) Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Annals of Statistics (to appear).
- Zhao et al. (2019+) Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization. International Journal of Epidemiology (to appear).
- Wang et al. (2019) Estimating Causal Relationship for Complex Traits with Weak and Heterogeneous Genetic Effects. Manuscript available upon request.
- R package mr.raps: https://github.com/qingyuanzhao/mr.raps.
- http://www-stat. wharton. upenn.edu/~qyzhao/MR.html.

Case study: Friday 19th Session 20 (Data Challenge).

