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Outline of this talk

Design

I Three-sample MR: (((((((
winner’s curse.

II Genome-wide MR: exploit weak instruments.

Model

I Measurement error in GWAS summary data: (((((((((
NOME assumption.

II Both systematic and idiosyncratic pleiotropy.

Analysis

I Robust adjusted profile score (RAPS): robust and efficient inference.

II Extension to multivariate MR and sample overlap.

Diagnostics

I Q-Q plot and InSIDE plot: falsify modeling assumptions.

II Modal plot: discover mechanistic heterogeneity.
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Design I: Three-sample MR

Example: LDL-CAD

Genetic instruments Z1,Z2, . . . ,Zn;

Exposure X : LDL-cholesterol;

Outcome Y : coronary artery disease (CAD).

Data pre-processing

Name Selection GWAS Exposure GWAS Outcome GWAS

Dataset GLGC (2010) GLGC (2013)
CARDIoGRAM +

C4D + UKBB

GWAS
Linear regression Linear regression Logistic regression

X ∼ Zj X ∼ Zj Y ∼ Zj

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj σYj

Use selection GWAS to select independent instruments that are
associated with the exposure (p-value ≤ psel).
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Selection GWAS must be independent

Common misconception

We do not need the third selection GWAS if only “genome-wide significant” SNPs
are used (e.g. p-value ≤ 5× 10−8).

This is wrong because, although the SNPs are most likely “true hits”, the
associations are still overestimated due to selection.

A simple example

> z <- rnorm(10^6); z[1:100] <- z[1:100] + 5

> pval <- 2*pnorm(-abs(z))

> sum(pval < 5e-8)

[1] 33

> mean(z[pval < 5e-8])

[1] 6.112361
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Selection GWAS must be independent (cont.)

A real data example: BMI-BMI

Exposure X = Outcome Y = BMI, so true “causal effect” = 1.

Selection GWAS = Exposure GWAS using 50% UKBB;
Outcome GWAS computed using the other 50%.

psel # SNPs Mean F IVW W. Median W. Mode
1e-8 168 57.00 0.823 (0.017) 0.8 (0.022) 0.885 (0.053)
1e-6 305 43.92 0.761 (0.015) 0.736 (0.019) 0.865 (0.079)
1e-4 652 30.68 0.678 (0.012) 0.616 (0.015) 0.593 (0.122)
1e-2 1289 20.70 0.592 (0.01) 0.528 (0.013) 0.554 (0.093)

psel # SNPs Median F Egger PS RAPS
1e-8 168 41.12 1.018 (0.046) 0.848 (0.014) 0.831 (0.018)
1e-6 305 33.68 1.006 (0.041) 0.793 (0.011) 0.763 (0.016)
1e-4 652 23.23 0.89 (0.033) 0.724 (0.009) 0.66 (0.014)
1e-2 1289 15.26 0.749 (0.025) 0.657 (0.008) 0.541 (0.012)
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Design II: Genome-wide MR

Instrument selection
No p-value threshold is used when selecting IVs.

The only requirement is that the SNPs are independent.

Weak IV bias?
Wait... Didn’t you just show that weaker IVs bring more bias?

Three sources of bias
1 Winner’s curse.

Solution: Three-sample design.

2 Weak IV bias (dividing by a small number).
Solution: Use appropriate model and statistical methods.

3 Weak IVs have more pleiotropic effect.
“Solution”: InSIDE assumption..
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Validation of genome-wide MR

The BMI-BMI example

Exposure X = Outcome Y = BMI, so true “causal effect” = 1.

Selection GWAS = GIANT consortium;

Exposure GWAS using 50% UKBB;

Outcome GWAS computed using the other 50%.

psel # SNPs Mean F IVW W. Median W. Mode
1e-8 58 69.2 0.983 (0.024) 0.945 (0.039) 0.939 (0.044)
1e-6 126 44.1 0.986 (0.022) 0.944 (0.034) 0.931 (0.038)
1e-4 287 26.1 0.981 (0.017) 0.941 (0.031) 0.929 (0.035)
1e-2 812 12.7 0.928 (0.014) 0.879 (0.023) 0.739 (7.130)

psel # SNPs Median F Egger PS RAPS
1e-8 58 42.0 0.928 (0.050) 0.999 (0.023) 0.998 (0.025)
1e-6 126 27.4 0.881 (0.043) 1.017 (0.019) 1.009 (0.023)
1e-4 287 15.8 0.921 (0.031) 1.023 (0.017) 1.018 (0.018)
1e-2 812 5.6 0.909 (0.022) 1.010 (0.015) 1.005 (0.015)
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Validation of genome-wide MR (cont.)
In many (but not all) real examples, the MR results are stable across different
instrument strength.

Example: LDL-CAD

Selection threshold
RAPS Results

Only Cumulative

0 ≤ p ≤ 10−8 0.48 (0.04) 0.48 (0.04)
10−8 ≤ p ≤ 10−4 0.36 (0.11) 0.46 (0.04)
10−4 ≤ p ≤ 1 0.34 (0.26) 0.48 (0.03)

Example: BMI-CAD

Selection threshold
RAPS Results

Only Cumulative

0 ≤ p ≤ 10−8 0.34 (0.13) 0.34 (0.13)
10−8 ≤ p ≤ 10−4 0.34 (0.15) 0.34 (0.09)
10−4 ≤ p ≤ 1 0.45 (0.11) 0.39 (0.07)
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Model I: Measurement error in GWAS summary data

Simplifying requirement

Exposure GWAS and outcome GWAS have no sample overlap.

Assumption 1

Let γ̂ = (γ̂1, . . . , γ̂n) be the vector of exposure coefficients (similarly Γ̂):(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
, diag(σ2

X1, . . ., σ
2
Xn, σ

2
Y 1, . . ., σ

2
Yn)

)
.

Three-sample design warrants Assumption 1

Name Selection GWAS Exposure GWAS Outcome GWAS

GWAS lm(X ∼ Zj ) lm(X ∼ Zj ) lm(Y ∼ Zj )

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj σYj

Large sample size ⇒ normal distribution (central limit theorem).

Independence (diagonal covariance matrix) due to
1 Non-overlapping samples (between all three GWAS).
2 Independent SNPs.
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Ideal setting
The causal effect β satisfy Γj = βγj for all j if

All the genetic IVs are valid and mutually independent;

The variables follow a linear structural model;

Heuristic

Z1

Z2

X Y

U
γ1

γ2
β

X =

p∑
j=1

γjZj + ηXU + EX ,

Y = βX +

p∑
j=1

αjZj + ηYU + EY

=

p∑
j=1

(βγj )︸ ︷︷ ︸
Γj

Zj +

p∑
j=1

αjZj︸ ︷︷ ︸
0 by exclusion restriction

+ f (U,EX ,EY )︸ ︷︷ ︸
independent of Z
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Model II: Invalid IV

Pleiotropy =⇒ Violation of exclusion restriction

Zj X Y

U

γj β

αj

Assumption 2

Let αj = Γj − βγj be the “direct effect”. We allow for two kinds of deviation:

Systematic pleiotropy For most j , αj ⊥⊥ γj (InSIDE) and αj ∼ N(0, τ 2).

Idiosyncratic pleiotropy For a few j , |αj | might be much larger.

Both kinds of pleiotropy exist in exploratory data analysis.
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Invariance to allele coding

Assumption 2

Let αj = Γj − βγj be the “direct effect”. We assume

Systematic pleiotropy For most j , αj ⊥⊥ γj (InSIDE) and αj ∼ N(0, τ 2).

Idiosyncratic pleiotropy For a few j , |αj | might be much larger.

No “directional” pleiotropy?

Why do you assume the mean of αj is 0?

Allele recoding

In GWAS, switching effective allele ↔ reference allele of SNP j amounts to:

γ̂j ←−γ̂j , Γ̂j ←−Γ̂j , thus αj ←−αj .

“Directional” pleiotropy is always relative to the allele coding we use.

Instead, RAPS is invariant to allele coding.
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Analysis I: RAPS

Heuristics
In the ideal setting where αj ≡ 0, we would like to solve the equation:

n∑
j=1

Estimated IV strengthj(β) · Estimated direct effectj(β) = 0.

Statistical equivalence:

γ̂j ,MLE(β, τ 2) =
γ̂j/σ

2
Xj + βΓ̂j/(σ2

Yj + τ 2)

1/σ2
Xj + β2/(σ2

Yj + τ 2)
⊥⊥ α̂j (β, τ

2) =
Γ̂j − βγ̂j√

σ2
Yj + β2σ2

Xj + τ 2
.

Robust adjusted profile score (invariant to allele coding!)

1

n

n∑
j=1

f
(
γ̂j ,MLE(β, τ 2)

)
· ψ
(
α̂j (β, τ

2)
)

= 0,

1

n

n∑
j=1

α̂j (β, τ
2) · ψ

(
α̂j (β, τ

2)
)

= E
[
T · ψ(T )

]
, for T ∼ N(0, 1).

ψ is the derivative of a robust loss function and f is (empirical Bayes) shrinkage.
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Analysis II: Extensions

Multivariate MR
Modify the RAPS equations straightforwardly.

Sample overlap

The modified RAPS equations depend on cor(Γ̂j , γ̂j ).

If no missing data, one can show quite generally

cor(Γ̂j , γ̂j ) ≈
√
n2/(nXnY ) · cor(X ,Y )

does not depend on j (n is the #overlap, nX and nY are the total #sample).

Can thus estimate cor(Γ̂j , γ̂j ) by sample correlation of the “null” SNPs (or
the intercept in LD-score regression).
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Diagnostics I: Falsifications

Key implication of Assumption 1

α̂j (β, τ
2) =

Γ̂j − βγ̂j√
σ2
Yj + β2σ2

Xj + τ 2
.

Under the measurement error model, α̂j (β, τ
2) at the truth ∼ N(0, 1).

Quantile-Quantile plot:
∣∣α̂j(β̂, τ̂

2)
∣∣ against

∣∣N(0, 1)
∣∣
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Diagnostics I: Falsifications

Key implication of Assumption 2
Under the InSIDE assumption,

γ̂j ,MLE(β, τ 2) =
γ̂j/σ

2
Xj + βΓ̂j/(σ2

Yj + τ 2)

1/σ2
Xj + β2/(σ2

Yj + τ 2)
⊥⊥ α̂j (β, τ

2) =
Γ̂j − βγ̂j√

σ2
Yj + β2σ2

Xj + τ 2
.

InSIDE plot: α̂j(β̂, τ̂
2) against γ̂j(β̂, τ̂

2)
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Falsification 6= Validation stamp

Diagnostics CAN tell us

Our assumptions reasonably model GWAS summary data for the selected SNPs:

1

(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
, diag(σ2

X1, . . . , σ
2
Xn, σ

2
Y 1, . . . , σ

2
Yn)

)
;

2 For most j and some β̃, αj = Γj − β̃γj (InSIDE) and αj ∼ N(0, τ 2);

Diagnostics CANNOT tell us

InSIDE assumption is satisfied (aka β̃ = β), because

β̃ = β︸︷︷︸
causal effect

+ slope(αj ∼ γj )︸ ︷︷ ︸
InSIDE assumes = 0

.

It is impossible to distinguish between

True causal effect β;

Correlation between γj and αj .
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Motivations for mechanistic heterogeneity

Multiple genetic pathways ⇒ Multiple modes of β

SNP 1 SNP 2 SNP 3... ... ... ... ... ...

Pathway A Pathway B Pathway C

Exposure (risk factor)

Outcome (disease)

AE BE CE

BO CO

β0

Exposure effect γ Outcome effect Γ Ratio

SNP 1 1A · AE 1A · AE · β0 β0

SNP 2 2B · BE 2B · BE · β0 + 2B · BO β0 + (BO/BE)

SNP 3 3C · CE 3C · CE · β0 + 3C · CO β0 + (CO/CE)
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Diagnostics II: Modal plot

Plot robust profile likelihood

lρ(β) = −
p∑

j=1

ρ

(
Γ̂j − βγ̂j√

1 + β2

)
for robust loss function ρ.

Simulation example

γj ∼ N(0, 4), Γj = γj for 1 ≤ j ≤ 15, Γj = −γj for 16 ≤ j ≤ 50, σXj = σYj = 1.
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Identify causal direction

Heuristic
When reversing the role of exposure and outcome, the modal plot should show
two modes:

A smaller one at 1/β (SNPs associated with the true exposure);

A larger one at 0 (all other genetic determinants of the true outcome).

Example: LDL-CAD
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Summary

Design

I Three-sample MR: (((((((
winner’s curse.

II Genome-wide MR: exploit weak instruments.

Model

I Measurement error in GWAS summary data: (((((((((
NOME assumption.

II Both systematic and idiosyncratic pleiotropy.

Analysis

I Robust adjusted profile score (RAPS): robust and efficient inference.

II Extension to multivariate MR and sample overlap.

Diagnostics

I Q-Q plot and InSIDE plot: falsify modeling assumptions.

II Modal plot: discover mechanistic heterogeneity.
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