
Multiple conditional randomization tests

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

August 31, 2022 @ MCP Conference

Joint work with Yao Zhang (DAMTP, Cambridge);
Manuscripts: 2203.10980 (single CRT); arXiv:2104.10618 (multiple CRT);

Slides: http://statslab.cam.ac.uk/~qz280/.

https://arxiv.org/pdf/2203.10980.pdf
https://arxiv.org/abs/2104.10618
http://statslab.cam.ac.uk/~qz280/


The meaning of randomization tests has become obscure

Fisher (1935): To substitute t-test when normality is not true and to restore randomization as “the
physical basis of the validity of the test”.

Extension by Pitman, Welch, Kempthorne, among many others.

Also known as (none of them is very accurate):
I Nonparametric tests;
I Permutation tests;
I Rerandomization tests.

In Wikipedia, described in a page about “Resampling (statistics)” together with bootstrap,
subsampling, and cross-validation.

Cambridge Dictionary of Statistics: “procedures for determining statistical significance directly
from data without recourse to some particular sampling distribution”.
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Rejuvenated interest in randomization tests

Testing genomic associations (Efron et al. 2001; Bates et al. 2020);

Testing conditional independence (Candès et al. 2018; Berrett et al. 2020);

Conformal predictive inference for machine learning methods (Vovk et al. 2005; Lei et al. 2013);

Analyses of complex experimental designs (Morgan and Rubin 2012; Ji et al. 2017);

Evidence factors in observational studies (Rosenbaum 2017);

Causal inference with interference (Athey et al. 2018; Basse et al. 2019).
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Randomization tests vs. Permutation tests

Often used interchangeably.

But the semantics are clearly different:
I Randomization tests emphasize on the basis of inference (probabilistic).
I Permutation tests emphasize on the computational algorithm (non-probabilistic).

Over decades, many authors pointed out that they are based on different assumptions. But the
terms are still rarely distinguished in practice/classroom.

Why? The simplest randomization test (for 1/2 treated 1/2 control) is a permutation test.

How should we resolve this?

Our proposal

Use a new term—quasi-randomization tests.
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Randomization tests vs. Quasi-randomization tests

Quasi: “used to show that something is almost, but not completely, the thing described.”

Quasi-randomization means that we pretend (parts of) the data are randomized, even
though no physical actions of randomization took place.

We do this all the time: i.i.d., exchangeablity, infinite population. But they are still assumptions.

What’s the fundamental epistemic difference?

Randomization tests rely on human action—randomness introduced by an experiment.

Quasi-randomization tests rely on human perception—randomness we cannot explain and thus
believe is part of nature.

Closely related is randomized experiment vs. quasi-experiment (termed by Donald Campbell in
social science = observational study in statistics).
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This talk

This talk has two goals:

1 To clarify what a “randomization test” means and distinguish it from related concepts.

2 To provide a unifying framework that incorporates many old and new ideas about multiple
conditional randomization tests.
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Outline

1 Single CRT: Theory

2 Single CRT: Examples

3 Multiple CRTs: Theory

4 Multiple CRTs: Examples
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Setup

N units, treatment Z ∈ Z is randomized.

Potential outcomes Y (z) = (Y1(z), . . . ,YN(z)); Consistency: Y = (Y1, . . . ,YN) = Y (Z ).

Po. outcomes schedule W = (Y (z) : z ∈ Z) ∈ W.

Assumption (Randomization)

Z ⊥⊥W and the density function π(·) of Z is known and positive everywhere.
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Null hypothesis

A typical sharp null hypothesis assumes that certain potential outcomes are equal or related.

Example 1: no interference H0 : Yi (z) = Yi (z∗) whenever zi = z∗i ;

Example 2: constant treatment effect τ (on top of no interference) H0 : Yi (1)− Yi (0) = τ .

Definition
A sharp null hypothesis H defines an imputability mapping

H : Z × Z → 2[N],

(z , z∗) 7→ H(z , z∗),

where H(z , z∗) is the largest subset of [N] = {1, . . . ,N} such that YH(z,z∗)(z∗) is imputable from
Y (z) under H.

Fully sharp means that H(z , z∗) ≡ [N]. Otherwise partially sharp.

Example 1: No interference + constant treatment effect is fully sharp.

Example 2: In crossover designs, hypotheses about a particular lagged effect is partially sharp.
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Conditional randomization tests (CRT)

Requries a partition R = {Sm}Mm=1 of Z and test statistics (Tm(·, ·))Mm=1, where Tm : Z ×W → R.

R defines an equivalent relation ≡R (and vice versa).

Let Sz denote the equivalence class containing z . Let Tz(·, ·) be the corresponding test statistic.

The p-value of the CRT is given by

P(Z ,W ) = P∗{TZ (Z∗,W ) ≤ TZ (Z ,W ) | Z∗ ∈ SZ ,W }
= P∗{TZ (Z∗,W ) ≤ TZ (Z ,W ) | Z∗ ≡R Z ,W }.

where Z∗ is an independent copy of Z conditional on W .
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Properties of CRT

Valid?

Theorem: P {P(Z ,W ) ≤ α | Z ∈ Sz ,W } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Proof: Apply probability integral transform (Basse et al. 2019)

Computable?

Tz(·, ·) is said to be imputable under H if for all z∗ ∈ Sz , Tz(z∗,W ) only depends on W through
its imputable part YH(z,z∗)(z∗).

Lemma: Suppose Assumption 1 is satisfied and Tz(·, ·) is imputable for all z ∈ Z. Then P(Z ,W )
only depends on Z and Y (we say it’s computable).

Remark: without randomization (Assumption 1), the distribution of Z∗ |W d
= Z |W is unknown.

Summary: Randomization guarantees validity, but the test is not always computable.
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Further theory

See our paper for

Alternative viewpoints: Conditioning on a function of the treatment, a σ-algebra, or a
post-randomized variable.

A review of methods to construct computable CRTs (Aronow 2012; Athey et al. 2018; Puelz et al.
2019).
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Outline

1 Single CRT: Theory

2 Single CRT: Examples

3 Multiple CRTs: Theory

4 Multiple CRTs: Examples
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Fisher’s exact test for 2× 2 contingency tables

Outcome Y
0 1 Total

Treatment A 0 N00 N01 N0·
1 N10 N11 N1·

Total N·0 N·1 N

Fisher observed that the null probability of observing (N00,N01,N10,N11) given the marginal totals is
given by the hypergeometric distribution. An exact test can then be immediately derived.

This is a unconditional randomization test if the randomization fixes N0· and N1· (as in the
famous tea-tasting example).

This is a conditional randomization test if the treatments are assigned by Bernoulli trials.

This is a conditional quasi-randomization test in the “two Binomials” setup:
N00 ∼ Bin(N0·, π0), N10 ∼ Bin(N1·, π1), and the null hypothesis is H0 : π0 = π1.

This is a permutation test, although resampling is not needed.
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Permutation tests for treatment effect in randomized experiments

This generalizes Fisher’s exact test to continuous outcomes or discrete outcomes with more levels.

This is a conditional randomization test that conditions on the order statistics of Z , or

Sz = {(zσ(1), . . . , zσ(N)) : σ is a permutation of [N]}.

What if we condition on more? Consider the “balanced” permutation test (Efron et al. 2001)

Sz = {z∗ : z∗ is a permutation of z and zT z∗ = N/4},

when Z is randomized uniformly over Z = {z ∈ {0, 1}N : zT1 = N/2}.
A counterexample with inflated type I error is provided by Southworth et al. (2009), who argued
that the problem is that Sz is not a group under balanced permutations (nor is Sz ∪ {z}).

In view of our theory, the problem is that this violates the invariance: Sz∗ = Sz whenever
z∗ ∈ Sz .
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Further examples

See our paper for discussion on

Quasi-randomization tests for (conditional) independence;

Conformal prediction.
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Setup

K conditional randomization tests, defined by partitions R(k) =
{
S(k)
m

}∞
m=1

and test statistics

(T (k)
m (·, ·))∞m=1, for K possibly different hypotheses H(k), k = 1, . . . ,K .

Corresponding p-values: P(1)(Z ,W ), . . . ,P(K)(Z ,W ).

Question: When can we treat them as independent pieces of evidence?
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A new unifying result
For any J ⊆ [K ], we define the union, refinement and coarsening of the conditioning sets as

RJ =
⋃
k∈J

R(k), RJ =
{ ⋂

j∈J

S(j)
z : z ∈ Z

}
, and RJ =

{ ⋃
j∈J

S(j)
z : z ∈ Z

}
.

Generated σ-algebras: G(k), GJ , GJ , GJ .

Main theorem
Suppose the following two conditions are satisfied

R{j,k} ⊆ R{j,k}, ∀j , k ∈ [K ], j 6= k. (1)

T
(j)
Z (Z ,W ), j ∈ J are independent given GJ ,W , ∀J ⊆ [K ]. (2)

Then for any 0 < α(1), . . . , α(K) < 1,

P
{
P(1)(Z ,W ) ≤ α(1), . . . ,P(K)(Z ,W ) ≤ α(K) | G[K ]

,W
}
≤

K∏
k=1

α(k).
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Special cases

To simplify, suppose T (j)
m = T (j) does not depend on m.

Independent treatment variables

The conditions (1) and (2) are satisfied if

1 The tests are unconditional: S(k)
z = Z for all k and z ; and

2 T (k)(Z ,W ) only depends on Z through Z (k) = h(k)(Z ) for all k and Z (j) ⊥⊥ Z (k) for all j 6= k.

Sequential CRTs

The conditions (1) and (2) are satisfied if

1 S(1)
z ⊇ · · · ⊇ S(K)

z for all z ∈ Z; and

2 T (j)(z ,W ) does not depend on z when z ∈ S(k)
m for all m and k > j .

Remark: This does not require knowing the distribution π(·) of Z .
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A direct proof for sequential CRTs with K = 2

1 S(1)
z ⊇ S(2)

z for all z ∈ Z, which implies G(1) ⊆ G(2); and

2 T (1)(z ,W ) does not depend on z when z ∈ S(2)
m for all m, which implies T (1)(Z ,w) is

G(2)-measurable (and is thus independent of T (2)(Z ,w) given G(2)).

Then by the law of iterated expectation, for any w ∈ W,

P
{
P(1)(Z ,w) ≤ α(1),P(2)(Z ,w) ≤ α(2) | G(1)

}
= E

{
ψ(1)(Z ,w)ψ(2)(Z ,w) | G(1)

}
= E

{
E
[
ψ(1)(Z ,w)ψ(2)(Z ,w) | G(2)

]
| G(1)

}
= E

{
ψ(1)(Z ,w)E

[
ψ(2)(Z ,w) | G(2)

]
| G(1)

}
≤ α(2)E

{
ψ(1)(Z ,w) | G(1)

}
≤ α(1)α(2).

The general proof requires a much more careful consideration of the structure of conditioning events.
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Outline

1 Single CRT: Theory

2 Single CRT: Examples

3 Multiple CRTs: Theory

4 Multiple CRTs: Examples
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Evidence factors for observational studies

In Rosenbaum’s or other sensitivity analyses for observational studies, it is common to use the
upper bounding p-value

P(Z ,Y ) = sup
π∈Π

P(Z ,Y ;π)

where Π is the set of allowed distributions of Z .

Suppose P(k)(Z ,Y ;π), k ∈ [K ] are constructed by sequential CRTs.

Then for all π∗ ∈ Π, we have

Pπ∗(P(1)(Z ,Y ) ≤ α(1), . . . ,P(K)(Z ,Y ) ≤ α(K))

≤Pπ∗(P(1)(Z ,Y ;π∗) ≤ α(1), . . . ,P(K)(Z ,Y ;π∗) ≤ α(K))

≤
K∏

k=1

α(k).

This generalizes the “knit product” structure for multiple permutation tests (Rosenbaum 2017).
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Stepped-wedge design

In a stepped-wedge randomized trial, units/clusters cross over from control to treatment at random
times (“staggered adoption”).
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Testing lagged treatment effects in stepped-wedge design

Evidence for (lagged) treatment effect is scattered over time.

If cleverly constructed, CRTs are “nearly independent” and can be combined by global/multiple
testing methods.

Example below: lag = 1.
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