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What is MR?

I Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation
in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.

I Folk definition:

MR = Use genetic variation as instrumental variables.

I A more informative definition:

MR = Base causal inference on randomness in Mendelian inheritance.



What is MR?

I Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation
in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.

I Folk definition:

MR = Use genetic variation as instrumental variables.

I A more informative definition:

MR = Base causal inference on randomness in Mendelian inheritance.



What is MR?

I Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation
in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.

I Folk definition:

MR = Use genetic variation as instrumental variables.

I A more informative definition:

MR = Base causal inference on randomness in Mendelian inheritance.



Heredity as a natural experiment



Heredity as a natural experiment



Surging popularity of MR
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I Applications of MR are fueled by the increasing availability of GWAS datasets.1

1
Data are obtained from Web of Science (https://www.webofknowledge.com/).

https://www.webofknowledge.com/


Example: Causal effect of the “bad” cholesterol

A well understood pathway of heart disease

Basic idea
People who inherited certain alleles of rs17238484 and rs12916 have naturally higher
concentration of LDL cholesterol.
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When do genetic instruments give correct answers?

The IV diagram

Z (HMGCR variants) X (LDL-C) Y (Heart disease)

U (Unmeasured confounder)

1

2
××

3
×

Must assume 3 core IV assumptions =⇒ Partial identification

1 Relevance: Z 6⊥⊥ X .

2 Exogeneity (natural experiment): Z ⊥⊥ U.

3 Exclusion restriction: Z has no direct effect on Y .

Plus 1 extra assumption =⇒ Point identification
Could be linearity, monotonicity (Angrist, Imbens & Rubin, 1996), or homogeneity (Hernán &
Robins, 2006; Wang & Tchetgen Tchetgen, 2018).
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Basic idea: division

Z X Y

U

γ β0

The Wald estimator

Causal effect of X on Y (β0) =
Causal effect of Z on Y (Γ = γ · β0)

Causal effect of Z on X (γ)
.

Heuristic: Linear structural equation model

X = γZ + ηXU + EX ,

Y = β0X + ηYU + EY

= (β0γ)Z + f (U,EX ,EY )︸ ︷︷ ︸
independent of Z
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Example: Causal effect of LDL-cholesterol
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A main challenge to MR

Violation of exclusion restriction due to pleiotropy
(multiple functions of genes)

Example: HMGCR is associated with body weight2

Z (HMGCR variants)

Statin

X (LDL-C)

Body weight Type 2 diabetes

Y (Heart disease)

U (Unmeasured confounder)

I Recent genetic studies show that pleiotropy is indeed wide-spread.3

2
Swerdlow, D. I., et al. “HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and

randomised trials.” Lancet (2015).
3
Boyle, E. et al. (2017). “An expanded view of complex traits: from polygenic to omnigenic”. Cell 169, p1177–1186.
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Two ideas to deal with pleiotropy
Useful metaphor: genetic instruments are rusty.

Question 1: What would you do if you have a rusty caliper?

Today’s Answer: Find many rusty-but-not-broken calipers!!

Question 2: When is that enough?

1. < 50% of the calipers are broken (Kang et al., 2016); or

2. Rusty readings are balanced around the truth (Bowden et al., 2015).

Remaining issues

1. Both situations are common in MR.

2. Need to deal with many weak instruments.
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Three-sample summary-data MR

I Sample 1: Select genetic variants associated with the hypothesized cause (LDL-C in the
previous example; epidemiologists call this exposure).

I Sample 2: Obtain the GWAS summary data (γ̂j , σXj), j = 1, . . . , p for the gene-exposure
associations.

I Sample 3: Obtain the GWAS summary data (Γ̂j , σYj), j = 1, . . . , p for the gene-outcome
associations.

This is crucial for eliminating selection bias and the dependence between γ̂j and Γ̂j .



Assumptions

Assumption 1: Measurement error model(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
,

(
ΣX 0
0 ΣY

))
,

ΣX = diag(σ2
X1, . . . , σ

2
Xp),

ΣY = diag(σ2
Y 1, . . . , σ

2
Yp).

Assumption 2: Random rusty calipers
The causal effect β satisfies Γ ≈ β0γ. Specifically, let αj = Γj − βγj . Then we assume

I InSIDE (Instrument Strength Independent of Direct Effect): αj is independent of γj ;

I Most αj
i.i.d.∼ N(0, τ 2), but a few |αj | might be very large.

These assumptions are based on extensive exploratory data analyses.



Robust adjusted profile scores (RAPS)

I Define standardized residual: tj(β, τ
2) =

Γ̂j − βγ̂j√
1 + β2σ2

Xj + τ 2σ2
Yj

.

I For some robust loss ρ (let ψ = ρ′), the RAPS equations are

ψ
(ρ)
1 (β, τ 2) =

p∑
j=1

( ∂

∂β
tj
)
·ψ(tj ),

ψ
(ρ)
2 (β, τ 2) =

p∑
j=1

tj ·ψ(tj )− E[Tψ(T )], for T ∼ N(0, 1).

I Roughly speaking, the first equation means that

p∑
j=1

(
Estimated quality

of instrument j

)
·
(

Estimated error
of instrument j

)
= 0.

I Estimated quality of the instruments can be improved by empirical Bayes, which works
really well with many weak instruments.4

4
Zhao, Q. et al. (2019). “Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian

randomization”. International Journal of Epidemiology, 48(5):1478-1492.
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Motivating example: BMI and type 2 diabetes (T2D)
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Two scenarios of mechanistic heterogeneity



What would happen in each case?

If each diagram is interpretated as a linear structural equations model, we can derive the Wald
ratio for each pathway.

Instruments Z Pathway M Effect of M on X Effect of M on Y Wald estimand

Scenario 1
Z1,1, . . . ,Z1,p1 M1 θ1 θ1β β
Z2,1, . . . ,Z2,p2 M2 θ2 θ2β + α2 β + α2/θ2
Z3,1, . . . ,Z3,p3 M3 θ3 θ3β + α3 β + α3/θ3

Scenario 2
Z1,1, . . . ,Z1,p1 M1 θ1 θ1β1 β1
Z2,1, . . . ,Z2,p2 M2 θ2 θ2β2 β2
Z3,1, . . . ,Z3,p3 M3 θ3 θ3β3 β3

I SNPs on the same pathway have the same Wald estimand, while SNPs across different
pathways generally have different estimands.

I Mechanistic heterogeneity can arise even when all SNPs are valid instruments (Scenario 2).
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Solution 1: Robust likelihood plot

I More detail: Wang, J., Zhao, Q., Bowden, J., Hemani, G., Smith, G. D., Small, D. S., &
Zhang, N. R. (2021). Causal inference for heritable phenotypic risk factors using
heterogeneous genetic instruments. PLOS Genetics. DOI:10.1371/journal.pgen.1009575.

I Also contains methods for multiple exposures and overlapping samples.

https://doi.org/10.1371/journal.pgen.1009575
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Solution 2: Modelling the effect along each path

Modified model
I GWAS summary data:(

γ̂j
Γ̂j

)
indep.∼ N

(( γj
βjγj

)
,

(
σ2
Xj

0

0 σ2
Yj

))
, j = 1, . . . , p,

I Mixture model for path-specific effects:

Zj ∼ Categorical (π1, . . . , πK ),

βj |Zj = k ∼ N(µk , σ
2
k), k = 1, . . . ,K .

I More detail: Iong, D., Zhao, Q., & Chen, Y. (2020). A latent mixture model for
heterogeneous causal mechanisms in Mendelian randomization. arXiv:2007.06476.

I Alternative solution: Bayesian model averaging. See Shapland, C. Y., Zhao, Q., &
Bowden, J. (2020). Profile-likelihood Bayesian model averaging for two-sample summary
data Mendelian randomization in the presence of horizontal pleiotropy.
BioRxiv:2020.02.11.943712.

https://arxiv.org/abs/2007.06476
https://doi.org/10.1101/2020.02.11.943712
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BMI-T2D example: Two-cluster fit
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BMI-T2D example: Posterior intervals
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BMI-T2D example: A possible explanation
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How can we discover the latent pathways? Examine the phenonome!

I If we let β̂ denote the genome-phenome matrix of GWAS coefficients, then β̂β̂T should
exhibit a low-rank structure.

Additional ideas (Ongoing work)

I To remove the environmental factors, contrast “signal” loci with “noise” loci.

I To stablize the results, use “bagging” (bootstrap aggregating).

I To visualise the results, use lower-dimensional embedding such as the UMAP.
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Preliminary results: Metabolome GWAS
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Preliminary results: Metabolome GWAS
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Preliminary results: UK BioBank



LMR×2

Summary

I Mendelian randomization provides genetic anchors to learn meaningful (and likely causal)
representations of life.

I Many challenges remain:

1. Pleiotropy;
2. Non-linear structures and interactions;
3. High-dimensionality;
4. Low signal-to-noise ratio.

Collaborators in the works presented here
Jingshu Wang (Chicago); Dylan Small, Nancy Zhang (UPenn); Gibran Hemani, George Davey Smith
(Bristol); Jack Bowden (Exeter); Daniel Iong, Yang Chen (Michigan); Zijun Gao, Trevor Hastie
(Stanford).
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