Leverage Mendelian Randomization to Learn Meaningful
Representations (LMR x2)

Qingyuan Zhao
Statistical Laboratory, University of Cambridge

December 14, 2021



Outline

What is MR?

Summary-data MR

Mechanistic heterogeneity



What is MR?

» Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation

in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.



What is MR?

» Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation

in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.

» Folk definition:

MR = Use genetic variation as instrumental variables.



What is MR?

» Wikipedia definition:

In epidemiology, Mendelian randomization is a method of using measured variation

in genes of known function to examine the causal effect of a modifiable exposure on
disease in observational studies.

» Folk definition:

MR = Use genetic variation as instrumental variables.

» A more informative definition:

MR = Base causal inference on randomness in Mendelian inheritance.
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Surging popularity of MR
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> Applications of MR are fueled by the increasing availability of GWAS datasets.!

L Data are obtained from Web of Science (https://www.webofknowledge.com/).


https://www.webofknowledge.com/

Example: Causal effect of the “bad” cholesterol

A well understood pathway of heart disease

HMGCR
gene \
HMG-CoA LDL cholesterol Artery plaque
(b

reductase

rs17238484 —»

w,
code a3 synthesize cause
—

rs12916—4—>,
} Tinhibil
HO, 0
G- /\l)kgw E Statin

Basic idea
People who inherited certain alleles of rs17238484 and rs12916 have naturally higher

concentration of LDL cholesterol.
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People who inherited certain alleles of rs17238484 and rs12916 have naturally higher
concentration of LDL cholesterol.
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@ Exclusion restriction: Z has no direct effect on Y.



When do genetic instruments give correct answers?
The IV diagram

/@~ -7 _7 U (Unmeasured confounder) ‘
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Must assume 3 core IV assumptions = Partial identification
@ Relevance: Z [ X.
@ Exogeneity (natural experiment): Z 1 U.

@ Exclusion restriction: Z has no direct effect on Y.

Plus 1 extra assumption = Point identification

Could be linearity, monotonicity (Angrist, Imbens & Rubin, 1996), or homogeneity (Hernan &
Robins, 2006; Wang & Tchetgen Tchetgen, 2018).
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Basic idea: division

The Wald estimator

Causal effect of X on Y (fo) = Causal effect of Zon Y (T =+~ 50).

Causal effect of Z on X (v)

Heuristic: Linear structural equation model

XZ’)/Z+7]XU+E)(,

Y:ﬂoX—FT]YU—FEy
= (Bov)Z + f(U, Ex, Ey)
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independent of Z



Example: Causal effect of LDL-cholesterol
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A main challenge to MR

Violation of exclusion restriction due to pleiotropy
(multiple functions of genes)

2Swerdlow, D. I, et al. “HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and
randomised trials.” Lancet (2015).

3Boy|e, E. et al. (2017). “An expanded view of complex traits: from polygenic to omnigenic”. Cell 169, p1177-1186.



A main challenge to MR

Violation of exclusion restriction due to pleiotropy
(multiple functions of genes)

Example: HMGCR is associated with body weight2

(Unmeasured confounder) ‘

EVAN

’ Z (HMGCR variants) H X (LDL-C) H Y (Heart disease) ‘
Type 2 diabetes

> Recent genetic studies show that pleiotropy is indeed wide-spread.?

ZSwerdIow, D. L., et al. “HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and
randomised trials.” Lancet (2015).
3

Body weight

7

Boyle, E. et al. (2017). “An expanded view of complex traits: from polygenic to omnigenic”. Cell 169, p1177-1186.
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Two ideas to deal with pleiotropy
Useful metaphor: genetic instruments are rusty.

S

Question 1: What would you do if you have a rusty caliper?
Today's Answer: Find many rusty-but-not-broken calipers!!
Question 2: When is that enough?

1. < 50% of the calipers are broken (Kang et al., 2016); or
2. Rusty readings are balanced around the truth (Bowden et al., 2015).
Remaining issues

1. Both situations are common in MR.

2. Need to deal with many weak instruments.



Three-sample summary-data MR

» Sample 1: Select genetic variants associated with the hypothesized cause (LDL-C in the
previous example; epidemiologists call this exposure).

> Sample 2: Obtain the GWAS summary data (4}, 0x;),j = 1,..., p for the gene-exposure
associations.

» Sample 3: Obtain the GWAS summary data (fj,ayj),j =1,...,p for the gene-outcome
associations.

This is crucial for eliminating selection bias and the dependence between 4; and ;.



Assumptions

Assumption 1: Measurement error model
7\ o N[ (Y Xx 0 Sx = diag(oq,
r r)’ \0 Xyv/))' 3y =diag(o?,,

Assumption 2: Random rusty calipers

The causal effect  satisfies I' =~ Bgy. Specifically, let aj =T; — 5~;.

...,U%p),

"'70Yp)'

Then we assume

» InSIDE (Instrument Strength Independent of Direct Effect): «; is independent of ~;;

> Most «; Hig- N(0,7%), but a few |a;| might be very large.

These assumptions are based on extensive exploratory data analyses.



Robust adjusted profile scores (RAPS)
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> Define standardized residual: t;(3,72)

4Zhao, Q. et al. (2019). “Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian
randomization”. International Journal of Epidemiology, 48(5):1478-1492.
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Robust adjusted profile scores (RAPS)

: : : [ —B%
> Define standardized residual: t;(3,72) = = .
\/1 + B2ok; + 1207,

» For some robust loss p (let ¢ = p') the RAPS equations are

(s, :Z( 5) B (t),
Jj=1

(8,72 = > t; - w(t;) — E[Ty(T)], for T ~N(0,1).
Jj=1

» Roughly speaking, the first equation means that
zp: Estimated quality |\ (Estimated error) _ 0
— of instrument j of instrument j ) —
=

> Estimated quality of the instruments can be improved by empirical Bayes, which works
really well with many weak instruments.*

4Zhao, Q. et al. (2019). “Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian
randomization”. International Journal of Epidemiology, 48(5):1478-1492.
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Motivating example: BMI and type 2 diabetes (T2D)
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Two scenarios of mechanistic heterogeneity

(a) Scenario 1: Multiple pathways of
horizontal pleiotropy.

X1 )

O\
@)

X=Xi+X+X;

(b) Scenario 2: Multiple mechanisms
for the exposure X.
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What would happen in each case?

If each diagram is interpretated as a linear structural equations model, we can derive the Wald
ratio for each pathway.

Instruments Z Pathway M  Effect of M on X Effect of M on Y Wald estimand

Scenario 1
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What would happen in each case?

If each diagram is interpretated as a linear structural equations model, we can derive the Wald
ratio for each pathway.

Instruments Z Pathway M  Effect of M on X Effect of M on Y Wald estimand

Scenario 1
Ziay - Ly My 2 61 B
2271,‘..,22#,2 M 6> 026 + a2 ﬂ+a2/62
Z371,...,Z37p3 Mz O3 036 + a3 ,3—}—043/93
Scenario 2
Zigy. .., Zip My 01 0151 Jost
2o1,...,205p, M, 0> 023> B2
Z31,...,23,p, Ms 03 03053 03

» SNPs on the same pathway have the same Wald estimand, while SNPs across different
pathways generally have different estimands.

» Mechanistic heterogeneity can arise even when all SNPs are valid instruments (Scenario 2).



Solution 1: Robust likelihood plot
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» More detail: Wang, J., Zhao, Q., Bowden, J., Hemani, G., Smith, G. D., Small, D. S., &
Zhang, N. R. (2021). Causal inference for heritable phenotypic risk factors using
heterogeneous genetic instruments. PLOS Genetics. DOI:10.1371/journal.pgen.1009575.

» Also contains methods for multiple exposures and overlapping samples.


https://doi.org/10.1371/journal.pgen.1009575

Solution 2: Modelling the effect along each path

Modified model
» GWAS summary data:

A~ 2
’Yj> indep. N ( i > <U)<j 0 ) .
F ~ ~. ] 2 , J=1...

» Mixture model for path-specific effects:

Z; ~ Categorical (71, ...,Tk),
B1Z =k~ N(uiyo2), k=1,..., K,


https://arxiv.org/abs/2007.06476
https://doi.org/10.1101/2020.02.11.943712
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» Mixture model for path-specific effects:
Z; ~ Categorical (71, ...,Tk),

B1Z =k~ N(ues o), k=1,....K.

» More detail: long, D., Zhao, Q., & Chen, Y. (2020). A latent mixture model for
heterogeneous causal mechanisms in Mendelian randomization. arXiv:2007.06476.
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Solution 2: Modelling the effect along each path

Modified model
» GWAS summary data:

N 2
i) indep. ( Vi ox, 0 ) _
(£) w((5) (5 ) a=reeen

» Mixture model for path-specific effects:

Z; ~ Categorical (71, ...,Tk),
B1Z =k~ N(uiyo2), k=1,..., K,

» More detail: long, D., Zhao, Q., & Chen, Y. (2020). A latent mixture model for
heterogeneous causal mechanisms in Mendelian randomization. arXiv:2007.06476.

> Alternative solution: Bayesian model averaging. See Shapland, C. Y., Zhao, Q., &
Bowden, J. (2020). Profile-likelihood Bayesian model averaging for two-sample summary
data Mendelian randomization in the presence of horizontal pleiotropy.
BioRxiv:2020.02.11.943712.


https://arxiv.org/abs/2007.06476
https://doi.org/10.1101/2020.02.11.943712

BMI-T2D example: Two-cluster fit
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BMI-T2D example: Posterior intervals

95% Posterior Credible Interval
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BMI-T2D example: A possible explanation
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How can we discover the latent pathways? Examine the phenonome!

al Graphical representation
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> If we let ,@ denote the genome-phenome matrix of GWAS coefficients, then ﬁﬁT should
exhibit a low-rank structure.



How can we discover the latent pathways? Examine the phenonome!

al Graphical representation a2 List representation

@ @ tic clust environmental
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> If we let ,@ denote the genome-phenome matrix of GWAS coefficients, then ﬁﬁT should
exhibit a low-rank structure.

Additional ideas (Ongoing work)
» To remove the environmental factors, contrast “signal” loci with “noise” loci.

» To stablize the results, use “bagging” (bootstrap aggregating).
» To visualise the results, use lower-dimensional embedding such as the UMAP.



Preliminary results: Metabolome GWAS
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Preliminary results: Metabolome GWAS
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Preliminary results: UK BioBank
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Summary

> Mendelian randomization provides genetic anchors to learn meaningful (and likely causal)
representations of life.
» Many challenges remain:
1. Pleiotropy;
2. Non-linear structures and interactions;
3. High-dimensionality;
4. Low signal-to-noise ratio.
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Summary

> Mendelian randomization provides genetic anchors to learn meaningful (and likely causal)
representations of life.

» Many challenges remain:

1. Pleiotropy;

2. Non-linear structures and interactions;
3. High-dimensionality;

4. Low signal-to-noise ratio.
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