
Bootstrapping Sensitivity analysis

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

August 3, 2020 @ JSM



1/18

Sensitivity analysis

The broader concept [Saltelli et al., 2004]

I Sensitivity analysis is “the study of how the uncertainty in the
output of a mathematical model or system (numerical or otherwise)
can be apportioned to different sources of uncertainty in its
inputs”.

I Model inputs may be any factor that “can be changed in a model
prior to its execution”, including” “structural and epistemic sources
of uncertainty”.

In observational studies
I The most typical question is:

How do the qualitative and/or quantitative conclusions of the
observational study change if the no unmeasured confounding
assumption is violated?
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Sensitivity analysis for observational studies
State of the art
I Gazillions of methods specifically designed for different problems.

I Various forms of statistical guarantees.

I Often not straightforward to interpret

Goals of this talk
1. What is the common structure behind various methods for

sensitivity analysis?

2. Can we bootstrap sensitivity analysis?
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What is a sensitivity model?

General setup

Observed data O infer
=⇒ Distribution of the full data F .

I Prototypical example: Observe iid copies of O = (X ,A,Y ) from the
underlying full data F = (X ,A,Y (0),Y (1)), where A is a binary
treatment, X is covariates, Y is outcome.

An abstraction
A sensitivity model is a family of distributions Fθ,η of F that satisfies:

1. Augmentation: Setting η = 0 corresponds to a primary analysis
assuming no unmeasured confounders.

2. Model identifiability: Given η, the implied marginal distribution Oθ,η
of the observed data O is identifiable.

Statistical problem
Given η (or the range of η), use the observed data to make inference
about some causal parameter β = β(θ, η).
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Understanding sensitivity models

Observational equivalence

I Fθ,η and Fθ′,η′ are said to be observationally equivalent if
Oθ,η = Oθ′,η′ . We write this as Fθ,η ' Fθ′,η′ .

I Equivalence class [Fθ,η] = {Fθ′,η′ | Fθ,η ' Fθ′,η′}.

Types of sensitivity models

Testable models When Fθ,η is not rich enough, [Fθ,η] is a singleton and
η can be identified from the observed data (should be
avoided in practice).

Global models For any (θ, η) and η′, there exists Fθ′,η′ ' Fθ,η.

Separable models For any (θ, η), Fθ,η ' Fθ,0.
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A visualization
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Left: Global sensitivity models; Right: Separable sensitivity models.
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Statistical inference
Modes of inference

1. Point identified sensitivity analysis is performed at a fixed η.

2. Partially identified sensitivity analysis is performed simultaneously
over η ∈ H for a given range H.

Statistical guarantees of interval estimators

1. Confidence interval [CL(O1:n; η),CU(O1:n; η)] satisfies

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(η0),CU(η0)]

}
≥ 1− α.

2. Sensitivity interval [CL(O1:n;H),CU(O1:n;H)] satisfies

inf
θ0,η0

Pθ0,η0

{
β(θ0, η0) ∈ [CL(H),CU(H)]

}
≥ 1− α. (1)

They look almost the same, but because the latter interval only depends
on H, (1) is actually equivalent to

inf
θ0,η0

inf
Fθ,η'Fθ0,η0

Pθ0,η0

{
β(θ, η) ∈ [CL(H),CU(H)]

}
≥ 1− α.
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Approaches to sensitivity analysis
I Point identified sensitivity analysis is basically the same as primary

analysis with known “offset” η.

I Partially identified sensitivity analysis is much harder. Let Fθ0,η0 be
the truth. The fundamental problem is to make inference about

inf
η∈H
{β(θ, η) | Fθ,η ' Fθ0,η0} and sup

η∈H
{β(θ, η) | Fθ,η ' Fθ0,η0}

Method 1 Solve the population optimization problems analytically.

I Not always feasible.

Method 2 Solve the sample approximation problem and use
asymptotic normality.

I Central limit theorems not always true or established.

Method 3 Take the union of confidence intervals

[CL(H),CU(H)] =
⋃
η∈H

[CL(η),CU(η)].

I By the union bound, this is a (1− α)-sensitivity interval
if all [CL(η),CU(η)] are (1− α)-confidence intervals.



8/18

Computational challenges for Method 3

[CL(H),CU(H)] =
⋃
η∈H

[CL(η),CU(η)].

I Using asymptotic theory, it is often not difficult to construct
asymptotic confidence intervals of the form

[CL(η),CU(η)] = β̂(η)∓ zα
2
· σ̂(η)√

n

I Unlike Method 2 that only needs to optimize β̂(η), Method 3 further
needs to optimize the usually much more complicated σ̂(η) over
η ∈ H.
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Method 4: Percentile bootstrap

1. For fixed η, use the percentile bootstrap confidence interval (b is an
index for data resample)

[CL(η),CU(η)] =
[
Qα

2

(
ˆ̂βb(η)

)
,Q1−α2

(
ˆ̂βb(η)

)]
.

2. Use the generalized minimax inequality to interchange quantile and
infimum/supremum:

Percentile bootstrap sensitivity interval

Qα
2

(
inf
η

ˆ̂βb(η)
)
≤ inf

η
Qα

2

(
ˆ̂βb(η)

)
≤ sup

η
Q1−α

2

(
ˆ̂βb(η)

)
Union sensitivity interval

≤ Q1−α
2

(
sup
η

ˆ̂βb(η)
)
.

Advantages

I Computation is reduced to repeating Method 2 over data resamples.

I Only need coverage guarantee for [CL(η),CU(η)] for fixed η.
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Bootstrapping sensitivity analysis

Point-identified parameter: Efron’s bootstrap

Bootstrap

Point estimator ============⇒ Confidence interval

Partially identified parameter: Three ideas

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Sensitivity interval

Rest of the talk

Apply this idea to IPW estimators for a marginal sensitivity model.
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Our sensitivity model
I Consider the prototypical example: A is a binary treatment, X is

covariates, Y is outcome.

I U “summarizes” unmeasured confounding, so A ⊥⊥ Y (0),Y (1) | X ,U.

I Let e0(x) = P0(A = 1 | X = x), e(x , u) = P(A = 1 | X = x ,U = u).

Marginal sensitivity models

EM(Γ) =
{
e(x , u) :

1

Γ
≤ OR(e(x , u), e0(x)) ≤ Γ,∀x ∈ X , y

}
.

I Compare this to the Rosenbaum [2002] model:

ER(Γ) =
{
e(x , u) :

1

Γ
≤ OR(e(x , u1), e(x , u2)) ≤ Γ,∀x ∈ X , u1, u2

}
.

I Tan [2006] first considered the marginal model, but he did not
consider statistical inference in finite sample.

I Relationship between the two models: EM(
√

Γ) ⊆ ER(Γ) ⊆ EM(Γ).1

1The second part needs “compatibility”: e(x, y) should marginalize to e0(x).
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Parametric extension

I In practice, the propensity score e0(X ) = P0(A = 1 | X ) is often
estimated by a parametric model.

Parametric marginal sensitivity models

EM(Γ,β0) =
{
e(x , u) :

1

Γ
≤ OR(e(x , u), eβ0 (x)) ≤ Γ,∀x ∈ X , y

}
I eβ0 (x) is the best parametric approximation to e0(x).

This sensitivity model covers both

1. Model misspecification, that is, eβ0 (x) 6= e0(x); and

2. Missing not at random, that is, e0(x) 6= e(x , u).
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Logistic representations

1. Rosenbaum’s sensitivity model:

logit(e(x , u)) = g(x) + u log Γ,

where 0 ≤ U ≤ 1.

2. Marginal sensitivity model:

logit(eη(x , u)) = logit(e0(x)) + η(x , u),

where η ∈ HΓ = {η(x , u) | ‖η‖∞ = sup |η(x , u)| ≤ log Γ}.
3. Parametric marginal sensitivity model:

logit(eη(x , u)) = logit(eβ0 (x)) + η(x , u),

where η ∈ HΓ.
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Computation

Bootstrapping partially identified sensitivity analysis

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Sensitivity interval

I Stabilized inverse-probability weighted (IPW) estimator for
β = E[Y (1)]:

β̂(η) =

[
1

n

n∑
i=1

Ai

êη(Xi ,Ui )

]−1[
1

n

n∑
i=1

AiYi

êη(Xi ,Ui )

]
,

where êη can be obtained by plugging in an estimator of β0.

I Computing extrema of β̂(η) is a linear fractional programming:
Let hi = exp{−η(Xi ,Ui )} and gi = 1/eβ̂0

(Xi ),

max or min

∑n
i=1 AiYi [1 + hi (gi − 1)]∑n
i=1 Ai [1 + hi (gi − 1)]

,

subject to hi ∈ [Γ−1, Γ], i = 1, . . . , n.

This can be converted to a linear programming and can in fact be
solved in O(n) time (optimal rate).



15/18

Example

Fish consumption and blood mercury

I 873 controls: ≤ 1 serving of fish per month.

I 234 treated: ≥ 12 servings of fish per month.

I Covariates: gender, age, income (very imblanced), race, education,
ever smoked, # cigarettes.

Implementation details

I Rosenbaum’s method: 1-1 matching, CI constructed by
Hodges-Lehmann (assuming causal effect is constant).

I Our method (percentile Bootstrap): stabilized IPW for ATT w/wo
augmentation by outcome linear regression.
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Results

I Recall that EM(
√

Γ) ⊆ ER(Γ) ⊆ EM(Γ).
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Figure: The solid error bars are the range of point estimates and the dashed error bars
(together with the solid bars) are the confidence intervals. The
circles/triangles/squares are the mid-points of the solid bars.
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Recap

I Sensitivity model = Overparameterizing the full data distribution.

I Understand sensitivity models by visualizing their observational
equivalence classes.

I Point identified versus partially identified inference.

I Percentile bootstrap can greatly simplify the problem.

I Example: Marginal sensitivity model & the IPW estimator.
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