Multiple conditional randomization tests

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

June 27, 2022 @ IMS Annual Meeting

Joint work with Yao Zhang (DAMTP, Cambridge); Manuscripts: 2203.10980 (single CRT); arXiv:2104.10618 (multiple CRT); Slides: http://statslab.cam.ac.uk/~qz280/.

The meaning of randomization tests has become obscure

- Fisher (1935): To substitute *t*-test when normality is not true and to restore randomization as "the physical basis of the validity of the test".
- Extension by Pitman, Welch, Kempthorne, among many others.
- Also known as (none of them is very accurate):
 - Nonparametric tests;
 - Permutation tests;
 - Rerandomization tests.
- In Wikipedia, described in a page about "Resampling (statistics)" together with bootstrap, subsampling, and cross-validation.
- Cambridge Dictionary of Statistics: "procedures for determining statistical significance directly from data without recourse to some particular sampling distribution".

Rejuvenated interest in randomization tests

- Testing genomic associations (Efron et al. 2001; Bates et al. 2020);
- Testing conditional independence (Candès et al. 2018; Berrett et al. 2020);
- Conformal predictive inference for machine learning methods (Vovk *et al.* 2005; Lei *et al.* 2013);
- Analyses of complex experimental designs (Morgan and Rubin 2012; Ji *et al.* 2017);
- Evidence factors in observational studies (Rosenbaum 2017);
- Causal inference with interference (Athey et al. 2018; Basse et al. 2019).

Randomization tests vs. Permutation tests

- Often used interchangeably.
- But the semantics are clearly different:
 - Randomization tests emphasize on the basis of inference (probabilistic).
 - Permutation tests emphasize on the computational algorithm (non-probabilistic).
- Over decades, many authors pointed out that they are based on different assumptions. But the terms are still rarely distinguished in practice/classroom.
- Why? The simplest randomization test (for 1/2 treated 1/2 control) is a permutation test.
- How should we resolve this?

Our proposal

Use a new term—quasi-randomization tests.

Randomization tests vs. Quasi-randomization tests

- Quasi: "used to show that something is almost, but not completely, the thing described."
- Quasi-randomization means that we pretend (parts of) the data are randomized, even though no physical actions of randomization took place.
- We do this all the time: i.i.d., exchangeablity, infinite population. But they are still assumptions.

What's the fundamental epistemic difference?

- Randomization tests rely on human action—randomness introduced by an experiment.
- Quasi-randomization tests rely on human perception—randomness we cannot explain and thus believe is part of nature.
- Closely related is **randomized experiment** vs. **quasi-experiment** (termed by Donald Campbell in social science = observational study in statistics).

This talk

This talk has two goals:

- To clarify what a "randomization test" means and distinguish it from related concepts.
- Or provide a unifying framework that incorporates many old and new ideas about multiple conditional randomization tests.

Outline

- 1 Single CRT: Theory
- 2 Single CRT: Examples
- 3 Multiple CRTs: Theory
- 4 Multiple CRTs: Examples

Setup

- *N* units, treatment $\boldsymbol{Z} \in \mathcal{Z}$ is randomized.
- Potential outcomes $\mathbf{Y}(\mathbf{z}) = (Y_1(\mathbf{z}), \dots, Y_N(\mathbf{z}))$; Consistency: $\mathbf{Y} = (Y_1, \dots, Y_N) = \mathbf{Y}(\mathbf{Z}).$
- Po. outcomes schedule $W = (Y(z) : z \in \mathcal{Z}) \in \mathcal{W}.$

Assumption (Randomization)

 $\mathbf{Z} \perp \mathbf{W}$ and the density function $\pi(\cdot)$ of \mathbf{Z} is known and positive everywhere.

Null hypothesis

A typical sharp null hypothesis assumes that certain potential outcomes are equal or related.

- Example 1: no interference H_0 : $Y_i(z) = Y_i(z^*)$ whenever $z_i = z_i^*$;
- Example 2: constant treatment effect τ (on top of no interference) $H_0: Y_i(1) - Y_i(0) = \tau.$

Definition

A sharp null hypothesis H defines an imputability mapping

$$egin{aligned} \mathcal{H}: & \mathcal{Z} imes \mathcal{Z}
ightarrow 2^{[N]}, \ & (oldsymbol{z},oldsymbol{z}^*) \mapsto \mathcal{H}(oldsymbol{z},oldsymbol{z}^*), \end{aligned}$$

where $\mathcal{H}(z, z^*)$ is the largest subset of $[N] = \{1, ..., N\}$ such that $Y_{\mathcal{H}(z, z^*)}(z^*)$ is imputable from Y(z) under H.

Fully sharp means that $\mathcal{H}(z, z^*) \equiv [N]$. Otherwise partially sharp.

- Example 1: No interference + constant treatment effect is fully sharp.
- Example 2: In crossover designs, hypotheses about a particular lagged effect is partially sharp.

Conditional randomization tests (CRT)

- Requries a partition $\mathcal{R} = \{\mathcal{S}_m\}_{m=1}^M$ of \mathcal{Z} and test statistics $(T_m(\cdot, \cdot))_{m=1}^M$, where $T_m : \mathcal{Z} \times \mathcal{W} \to \mathbb{R}$.
- \mathcal{R} defines an equivalent relation $\equiv_{\mathcal{R}}$ (and vice versa).
- Let S_z denote the equivalence class containing z. Let $T_z(\cdot, \cdot)$ be the corresponding test statistic.
- The *p*-value of the CRT is given by

$$P(\mathbf{Z}, \mathbf{W}) = \mathbb{P}^* \{ T_{\mathbf{Z}}(\mathbf{Z}^*, \mathbf{W}) \le T_{\mathbf{Z}}(\mathbf{Z}, \mathbf{W}) \mid \mathbf{Z}^* \in \mathcal{S}_{\mathbf{Z}}, \mathbf{W} \} \\ = \mathbb{P}^* \{ T_{\mathbf{Z}}(\mathbf{Z}^*, \mathbf{W}) \le T_{\mathbf{Z}}(\mathbf{Z}, \mathbf{W}) \mid \mathbf{Z}^* \equiv_{\mathcal{R}} \mathbf{Z}, \mathbf{W} \}.$$

where Z^* is an independent copy of Z conditional on W.

Properties of CRT

Valid?

• Theorem: $\mathbb{P}\left\{P(\boldsymbol{Z}, \boldsymbol{W}) \leq \alpha \mid \boldsymbol{Z} \in \mathcal{S}_{\boldsymbol{z}}, \boldsymbol{W}\right\} \leq \alpha, \ \forall \alpha \in [0, 1], \boldsymbol{z} \in \mathcal{Z}.$

• Proof: Apply probability integral transform (Basse et al. 2019)

Computable?

- $T_z(\cdot, \cdot)$ is said to be **imputable** under H if for all $z^* \in S_z$, $T_z(z^*, W)$ only depends on W through its imputable part $Y_{\mathcal{H}(z,z^*)}(z^*)$.
- Lemma: Suppose Assumption 1 is satisfied and $T_z(\cdot, \cdot)$ is imputable for all $z \in \mathbb{Z}$. Then P(Z, W) only depends on Z and Y (we say it's computable).
- Remark: without randomization (Assumption 1), the distribution of $Z^* \mid W \stackrel{d}{=} Z \mid W$ is unknown.

Summary: Randomization guarantees validity, but the test is not always computable.

Further theory

See our paper for

- Alternative viewpoints: Conditioning on a function of the treatment, a σ -algebra, or a post-randomized variable.
- A review of methods to construct computable CRTs (Aronow 2012; Athey *et al.* 2018; Puelz *et al.* 2019).

Fisher's exact test for 2×2 contingency tables

		Outcome Y 0 1		
		0	1	Total
Treatment A	0	N ₀₀	<i>N</i> ₀₁	N ₀ .
	1	N ₁₀	N ₀₁ N ₁₁	N ₀ . N ₁ .
	Total	N .0	<i>N</i> .1	N

Fisher observed that the null probability of observing $(N_{00}, N_{01}, N_{10}, N_{11})$ given the marginal totals is given by the hypergeometric distribution. An exact test can then be immediately derived.

- This is a **unconditional randomization test** if the randomization fixes $N_{0.}$ and $N_{1.}$ (as in the famous tea-tasting example).
- This is a **conditional randomization test** if the treatments are assigned by Bernoulli trials.
- This is a conditional quasi-randomization test in the "two Binomials" setup: $N_{00} \sim Bin(N_{0.}, \pi_0)$, $N_{10} \sim Bin(N_{1.}, \pi_1)$, and the null hypothesis is $H_0: \pi_0 = \pi_1$.
- This is a permutation test, although resampling is not needed.

Permutation tests for treatment effect in randomized experiments

- This generalizes Fisher's exact test to continuous outcomes or discrete outcomes with more levels.
- This is a **conditional randomization test** that conditions on the order statistics of **Z**, or

$$\mathcal{S}_{z} = \{(z_{\sigma(1)}, \dots, z_{\sigma(N)}) : \sigma \text{ is a permutation of } [N]\}.$$

• What if we condition on more? Consider the **"balanced" permutation test** (Efron *et al.* 2001)

$$S_{z} = \{ z^{*} : z^{*} \text{ is a permutation of } z \text{ and } z^{T} z^{*} = N/4 \},$$

when \boldsymbol{Z} is randomized uniformly over $\boldsymbol{\mathcal{Z}} = \{ \boldsymbol{z} \in \{0,1\}^N : \boldsymbol{z}^T \boldsymbol{1} = N/2 \}.$

- A counterexample with inflated type I error is provided by Southworth *et al.* (2009), who argued that the problem is that S_z is not a group under balanced permutations (nor is $S_z \cup \{z\}$).
- In view of our theory, the problem is that this violates the invariance: $S_{z^*} = S_z$ whenever $z^* \in S_z$.

Further examples

See our paper for discussion on

- Quasi-randomization tests for (conditional) independence;
- Conformal prediction.

Setup

- *K* conditional randomization tests, defined by partitions $\mathcal{R}^{(k)} = \left\{ \mathcal{S}_m^{(k)} \right\}_{m=1}^{\infty}$ and test statistics $(T_m^{(k)}(\cdot, \cdot))_{m=1}^{\infty}$, for *K* possibly different hypotheses $H^{(k)}$, $k = 1, \ldots, K$.
- Corresponding *p*-values: $P^{(1)}(\boldsymbol{Z}, \boldsymbol{W}), \dots, P^{(K)}(\boldsymbol{Z}, \boldsymbol{W}).$
- Question: When can we treat them as independent pieces of evidence?

A new unifying result

• For any $\mathcal{J} \subseteq [K]$, we define the *union*, *refinement* and *coarsening* of the conditioning sets as

$$\mathcal{R}^{\mathcal{J}} = igcup_{k \in \mathcal{J}} \mathcal{R}^{(k)}, \ \underline{\mathcal{R}}^{\mathcal{J}} = \Big\{ igcap_{j \in \mathcal{J}} \mathcal{S}^{(j)}_{\mathbf{z}} : \mathbf{z} \in \mathcal{Z} \Big\}, \ ext{and} \ \overline{\mathcal{R}}^{\mathcal{J}} = \Big\{ igcup_{j \in \mathcal{J}} \mathcal{S}^{(j)}_{\mathbf{z}} : \mathbf{z} \in \mathcal{Z} \Big\}.$$

• Generated σ -algebras: $\mathcal{G}^{(k)}$, $\mathcal{G}^{\mathcal{J}}$, $\underline{\mathcal{G}}^{\mathcal{J}}$, $\overline{\mathcal{G}}^{\mathcal{J}}$.

Main theorem

Suppose the following two conditions are satisfied

$$\underline{\mathcal{R}}^{\{j,k\}} \subseteq \mathcal{R}^{\{j,k\}}, \quad \forall j,k \in [K], j \neq k.$$
(1)

 $T_{Z}^{(j)}(Z, W), \ j \in \mathcal{J}$ are independent given $\underline{\mathcal{G}}^{\mathcal{J}}, W, \quad \forall \mathcal{J} \subseteq [K].$ (2) Then for any $0 < \alpha^{(1)}, \dots, \alpha^{(K)} < 1$,

$$\mathbb{P}\left\{\mathcal{P}^{(1)}(\boldsymbol{Z},\boldsymbol{W}) \leq \alpha^{(1)}, \dots, \mathcal{P}^{(K)}(\boldsymbol{Z},\boldsymbol{W}) \leq \alpha^{(K)} \mid \overline{\mathcal{G}}^{[K]}, \boldsymbol{W}\right\} \leq \prod_{k=1}^{K} \alpha^{(k)}.$$

Special cases

To simplify, suppose $T_m^{(j)} = T^{(j)}$ does not depend on *m*.

Independent treatment variables

The conditions (1) and (2) are satisfied if

• The tests are unconditional: $S_{z}^{(k)} = Z$ for all k and z; and

• $T^{(k)}(\boldsymbol{Z}, \boldsymbol{W})$ only depends on \boldsymbol{Z} through $\boldsymbol{Z}^{(k)} = h^{(k)}(\boldsymbol{Z})$ for all k and $\boldsymbol{Z}^{(j)} \perp \boldsymbol{Z}^{(k)}$ for all $j \neq k$.

Sequential CRTs

The conditions (1) and (2) are satisfied if

•
$$\mathcal{S}_{z}^{(1)} \supseteq \cdots \supseteq \mathcal{S}_{z}^{(K)}$$
 for all $z \in \mathcal{Z}$; and

• $T^{(j)}(z, W)$ does not depend on z when $z \in S_m^{(k)}$ for all m and k > j. Remark: This does not require knowing the distribution $\pi(\cdot)$ of Z. A direct proof for sequential CRTs with K = 2

- $\textbf{ S}_{\boldsymbol{z}}^{(1)} \supseteq \mathcal{S}_{\boldsymbol{z}}^{(2)} \text{ for all } \boldsymbol{z} \in \mathcal{Z}, \text{ which implies } \mathcal{G}^{(1)} \subseteq \mathcal{G}^{(2)}; \text{ and }$
- **3** $T^{(1)}(z, W)$ does not depend on z when $z \in S_m^{(2)}$ for all m, which implies $T^{(1)}(Z, w)$ is $\mathcal{G}^{(2)}$ -measurable (and is thus independent of $T^{(2)}(Z, w)$ given $\mathcal{G}^{(2)}$).

Then by the law of iterated expectation, for any $\boldsymbol{w} \in \mathcal{W}$,

$$\mathbb{P}\left\{P^{(1)}(\boldsymbol{Z},\boldsymbol{w}) \leq \alpha^{(1)}, P^{(2)}(\boldsymbol{Z},\boldsymbol{w}) \leq \alpha^{(2)} \mid \mathcal{G}^{(1)}\right\}$$

$$= \mathbb{E}\left\{\psi^{(1)}(\boldsymbol{Z},\boldsymbol{w})\psi^{(2)}(\boldsymbol{Z},\boldsymbol{w}) \mid \mathcal{G}^{(1)}\right\}$$

$$= \mathbb{E}\left\{\mathbb{E}\left[\psi^{(1)}(\boldsymbol{Z},\boldsymbol{w})\psi^{(2)}(\boldsymbol{Z},\boldsymbol{w}) \mid \mathcal{G}^{(2)}\right] \mid \mathcal{G}^{(1)}\right\}$$

$$= \mathbb{E}\left\{\psi^{(1)}(\boldsymbol{Z},\boldsymbol{w})\mathbb{E}\left[\psi^{(2)}(\boldsymbol{Z},\boldsymbol{w}) \mid \mathcal{G}^{(2)}\right] \mid \mathcal{G}^{(1)}\right\}$$

$$\leq \alpha^{(2)}\mathbb{E}\left\{\psi^{(1)}(\boldsymbol{Z},\boldsymbol{w}) \mid \mathcal{G}^{(1)}\right\}$$

$$\leq \alpha^{(1)}\alpha^{(2)}.$$

The general proof requires a much more careful consideration of the structure of conditioning events.

Qingyuan Zhao (University of Cambridge)

Evidence factors for observational studies

• In Rosenbaum's or other sensitivity analyses for observational studies, it is common to use the upper bounding *p*-value

$$P(\boldsymbol{Z}, \boldsymbol{Y}) = \sup_{\pi \in \Pi} P(\boldsymbol{Z}, \boldsymbol{Y}; \pi)$$

where Π is the set of allowed distributions of Z.

- Suppose $P^{(k)}(\mathbf{Z}, \mathbf{Y}; \pi), k \in [K]$ are constructed by sequential CRTs.
- Then for all $\pi^* \in \Pi$, we have

$$\mathbb{P}_{\pi^*}(P^{(1)}(\boldsymbol{Z},\boldsymbol{Y}) \leq \alpha^{(1)}, \dots, P^{(K)}(\boldsymbol{Z},\boldsymbol{Y}) \leq \alpha^{(K)})$$

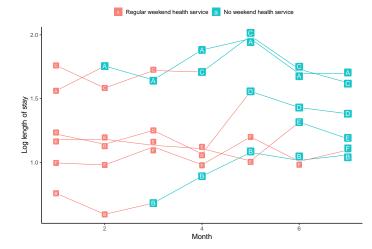
$$\leq \mathbb{P}_{\pi^*}(P^{(1)}(\boldsymbol{Z},\boldsymbol{Y};\pi^*) \leq \alpha^{(1)}, \dots, P^{(K)}(\boldsymbol{Z},\boldsymbol{Y};\pi^*) \leq \alpha^{(K)})$$

$$\leq \prod_{k=1}^{K} \alpha^{(k)}.$$

• This generalizes the "knit product" structure for multiple permutation tests (Rosenbaum 2017).

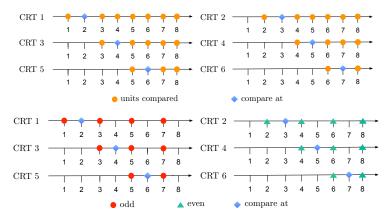
Stepped-wedge design

• In a stepped-wedge randomized trial, units/clusters cross over from control to treatment at random times ("staggered adoption").



Testing lagged treatment effects in stepped-wedge design

- Evidence for (lagged) treatment effect is scattered over time.
- If cleverly constructed, CRTs are "nearly independent" and can be combined by global/multiple testing methods.
- Example below: lag = 1.



References

- 1. P. M. Aronow, Sociological Methods & Research 41, 3–16 (2012).
- S. Athey, D. Eckles, G. W. Imbens, *Journal of the American Statistical Association* 113, 230–240 (2018).
- 3. G. Basse, A Feller, P Toulis, *Biometrika* 106, 487–494 (2019).
- S. Bates, M. Sesia, C. Sabatti, E. Candès, Proceedings of the National Academy of Sciences 117, 24117–24126 (2020).
- T. B. Berrett, Y. Wang, R. F. Barber, R. J. Samworth, *Journal of the Royal Statistical Society:* Series B (Statistical Methodology) 82, 175–197 (2020).
- E. Candès, Y. Fan, L. Janson, J. Lv, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80, 551–577 (2018).
- 7. B. Efron, R. Tibshirani, J. D. Storey, V. Tusher, *Journal of the American Statistical Association* **96**, 1151–1160 (2001).
- 8. X. Ji, G. Fink, P. J. Robyn, D. S. Small, et al., The Annals of Applied Statistics 11, 1–20 (2017).
- 9. J. Lei, J. Robins, L. Wasserman, *Journal of the American Statistical Association* **108**, 278–287 (2013).
- 10. K. L. Morgan, D. B. Rubin, Annals of Statistics 40, 1263-1282 (2012).
- D. Puelz, G. Basse, A. Feller, P. Toulis, Journal of the Royal Statistical Society: Series B (Statistical Methodology) (2019).
- 12. P. R. Rosenbaum, Statistical Science 32, 514–530 (2017).
- 13. L. K. Southworth, S. K. Kim, A. B. Owen, Journal of Computational Biology 16, 625–638 (2009).
- 14. V. Vovk, A. Gammerman, G. Shafer, Algorithmic learning in a random world, (Springer, 2005).