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The randomization principle in causal inference

We should use randomization in

1 The design of an experiment.

2 The analysis of an experiment.

We should mimic randomization in

3 The design of an observational study.

4 The analysis of an observational study.
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Randomization

The randomization principle in causal inference

This is partly due to a lack of precise description and understanding of the randomization principle. This

talk will try to use modern tools in causal inference to better understand randomization and will have

two parts.
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Fisher and randomization

Randomization is R A Fisher’s first principle of experimental design It has profoundly changed how
modern science is being done.

Statistical Methods for Research Workers (1925) → Fisher (1926)1 → Design of Experiments
(1935).

Nowadays we take this idea for granted. But this was not the case even decades after DOE.

For example, W S Gosset (“Student”) repeatedly disagreed with Fisher.

I do not expect to convince you but I do not agree with your controlled randomness. You would
want a large lunatic asylum for the operators who are apt to make mistakes enough even at
present.

(Gosset proofreading SMRW, 1924)

1Ronald Aylmer Fisher (1926). “The Arrangement of Field Experiments”. In: Journal of the Ministry of Agriculture 33,
pp. 503–513. doi: 10.23637/ROTHAMSTED.8V61Q.
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Randomization before and after Fisher

Peirce and Jastrow (1884)2 is believed to be the first randomized experiment.3

Richet (1880s): Can we deteck weak powers of telepathy?

Coover (starting from 1912): Randomized controlled experiments.

Bradford Hill argued forcefully (in the 1940s) for randomized clinical trials.

The psychologists and Hill emphasized on how randomization eliminates personal idiosyncracies
and confounding bias.

Fisher surely knew this point by his heart:

Randomisation properly carried out ... relieves the experimenter from the anxiety of considering
and estimating the magnitude of the innumerable causes by which his data may be dis-
turbed. (DOE, p. 44).

2Charles Sanders Peirce and Joseph Jastrow (1884). “On small differences in sensation”. In: Memoirs of the National Academy of
Sciences 3.

3Ian Hacking (1988). “Telepathy: Origins of Randomization in Experimental Design”. In: Isis 79.3, pp. 427–451. issn: 1545-6994.
doi: 10.1086/354775; Stephen M. Stigler (1978). “Mathematical Statistics in the Early States”. In: The Annals of Statistics 6.2,
pp. 239–265. doi: 10.1214/aos/1176344123.
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Randomization
Randomization in the design of experiments

Randomization before and after Fisher

1. Peirce and Jastrow: To test whether there is a threshold in our sensation of pressure,
experimental subjects first experienced a weight of 1kg and then a second weight either slightly
heavier or slightly lighter than the first, which was determined by well shuffled decks of cards.

2. Richet used a long sequence of trials in which an “agent” drew a playing card at random and
concentrated upon it for a short time, after which a “reagent” guessed the suit of the card.

3. Coover not only randomized the card, but also whether the trial would be regular or control (in
which the agent did not look at the card at all).

4. Hacking’s conclusion: Fisher was well aware of psychophysics research, but Fisherian
randomization involves a very different level of sophistication.

https://doi.org/10.1086/354775
https://doi.org/10.1214/aos/1176344123
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Fisher’s geometric intuition

Fisher repeatedly used geometric insights, starting from his proof of Gosset’s conjectured
t-distribution.

This result, although arrived at by empirical methods, was established almost beyond reasonable
doubt...[but] the form establishes itself instantly when the distribution of the sample is
viewed geometrically. (Fisher 1915)4

His argument involved representing n observations as a point P in
the n-dimensional space: “For, given x̄ and µ1, P must lie on a
sphere in n − 1 dimensions.”

But the actual derivation of the t-distribution is much more
involved than what Fisher indicated.

4Ronald Aylmer Fisher (1915). “Frequency distribution of the values of the correlation coeffients in samples from an indefinitely
large population”. In: Biometrika 10.4, pp. 507–521. doi: 10.1093/biomet/10.4.507.
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Randomization and analysis of variance

One way of making sure that a valid estimate of error will be obtained is to arrange the plots
deliberately at random . . . ; in such a case an estimate of error, derived in the usual way
from the variations of sets of plots treated alike, may be applied to test the significance of the
observed difference between the averages of plots treated differently. (Fisher 1926)5

His confidence in the result, however, depended on the geometric representation that was by
then second nature to him. . . . he could see that randomization would produce a symmetry
in that pattern rather like that produced by a kaleidoscope, and which approximated the
required spherical symmetry available, in particular, from standard normal theory assumptions.

(Box 1980)6

Again, the math is not straightforward. The formal connection was not established until 1950s by
requiring “additivity” (homogeneous treatment effect).7

5Ronald Aylmer Fisher (1926). “The Arrangement of Field Experiments”. In: Journal of the Ministry of Agriculture 33,
pp. 503–513. doi: 10.23637/ROTHAMSTED.8V61Q.

6Joan Fisher Box (1980). “R. A. Fisher and the Design of Experiments, 1922-1926”. In: The American Statistician 34.1, pp. 1–7.
doi: 10.1080/00031305.1980.10482701.

7Oscar Kempthorne (1955). “The Randomization Theory of Experimental Inference”. In: Journal of the American Statistical
Association 50.271, pp. 946–967. doi: 10.2307/2281178.
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Randomization
Randomization in the analysis of experiments

Randomization and analysis of variance

1. Fisher emphasized the importance of randomization in quantifying statistical error.
2. The main result is that the randomization distribution of the F-statistic is approximately the

F-distribution under Fisher’s sharp null.

https://doi.org/10.23637/ROTHAMSTED.8V61Q
https://doi.org/10.1080/00031305.1980.10482701
https://doi.org/10.2307/2281178


Randomization test

Fisher initially suggested in DOE that randomization test can be used to substitute the t-test when
normality is not true.

In these discussions it seems to have escaped recognition that the physyical act of randomisa-
tion, . . . , affords the means, . . . , of examining the wider hypothesis in which no normality of
distribution is implied. (DOE, p. 45)

Pitman (1937) seems to be the first who realized the full potential of randomization tests.8

However, this is also confused with related concepts/terms, especially permutation tests.

But the semantics are clearly different:
I Randomization tests emphasize on the basis of inference (probabilistic).
I Permutation tests emphasize on the computational algorithm (non-probabilistic).

8Patrick Onghena (2017). “Randomization Tests or Permutation Tests? A Historical and Terminological Clarification”. In:
Randomization, Masking, and Allocation Concealment, 209–228. doi: 10.1201/9781315305110-14; E. J. G. Pitman (1937).
“Significance Tests Which May Be Applied To Samples From Any Populations”. In: Supplement to the Journal of the Royal Statistical
Society 4.1, pp. 119–130. doi: 10.2307/2984124.
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What is randomization test?

Below: a precise description of conditional randomization tests that is a folklore among a small group of
causal inference researchers.

Setup

N units, treatment Z ∈ Z is randomized.

Potential outcomes Y (z) = (Y1(z), . . . ,YN(z)); Consistency: Y = (Y1, . . . ,YN) = Y (Z ).

P.O. schedule W = (Y (z) : z ∈ Z) ∈ W.

Assumption (Randomization)

Z ⊥⊥W and the density function π(·) of Z is known and positive everywhere.

Remark: We will condition on observed covariates X .
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Null hypothesis

A typical sharp null hypothesis assumes that certain potential outcomes are equal or related.

Example 1: no interference H0 : Yi (z) = Yi (z∗) whenever zi = z∗i ;

Example 2: constant treatment effect τ (on top of no interference) H0 : Yi (1)− Yi (0) = τ .

Definition
A sharp null hypothesis H defines an imputability mapping

H : Z × Z → 2[N],

(z , z∗) 7→ H(z , z∗),

where H(z , z∗) is the largest subset of [N] = {1, . . . ,N} such that YH(z,z∗)(z∗) is imputable from
Y (z) under H.

Fully sharp means that H(z , z∗) ≡ [N]. Otherwise partially sharp.
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Conditional randomization tests (CRT)

It is sometimes useful to not use the full randomness in Z . Consider any function g : Z → [M] and
a collection of test statistics: Tj : Z ×W → R, j ∈ [M].

The p-value of the CRT is given by

P(Z ,W ) = P
{
Tg(Z)(Z ′,W ) ≤ Tg(Z)(Z ,W ) | g(Z ′) = g(Z ),Z ,W

}
.

where Z∗ is an independent copy of Z given W .

Validity: This test always satisfies

P {P(Z ,W ) ≤ α | g(Z ),W } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Computability: Suppose Assumption 1 is satisfied and the test statistics are imputable (in the sense
that Tg(z)(z ′,W ) only depends on W through YH(z,z′)(z ′) for all z , z ′ ∈ Z). Then P(Z ,W ) only
depends on Z and Y .

Qingyuan Zhao (Cambridge) Randomization 2 December, 2022 @ Imperial College, London 11 / 23



Conditional randomization tests (CRT)

It is sometimes useful to not use the full randomness in Z . Consider any function g : Z → [M] and
a collection of test statistics: Tj : Z ×W → R, j ∈ [M].

The p-value of the CRT is given by

P(Z ,W ) = P
{
Tg(Z)(Z ′,W ) ≤ Tg(Z)(Z ,W ) | g(Z ′) = g(Z ),Z ,W

}
.

where Z∗ is an independent copy of Z given W .

Validity: This test always satisfies

P {P(Z ,W ) ≤ α | g(Z ),W } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Computability: Suppose Assumption 1 is satisfied and the test statistics are imputable (in the sense
that Tg(z)(z ′,W ) only depends on W through YH(z,z′)(z ′) for all z , z ′ ∈ Z). Then P(Z ,W ) only
depends on Z and Y .

Qingyuan Zhao (Cambridge) Randomization 2 December, 2022 @ Imperial College, London 11 / 23



Conditional randomization tests (CRT)

It is sometimes useful to not use the full randomness in Z . Consider any function g : Z → [M] and
a collection of test statistics: Tj : Z ×W → R, j ∈ [M].

The p-value of the CRT is given by

P(Z ,W ) = P
{
Tg(Z)(Z ′,W ) ≤ Tg(Z)(Z ,W ) | g(Z ′) = g(Z ),Z ,W

}
.

where Z∗ is an independent copy of Z given W .

Validity: This test always satisfies

P {P(Z ,W ) ≤ α | g(Z ),W } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Computability: Suppose Assumption 1 is satisfied and the test statistics are imputable (in the sense
that Tg(z)(z ′,W ) only depends on W through YH(z,z′)(z ′) for all z , z ′ ∈ Z). Then P(Z ,W ) only
depends on Z and Y .

2
0

2
2

-1
2

-0
2

Randomization
Randomization in the analysis of experiments

Conditional randomization tests (CRT)

1. Without randomization (Assumption 1), the distribution of Z∗ | W d
= Z | W is unknown.

2. Randomization guarantees validity, but the test is not always computable.



Example: Fisher’s exact test for 2× 2 contingency tables

Outcome Y
0 1 Total

Treatment A 0 N00 N01 N0·
1 N10 N11 N1·

Total N·0 N·1 N

Fisher observed that the null probability of observing (N00,N01,N10,N11) given the marginal totals is
given by the hypergeometric distribution. An exact test can then be immediately derived.

This is a unconditional randomization test if the randomization fixes N0· and N1· (as in the
famous tea-tasting example).

This is a conditional randomization test if the treatments are assigned by Bernoulli trials.

This is a conditional quasi-randomization test in the “two Binomials” setup: N00 ∼ Bin(N0·, π0),
N10 ∼ Bin(N1·, π1), and the null hypothesis is H0 : π0 = π1.

This is always a permutation test, although Monte Carlo approximation is not needed.
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Example: Evidence factors

Consider Z = {non-smoking (0), light smoking (1), heavy smoking (2)}n; Y is lung cancer.

To test the hypothesis H : Y (0) = Y (1) = Y (2), we may use a randomization test that compares
non-smokers with smokers.

To test the hypothesis H : Y (1) = Y (2), we may use a conditional randomization test that
compares light smokers with heavy smokers; this amounts to conditioning on g(Z ) = (1{Zi=0})

n
i=1.

Rosenbaum (2017)9 confirmed the intuition that two tests should be “independent” by exploiting
the knit product of permutation groups.

A more general viewpoint: sequential conditional randomization tests =⇒ a much simpler proof
by the law of iterated expectation.10

9Paul R. Rosenbaum (Nov. 2017). “The General Structure of Evidence Factors in Observational Studies”. In: Statistical Science
32.4, pp. 514–530. issn: 0883-4237, 2168-8745. doi: 10.1214/17-STS621.

10Yao Zhang and Qingyuan Zhao (2021). “Multiple Conditional Randomization Tests”. In: arXiv: 2104.10618 [math.ST].
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32.4, pp. 514–530. issn: 0883-4237, 2168-8745. doi: 10.1214/17-STS621.

10Yao Zhang and Qingyuan Zhao (2021). “Multiple Conditional Randomization Tests”. In: arXiv: 2104.10618 [math.ST].
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See our papers11 for . . .

A discussion on the terminology.

Different views of conditioning: on a function of Z , on a partition of Z, or on a sub σ-algebra.

A discussion on post-randomization.

A review of methods to construct computable tests in the causal interference literature.

More examples: Permutation tests for treatment effect; tests for (conditional) independence;
conformal inference.

General conditions on when multiple conditional randomization tests are (nearly) independent.

Applications to the stepped wedge trial design.

11Yao Zhang and Qingyuan Zhao (2021). “Multiple Conditional Randomization Tests”. In: arXiv: 2104.10618 [math.ST];
Yao Zhang and Qingyuan Zhao (2022). “What Is a Randomization Test?” In: arXiv: 2203.10980 [stat.ME].
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Outline

I will not talk about matching.



No unmeasured confounders/ignorability/exchangeability

It is typically assumed that all confounders X are measured, so that the observational study mimics
a randomized experiment.

A (LDL-C) Y (Heart disease)

X (Measured confounder)

It is often assumed that observations are drawn i.i.d. from this graph. Modern theory for causal
graphical models interprets this as A ⊥⊥ Y (a) | X .

But the role of randomization is obscure.

For this reason, natural experiments are usually thought to be more credible.
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No unmeasured confounders/ignorability/exchangeability

All randomness in A that cannot be explained by X is assumed to be randomized. This is very different

from the active randomization in experiments.



Mendelian randomization

Mendelian randomization tries to use randomness in genetic inheritance to aid causal inference.

The most popular view is that genetic variants are used as instrumental variables.

Z (HMGCR variants) A (LDL-C) Y (Heart disease)

U (Unmeasured confounder)

1

2
××

3
×

Modern causal graphical theory says this means that Z ⊥⊥ (A(z),Y (z , a)) and Y (z , a) = Y (a).

But the role of randomization is still not entirely clear.
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Pre-history of Mendelian randomization
Wright (1923), in a defence of his method of path coefficients, argues that the validity of this
method “rests on the validity of the premises, i.e., on the evidence for Mendelian heridity”, and the
“universality” of Mendelian laws justifies ascribing a causal interpretation to his findings.12

Fisher must have also known this by heart. Below are quotes from his 1951 Bateson lecture.

And here I may mention a connection between our two subjects which seems not to be altogether
accidental, namely that the “factorial” method of experimentation . . . derives its structure,
and its name, from the simultaneous inheritance of Mendelian factors.

Genetics is indeed in a peculiarly favoured condition in that Providence has shielded the geneticist
from many of the difficulties of a reliably controlled comparison. The different genotypes
possible from the same mating have been beautifully randomised by the meiotic process.

Independent proposals appeared in 1970s-90s before Davey Smith and Ebrahim (2003) brought the
idea to the front stage.13

12Sewall Wright (1923). “The Theory of Path Coefficients: A Reply to Niles’s Criticism”. In: Genetics 8.3, pp. 239–255. doi:
10.1093/genetics/8.3.239.

13George Davey Smith and Shah Ebrahim (2003). “’Mendelian Randomization’: Can Genetic Epidemiology Contribute To
Understanding Environmental Determinants of Disease?” In: International Journal of Epidemiology 32.1, pp. 1–22. doi:
10.1093/ije/dyg070.
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Genetic inheritance as a natural experiment
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Genetic trio studies

Data: Genotypes and phenotypes of mother, father, and offspring.

M/F/Z : mother/father/offspring.

Superscript f /m: Haplotypes inherited from father/mother.

So M f
j ∈ {0, 1} is mother’s haplotype at locus j inherited from her father.

No superscript means genotypes: Zj = Z f
j + Zm

j ∈ {0, 1, 2}.

Spielman, McGinnis, and Ewens (1993)14: Conditional on parental haplotypes.

Bates et al. (2020)15: Use existing meiosis models to obtain Z |Mm,M f ,Fm,F f .

Haldane (1919)16: Ancestry indicator U roughly follows a Poisson process.

14R S Spielman, R E McGinnis, and W J Ewens (Mar. 1993). “Transmission Test for Linkage Disequilibrium: The Insulin Gene Region
and Insulin-Dependent Diabetes Mellitus (IDDM).”. In: American Journal of Human Genetics 52.3, pp. 506–516. issn: 0002-9297.

15Stephen Bates et al. (Sept. 2020). “Causal Inference in Genetic Trio Studies”. In: Proceedings of the National Academy of
Sciences 117.39, pp. 24117–24126. doi: 10.1073/pnas.2007743117.

16J B S Haldane (1919). “The combination of linkage values and the calculation of distance between the loci fo linked factors.”. In:
Journal of Genetics 8, pp. 299–309.
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Illustration of within-family Mendelian randomization
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See our paper18 for . . .

A detailed account of the history of MR.

A detailed explanation of the different components of this graph.

A discussion various bias-inducing paths and sufficient adjustment sets.

An “almost exact” randomization test, following previous ideas.17

Simplification under Haldane’s Poisson process model with no mutation.

Combining techniques from multiple hypothesis testing (especially for partial conjunction nulls).

“Proof-of-concept” examples.

17Hyunseung Kang, Laura Peck, and Luke Keele (2018). “Inference for Instrumental Variables: A Randomization Inference
Approach”. In: Journal of the Royal Statistical Society: Series A (Statistics in Society) 181.4, pp. 1231–1254. issn: 1467-985X. doi:
10.1111/rssa.12353; Paul R. Rosenbaum (1996). “Identification of Causal Effects Using Instrumental Variables: Comment”. In:
Journal of the American Statistical Association 91.434, pp. 465–468. issn: 0162-1459. doi: 10.2307/2291633.

18Matthew J Tudball, George Davey Smith, and Qingyuan Zhao (2022). “Almost Exact Mendelian Randomization”. In: arXiv:
2208.14035 [stat.ME].
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Closing remarks

Two dominating principles in causal inference:
I Randomization: design, blocking/matching, randomization test, exactness.
I Identification: graphs, do- and potential outcomes calculus, i.i.d. sampling, semiparametric inference.

We can gain a much better understanding about randomization by using tools developed primarily
for identification. I believe there is also much to gain in the other direction.

Can we further close this gap? Here is a sobering remark, again from Fisher.

The postulate of randomness thus resolves itself into the question, ’Of what population is this
a random sample?’ which must frequently be asked by every practical statistician.

(Fisher 1922)19

19Ronald Aylmer Fisher (1922). “On the Mathematical Foundations of Theoretical Statistics”. In: Philosophical Transactions of the
Royal Society of London. Series A 222.594-604, pp. 309–368. doi: 10.1098/rsta.1922.0009.
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