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This talk

Ongoing project, two working papers:
1. Heritability: A Counterfactual Perspective. (Joint work with Haochen Lei, Jieru Shi,
Hongyuan Cao. Available on my website.)
2. Counterfactual Explainability and Analysis of Variance. (Joint work with Zijun Gao.
Available on arXiv:2411.01625.)
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https://www.statslab.cam.ac.uk/~qz280/publication/counterfactual-heritability/paper.pdf
https://arxiv.org/abs/2411.01625

Motivation

We wanted to answer a simple question:

Is there a good notion of causal variable importance?

This question is shaped by frustration from three ends:

1. The causal inference literature is obssessed with estimating the effect of a specific
intervention (particularly the ATE = E[Y(1) — Y/(0)]).

2. The global sensitivity analysis literature (e.g. functional ANOVA) assumes independent
inputs and deterministic outputs.

3. The genetics literature is dominated by using linear models to estimate heritability.



An exception

» Twin study is a classical method for estimating heritability. Falconer’s formula:

htwm 2(pMZ - pDZ)

pmz/ppz is the correlation of a trait (e.g. height) between monozygotic/dizygotic twins.
(The study of correlation between relatives goes back to Fisher's classic 1918 paper.)

» This is often justified using the ACE model: Y =A+ C+ E.

> Kohler et al. (2011)! formalized this as a linear structural equation model:
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Social science methods for twins data: Integrating causality, endowments, and heritability.
Biodemography and Social Biology 2011.



Our first idea

» We made real progress after thinking about the “fraternal twin counterfactual”.

> Let Y(G) be the potential outcome of someone with genotype G, and Y(G’) be the
counterfactual of a hypothetical twin with genotype G’ that is an i.i.d. copy of G.

» We can define counterfactual heritability as

_ Var(Y(G) = Y(G")) _Var(Y(G,E) - Y(G',E))
N 2Var(Y(G)) N 2Var(Y(G, E))
=1-Cor(Y(G), Y(G")).

£

(Environment E is shared.)

» Not hard to see that under the ACE model, & = h?

win/ 2. The factor 1/2 is because £ only
measure heritability in one generation.

> In many way, this is a nice definition. A practical challenge is that, without further strong
assumptions (e.g. additivity in the ACE model), the value of £ cannot be uniquely
determined even with infinite amount of data.



Distinguishing notions of heritability by the counterfactual comparison

» Geneticists talk about broad-sense heritability, narrow-sense heritability, and SNP
heritability. Often only defined under specific models and are tricky to interpret.

» Let X be parent genotypes and G be children genotypes.
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(a) Potential outcomes. (b) Fraternal counterfactual. (c) Unrelated counterfactual. (d) Adopted counterfactual.

(b) Fraternal: “one-generation” heritability < Var{Y (X, G) — Y(X, G)}.
(c) Unrelated: “infinite-generation” heritability o< Var{Y (X, G) — Y(X’, G")}.
(d) Adopted: heritability oc Var{Y (X, G) — Y (X, G")}.

> Implicit in relatedness disequilibrium regression (Young et al., 2018)2 but not always < 1.

2Relatedness disequilibrium regression estimates heritability without environmental bias. Nature Genetics.



Partial identification (Theorem 2 in Lei, Shi, Cao, Zhao)
Suppose G L {Y(g): g€ G} | X. Then

§ =& <&<min{&, &}

where
¢ = E[Var{E(Y | G, X) | X}] _ - E(Var(Y | G, X)) + Var(E(Y | X))
! Var(Y) Var(Y) ’
e | {Fedv) - v} e | {Fedv) - Feteti- 0}
& = 2Var(Y) ’ Su= 2Var(Y) ’
¢ = E(Var(Y | X)) 1 Var(E(Y | X))
Y Var(Y) Var(Y)

> Fc_k() is the conditional quantile function of Y given G, X. U ~ Unif[0, 1].

» The lower bound & is tight. The upper bound &, is tight when G is binary but generally
not very useful.



Comparison with other notions of heritability

> Let H? =

Var(E(Y | G))

Var(Y)

and 12— Var(GT0)

Var(Y)

» Gp, G, ~ Bern(0.5), X, Eq, E; ~ N(0,0.25), all independent.

(6 is the least squares projection).
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Our second idea

> Let £(G) be the counterfactual heritability above. Can similarly define £(E) and £(G V E).

Row 3 above shows that G receives “credit” from the interaction term G x E.

v

» Can we define interaction explainability using the inclusion-exlusion principle as
§GNE)=¢&(G)+&(E)—&(GVE)?

» [t turns out that this can be rewritten as

Var(Y(G,E) — Y(G',E) — Y(G,E') + Y(G', E"))

SEenE)= 4Var(Y)

> 0.

The second-order finite difference has indeed been used to describe interaction.

» We wrote a conference paper based on this and shared it with Professor Art Owen. He
pointed out that this is the superset importance introduced by Giles Hooker® with a
variance-based formula in Liu and Owen (2006)*.

3Discovering additive structure in black box functions. KDD 2004.
4Estimating mean dimensionality of analysis of variance decompositions. JASA 2006.



Related literature: Functional ANOVA

» Let f be a function of independent random variables W, ..., Wk.
> We can always write f(W) as

(W)= fs(Ws),
SCIK]
where the terms can be obtained inductively by (let fp(W) = E[f(W)])
fs(ws) = E [f(vv)— 3 s (W) | Ws = ws|, for S CIK].
S'cS
» The terms are orthogonal: E[fs(Ws)fs:/(Ws:)] = 0 for all different S, S’ C [K].
» So we have the functional ANOVA decomposition:
var(f(W)) = Z 0%, where 0% := var(fs(Ws)).

SCIK]

» This goes back to Hoeffding (1948, AOMS).



Related literature: global sensitivity analysis
Some notions of variable importance for a subset S C [K]:

> Sobol’s lower and upper sensitivity indices: 7% = Z 02, and 7% = Z o2
S'CS S'NS#D

> Super-set importance: 75 = Z 0%
§28

> Shapley value (not going into details...).

Pick-freeze method
The following formulas are used to accelerate GSA:

7% = Cov(F(W), f(Ws, W'g)) and 7% = % E[{f(W) — f(Wg, W_s)}?],

7% = 27 Shvar{ls(W, W")}, forall S C [K],

where Is(w,w') = Z (—1)ISI=I8" 1 £(w},, w_s/) is an interaction contrast (which forms the
s'Cs
anchored decomposition, not going into details...)



Unified perspective: explainability as a probability measure

» The explanation algebra £(W) is the Boolean algebra generated by Wi, ..., Wk using
conjunction V, disjunction A, and negation —.

Theorem 1 in Gao and Zhao
Let &1,&2,&3,&4 be any probability measures on £(W) such that, for all S C [K],

6 (Mes Vi) A (ks W) = s,
&2 (~(VigsWi)) = Var(;%’w))

Ve i) = T

o) = — 2o

Then § =& =86 =&



Implications

This is essentially a re-formulation of functiona ANOVA, but we can use the familiar probability
theory to derive many implications:

L &§(VkesWk) = 1.

2. &(Vkes' Wi) 2> E(Vkes Wi) and &(Akes' Wi) < E(Akes Wk ) for any S € S’ C [K].

3. E(Wh) + .. E(Wk) > &(Vierk) W)

Remarks

> 2.2 is what motivated Hooker's superset-importance (name is unhelpful...).
» 3 is the Efron-Stein inequality

K
Var(F(W)) < 3 Var(F(W) — F(W), W_)).
k=1

This can be improved by the Boole-Bonferroni inequalities.

» For practice, the important thing is that we can use Venn’s diagram to visualize £.



Examples

§(W,) ‘
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Left to right:
1. Linear: f(w) = wi + wo + ws;

EW,) E(W2) E(Ws)
E(W,"Wp)  E(WeW;)  E(W,"Ws)
E(WAW,"Wg)
1

2. Quadratic: f(w) = wiwy + wiws + wows;
3. Single-layer NN (sigmoid activation): f(w) = (1 4 e!®T10%2)=1 1 (1 4 @lOwat10ws) =1,

4. Multilinear monomial: f(w) = wywows.



Third idea

» How to extend this to dependent explanations?

» Our idea is to use a directed acyclic graph (DAG) to model their causal dependence and
define “fraternal counterfactuals” by resampling the intrinsic noise.

Example
Wi Pearl's NPSEM-IE assumes (in potential outcomes terms)
1
\ Wi = fi(Er),
Ws Yy W> = hH(E),
/ Ws(wi, wo) = f(wi, wa, E3),
W Y (w1, wa, ws) = fa(wi, wa, ws, E4),
2

> By recursive substitution, we can write Y as a function of the intrinsic noises
E;, Ey, E3, E4, which are assumed to be independent in Pearl’s model.

> Janzing et al. (2024, AISTATS) suggested the same idea for causal extensions of general
dependence measures (e.g. mutual information) in a more conceptual paper.



Toy example
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(a) Network structure.

Wz 0.02 007 0
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0.2 0.2
Wio 0.1 .0.09 0.09 0.07 00 Wiz 00
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(b) Equal noise variance. (c) Second layer noise variance decreased.



Real data example: Explaining income inequality

Education —— log(Annual Income)

> Datasets: UCI Adult (1994) and ACSIncome (2018).

» We assumed the basic potential outcomes are comonotone (=- point identification) and
sampled the counterfactuals after estimating the conditional distributions using XGBoost.



Results
Income in 2018

Age Income in 1994
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Consistency across graphs
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» Counterfactual explainability generally depends on the causal DAG but has certain
consistency properties with respect to finer mechanistic explanations (see the paper for
some formal results).

» In this example, Sex should have the same total explainability regardless of whether Race
and Education are included.



Conclusion

The papers have more theorems (inc. an axiomatization of &), examples, and discussion.

Why is counterfactual heritability /explainability a good idea?
In theory

It provides a counterfactual extension to functional ANOVA that can be applied with
dependent explanations and non-deterministic outputs. Has certain consistency properties.

In practice

Uses contextual mechanistic information. Easy to visualize and interpret.

Thank youl!



