

# A Counterfactual Perspective of **Heritability, Explainability, and ANOVA**

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

January 7, 2026 @ UCL Gatsby Unit

# This talk

Ongoing project, two working papers:

1. **Heritability: A Counterfactual Perspective.** (Joint work with Haochen Lei, Jieru Shi, Hongyuan Cao. Available on my website.)
2. **Counterfactual Explainability and Analysis of Variance.** (Joint work with Zijun Gao. Available on arXiv:2411.01625.)



Haochen Lei  
Florida State



Jieru Shi  
UCL



Hongyuan Cao  
Florida State



Zijun Gao  
USC Marshall

## Motivation

We wanted to answer a simple question:

Is there a good notion of **causal variable importance**?

This question is shaped by frustration from three ends:

1. The **causal inference** literature is obsessed with estimating the effect of a specific intervention (particularly the  $ATE = E[Y(1) - Y(0)]$ ).
2. The **global sensitivity analysis** literature (e.g. functional ANOVA) assumes independent inputs and deterministic outputs.
3. The **genetics** literature is dominated by using linear models to estimate heritability.

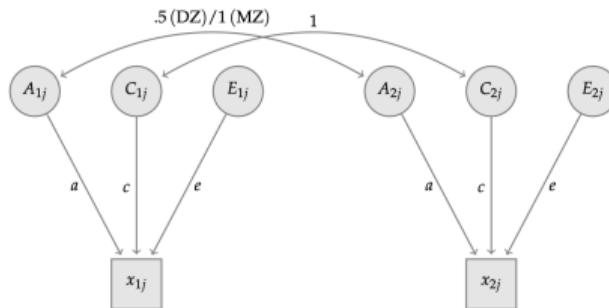
## An exception

- ▶ Twin study is a classical method for estimating heritability. **Falconer's formula**:

$$h_{\text{twin}}^2 = 2(\rho_{\text{MZ}} - \rho_{\text{DZ}}).$$

$\rho_{\text{MZ}}/\rho_{\text{DZ}}$  is the correlation of a trait (e.g. height) between monozygotic/dizygotic twins.  
(The study of correlation between relatives goes back to Fisher's classic 1918 paper.)

- ▶ This is often justified using the **ACE model**:  $Y = A + C + E$ .
- ▶ Kohler et al. (2011)<sup>1</sup> formalized this as a linear **structural equation model**:



---

<sup>1</sup>Social science methods for twins data: Integrating causality, endowments, and heritability.  
*Biodemography and Social Biology* 2011.

## Our first idea

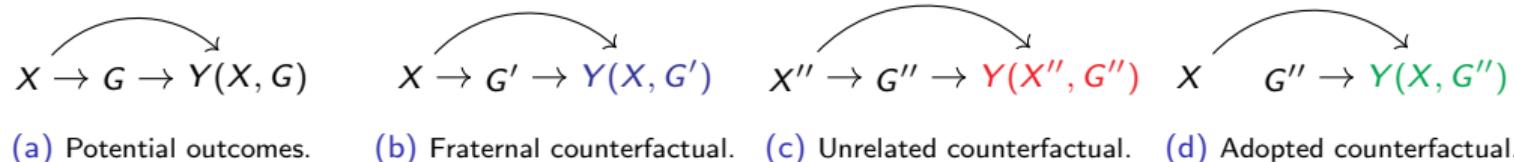
- ▶ We made real progress after thinking about the “**fraternal twin counterfactual**”.
- ▶ Let  $Y(G)$  be the potential outcome of someone with genotype  $G$ , and  $Y(G')$  be the counterfactual of a hypothetical twin with genotype  $G'$  that is an i.i.d. copy of  $G$ .
- ▶ We can define **counterfactual heritability** as

$$\begin{aligned}\xi &= \frac{\text{Var}(Y(G) - Y(G'))}{2 \text{Var}(Y(G))} = \frac{\text{Var}(Y(G, E) - Y(G', E))}{2 \text{Var}(Y(G, E))}. \quad (\text{Environment } E \text{ is shared.}) \\ &= 1 - \text{Cor}(Y(G), Y(G')).\end{aligned}$$

- ▶ Not hard to see that under the ACE model,  $\xi = h_{\text{twin}}^2/2$ . The factor  $1/2$  is because  $\xi$  only measure heritability in **one generation**.
- ▶ In many way, this is a nice definition. A practical challenge is that, without further strong assumptions (e.g. additivity in the ACE model), the value of  $\xi$  **cannot be uniquely determined** even with infinite amount of data.

## Distinguishing notions of heritability by the counterfactual comparison

- ▶ Geneticists talk about **broad-sense heritability**, **narrow-sense heritability**, and **SNP heritability**. Often only defined under specific models and are tricky to interpret.
- ▶ Let  $X$  be parent genotypes and  $G$  be children genotypes.



(b) **Fraternal**: “one-generation” heritability  $\propto \text{Var}\{Y(X, G) - Y(X, G')\}$ .

(c) **Unrelated**: “infinite-generation” heritability  $\propto \text{Var}\{Y(X, G) - Y(X'', G'')\}$ .

(d) **Adopted**: heritability  $\propto \text{Var}\{Y(X, G) - Y(X, G'')\}$ .

- ▶ Implicit in relatedness disequilibrium regression (Young et al., 2018)<sup>2</sup> but not always  $\leq 1$ .

<sup>2</sup>Relatedness disequilibrium regression estimates heritability without environmental bias. *Nature Genetics*.

## Partial identification (Theorem 2 in Lei, Shi, Cao, Zhao)

Suppose  $G \perp\!\!\!\perp \{Y(g) : g \in \mathcal{G}\} \mid X$ . Then

$$\xi'_l \leq \xi_l \leq \xi \leq \min\{\xi_u, \xi'_u\},$$

where

$$\begin{aligned}\xi'_l &= \frac{\mathbb{E}[\text{Var}\{\mathbb{E}(Y \mid G, X) \mid X\}]}{\text{Var}(Y)} = 1 - \frac{\mathbb{E}(\text{Var}(Y \mid G, X)) + \text{Var}(\mathbb{E}(Y \mid X))}{\text{Var}(Y)}, \\ \xi_l &= \frac{\mathbb{E}\left[\left\{F_{G,X}^{-1}(U) - F_{G',X}^{-1}(U)\right\}^2\right]}{2\text{Var}(Y)}, \quad \xi_u = \frac{\mathbb{E}\left[\left\{F_{G,X}^{-1}(U) - F_{G',X}^{-1}(1-U)\right\}^2\right]}{2\text{Var}(Y)}, \\ \xi'_u &= \frac{\mathbb{E}(\text{Var}(Y \mid X))}{\text{Var}(Y)} = 1 - \frac{\text{Var}(\mathbb{E}(Y \mid X))}{\text{Var}(Y)}.\end{aligned}$$

- ▶  $F_{G,X}^{-1}(\cdot)$  is the conditional quantile function of  $Y$  given  $G, X$ .  $U \sim \text{Unif}[0, 1]$ .
- ▶ The lower bound  $\xi_l$  is tight. The upper bound  $\xi_u$  is tight when  $G$  is binary but generally not very useful.

## Comparison with other notions of heritability

- ▶ Let  $H^2 = \frac{\text{Var}(\mathbb{E}(Y | G))}{\text{Var}(Y)}$  and  $h^2 = \frac{\text{Var}(G^T \theta)}{\text{Var}(Y)}$  ( $\theta$  is the least squares projection).
- ▶  $G_1, G_2 \sim \text{Bern}(0.5)$ ,  $X, E_1, E_2 \sim \mathcal{N}(0, 0.25)$ , **all independent**.

| $Y(g) =$                          | Narrow $h^2$                                              | Broad $H^2$                                               | Counterfactual $\xi$                                      | Lower $\xi'_l$                                            | Tight lower $\xi_l$                                       | Upper $\xi'_u$                                    |
|-----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| $\beta_1 g_1 + \beta_2 g_2 + E_1$ | $\frac{\beta_1^2 + \beta_2^2}{1 + \beta_1^2 + \beta_2^2}$ | 1                                                 |
| $\beta g_1 g_2 + E_1$             | $\frac{2\beta^2}{4 + 3\beta^2}$                           | $\frac{3\beta^2}{4 + 3\beta^2}$                           | $\frac{3\beta^2}{4 + 3\beta^2}$                           | $\frac{3\beta^2}{4 + 3\beta^2}$                           | $\frac{3\beta^2}{4 + 3\beta^2}$                           | 1                                                 |
| $\beta g_1 E_2 + E_1$             | 0                                                         | 0                                                         | $\frac{\beta^2}{4 + 2\beta^2}$                            | 0                                                         | $\frac{(\sqrt{1 + \beta^2} - 1)^2}{4 + 2\beta^2}$         | 1                                                 |
| $\beta_1 g_1 + \beta_2 X + E_1$   | $\frac{\beta_1^2}{1 + \beta_1^2 + \beta_2^2}$             | $\frac{1 + \beta_1^2}{1 + \beta_1^2 + \beta_2^2}$ |
| $\beta g_1 X + E_1$               | 0                                                         | 0                                                         | $\frac{\beta^2}{4 + 2\beta^2}$                            | $\frac{\beta^2}{4 + 2\beta^2}$                            | $\frac{\beta^2}{4 + 2\beta^2}$                            | $\frac{4 + \beta^2}{4 + 2\beta^2}$                |

## Our second idea

- ▶ Let  $\xi(G)$  be the counterfactual heritability above. Can similarly define  $\xi(E)$  and  $\xi(G \vee E)$ .
- ▶ Row 3 above shows that  $G$  receives “credit” from the interaction term  $G \times E$ .
- ▶ Can we define **interaction explainability** using the inclusion-exclusion principle as

$$\xi(G \wedge E) = \xi(G) + \xi(E) - \xi(G \vee E)?$$

- ▶ It turns out that this can be rewritten as

$$\xi(G \wedge E) = \frac{\text{Var}(Y(G, E) - Y(G', E) - Y(G, E') + Y(G', E'))}{4 \text{Var}(Y)} \geq 0.$$

The **second-order finite difference** has indeed been used to describe interaction.

- ▶ We wrote a conference paper based on this and shared it with Professor Art Owen. He pointed out that this is the **superset importance** introduced by Giles Hooker<sup>3</sup> with a variance-based formula in Liu and Owen (2006)<sup>4</sup>.

---

<sup>3</sup>Discovering additive structure in black box functions. KDD 2004.

<sup>4</sup>Estimating mean dimensionality of analysis of variance decompositions. JASA 2006.

## Related literature: Functional ANOVA

- ▶ Let  $f$  be a function of independent random variables  $W_1, \dots, W_K$ .
- ▶ We can always write  $f(W)$  as

$$f(W) = \sum_{S \subseteq [K]} f_S(W_S),$$

where the terms can be obtained inductively by (let  $f_\emptyset(W) = E[f(W)]$ )

$$f_S(w_S) = E \left[ f(W) - \sum_{S' \subset S} f_{S'}(W) \mid W_S = w_S \right], \quad \text{for } S \subseteq [K].$$

- ▶ The terms are orthogonal:  $E[f_S(W_S)f_{S'}(W_{S'})] = 0$  for all different  $S, S' \subseteq [K]$ .
- ▶ So we have the **functional ANOVA** decomposition:

$$\text{var}(f(W)) = \sum_{S \subseteq [K]} \sigma_S^2, \quad \text{where } \sigma_S^2 := \text{var}(f_S(W_S)).$$

- ▶ This goes back to Hoeffding (1948, *AOMS*).

## Related literature: global sensitivity analysis

Some notions of variable importance for a subset  $\mathcal{S} \subseteq [K]$ :

- ▶ **Sobol's lower and upper sensitivity indices:**  $\underline{\tau}_{\mathcal{S}}^2 = \sum_{\mathcal{S}' \subseteq \mathcal{S}} \sigma_{\mathcal{S}'}^2$  and  $\bar{\tau}_{\mathcal{S}}^2 = \sum_{\mathcal{S}' \cap \mathcal{S} \neq \emptyset} \sigma_{\mathcal{S}'}^2$ .
- ▶ **Super-set importance:**  $\bar{\sigma}_{\mathcal{S}}^2 = \sum_{\mathcal{S}' \supseteq \mathcal{S}} \sigma_{\mathcal{S}'}^2$ .
- ▶ **Shapley value** (not going into details...).

## Pick-freeze method

The following formulas are used to accelerate GSA:

$$\underline{\tau}_{\mathcal{S}}^2 = \text{Cov}(f(W), f(W_{\mathcal{S}}, W_{-\mathcal{S}})) \quad \text{and} \quad \bar{\tau}_{\mathcal{S}}^2 = \frac{1}{2} \mathbb{E}[\{f(W) - f(W'_{\mathcal{S}}, W_{-\mathcal{S}})\}^2],$$

$$\bar{\sigma}_{\mathcal{S}}^2 = 2^{-|\mathcal{S}|} \text{var}\{I_{\mathcal{S}}(W, W')\}, \quad \text{for all } \mathcal{S} \subseteq [K],$$

where  $I_{\mathcal{S}}(w, w') = \sum_{\mathcal{S}' \subseteq \mathcal{S}} (-1)^{|\mathcal{S}|-|\mathcal{S}'|} f(w'_{\mathcal{S}'}, w_{-\mathcal{S}'})$  is an interaction contrast (which forms the **anchored decomposition**, not going into details...)

## Unified perspective: explainability as a probability measure

- The **explanation algebra**  $\mathcal{E}(W)$  is the Boolean algebra generated by  $W_1, \dots, W_K$  using conjunction  $\wedge$ , disjunction  $\vee$ , and negation  $\neg$ .

### Theorem 1 in Gao and Zhao

Let  $\xi_1, \xi_2, \xi_3, \xi_4$  be any probability measures on  $\mathcal{E}(W)$  such that, for all  $\mathcal{S} \subseteq [K]$ ,

$$\xi_1((\wedge_{k \in \mathcal{S}} W_k) \wedge (\wedge_{k \notin \mathcal{S}} \neg W_k)) = \frac{\sigma_{\mathcal{S}}^2}{\text{var}(f(W))},$$

$$\xi_2(\neg(\vee_{k \notin \mathcal{S}} W_k)) = \frac{\tau_{\mathcal{S}}^2}{\text{var}(f(W))},$$

$$\xi_3(\vee_{k \in \mathcal{S}} W_k) = \frac{\bar{\tau}_{\mathcal{S}}^2}{\text{var}(f(W))},$$

$$\xi_4(\wedge_{k \in \mathcal{S}} W_k) = \frac{\bar{\sigma}_{\mathcal{S}}^2}{\text{var}(f(W))}.$$

Then  $\xi_1 = \xi_2 = \xi_3 = \xi_4$ .

## Implications

This is essentially a re-formulation of functional ANOVA, but we can use the familiar probability theory to derive many implications:

1.  $\xi(\vee_{k \in \mathcal{S}} W_k) = 1$ .
2.  $\xi(\vee_{k \in \mathcal{S}'} W_k) \geq \xi(\vee_{k \in \mathcal{S}} W_k)$  and  $\xi(\wedge_{k \in \mathcal{S}'} W_k) \leq \xi(\wedge_{k \in \mathcal{S}} W_k)$  for any  $\mathcal{S} \subseteq \mathcal{S}' \subseteq [K]$ .
3.  $\xi(W_1) + \dots + \xi(W_K) \geq \xi(\vee_{k \in [K]} W_k)$ .

## Remarks

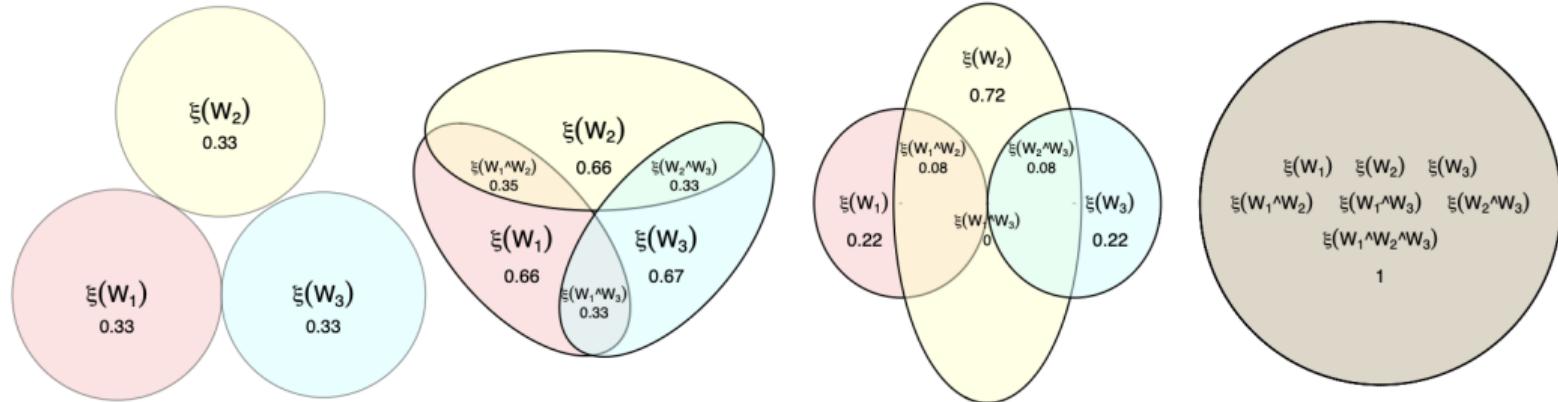
- ▶ 2.2 is what motivated Hooker's **superset-importance** (name is unhelpful...).
- ▶ 3 is the **Efron-Stein inequality**

$$\text{Var}(f(W)) \leq \sum_{k=1}^K \text{Var}(f(W) - f(W'_k, W_{-k})).$$

This can be improved by the Boole-Bonferroni inequalities.

- ▶ For practice, the important thing is that we can use **Venn's diagram** to visualize  $\xi$ .

## Examples



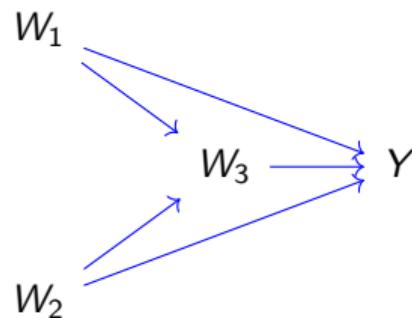
Left to right:

1. Linear:  $f(w) = w_1 + w_2 + w_3$ ;
2. Quadratic:  $f(w) = w_1 w_2 + w_1 w_3 + w_2 w_3$ ;
3. Single-layer NN (sigmoid activation):  $f(w) = (1 + e^{10w_1+10w_2})^{-1} + (1 + e^{10w_2+10w_3})^{-1}$ ;
4. Multilinear monomial:  $f(w) = w_1 w_2 w_3$ .

## Third idea

- ▶ How to extend this to dependent explanations?
- ▶ Our idea is to use a directed acyclic graph (DAG) to model their causal dependence and **define “fraternal counterfactuals” by resampling the intrinsic noise.**

### Example

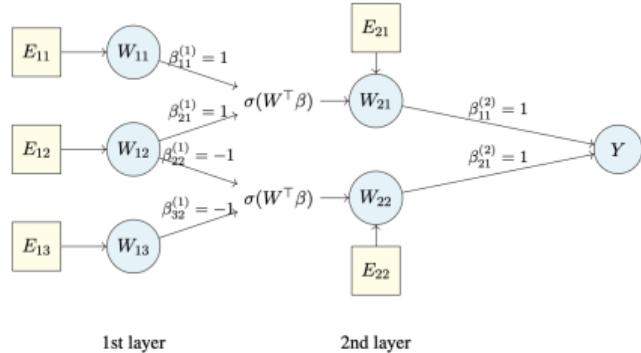


Pearl's NPSEM-IE assumes (in potential outcomes terms)

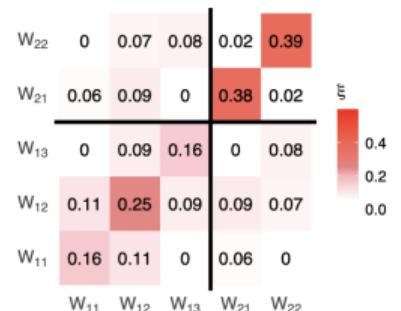
$$\begin{aligned}W_1 &= f_1(E_1), \\W_2 &= f_2(E_2), \\W_3(w_1, w_2) &= f_3(w_1, w_2, E_3), \\Y(w_1, w_2, w_3) &= f_4(w_1, w_2, w_3, E_4),\end{aligned}$$

- ▶ By recursive substitution, we can write  $Y$  as a function of the intrinsic noises  $E_1, E_2, E_3, E_4$ , which are assumed to be independent in Pearl's model.
- ▶ Janzing et al. (2024, AISTATS) suggested the same idea for causal extensions of general dependence measures (e.g. mutual information) in a more conceptual paper.

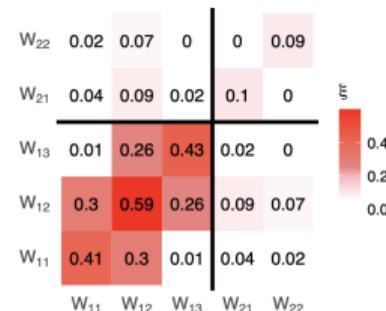
# Toy example



(a) Network structure.

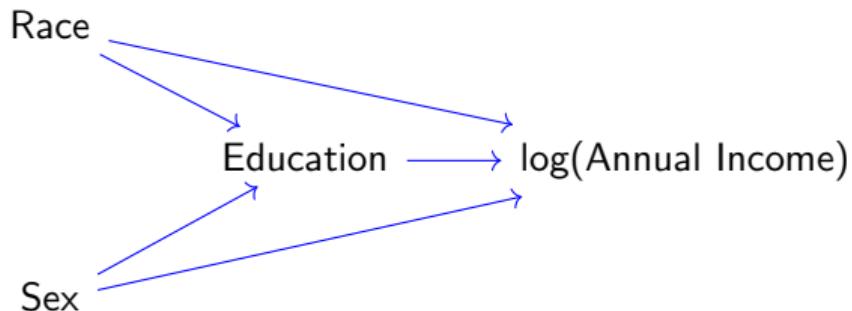


(b) Equal noise variance.



(c) Second layer noise variance decreased.

## Real data example: Explaining income inequality



- ▶ Datasets: UCI Adult (1994) and ACSIncome (2018).
- ▶ We assumed the basic potential outcomes are **comonotone** ( $\Rightarrow$  **point identification**) and sampled the counterfactuals after estimating the conditional distributions using XGBoost.

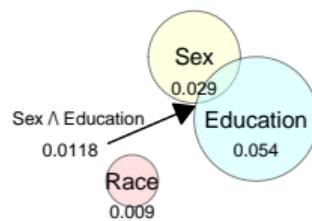
# Results

Age

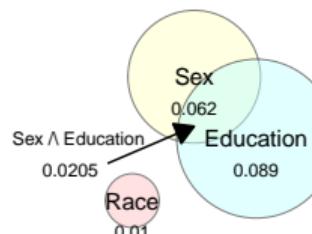
Income in 1994

Income in 2018

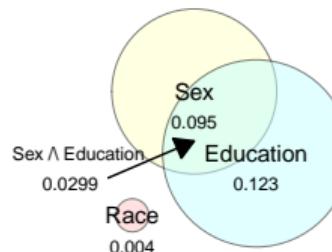
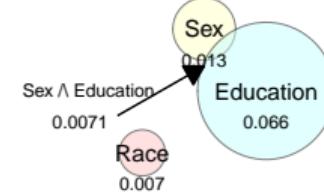
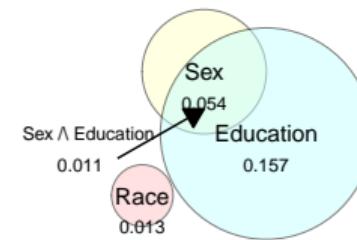
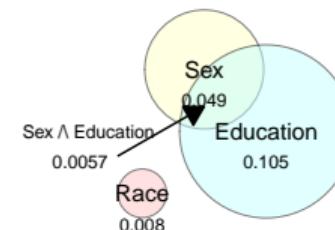
[25, 30)



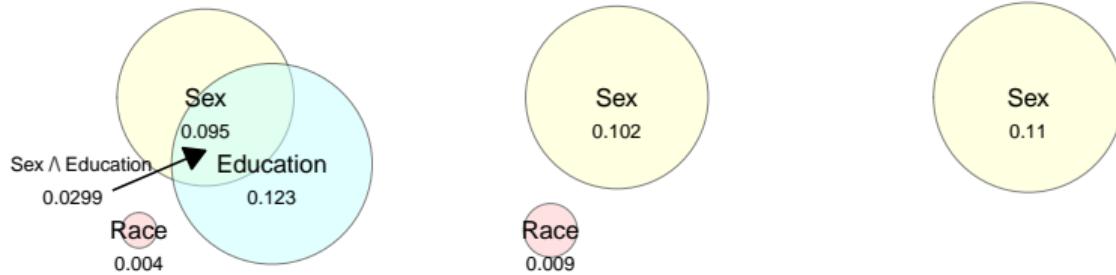
[40, 45)



Over 60



## Consistency across graphs



- ▶ Counterfactual explainability generally depends on the causal DAG but has certain consistency properties with respect to finer mechanistic explanations (see the paper for some formal results).
- ▶ In this example, Sex should have the same total explainability regardless of whether Race and Education are included.

# Conclusion

The papers have more theorems (inc. an axiomatization of  $\xi$ ), examples, and discussion.

## Why is counterfactual heritability/explainability a good idea?

### In theory

It provides a counterfactual extension to functional ANOVA that can be applied with dependent explanations and non-deterministic outputs. Has certain consistency properties.

### In practice

Uses contextual mechanistic information. Easy to visualize and interpret.

**Thank you!**