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Ongoing project, two working papers:

1. Heritability: A Counterfactual Perspective. (Joint work with Haochen Lei, Jieru Shi,
Hongyuan Cao. Available on my website.)

2. Counterfactual Explainability and Analysis of Variance. (Joint work with Zijun Gao.
Available on arXiv:2411.01625.)
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Motivation

We wanted to answer a simple question:

Is there a good notion of causal variable importance?

This question is shaped by frustration from three ends:

1. The causal inference literature is obssessed with estimating the effect of a specific
intervention (particularly the ATE = E[Y (1)− Y (0)]).

2. The global sensitivity analysis literature (e.g. functional ANOVA) assumes independent
inputs and deterministic outputs.

3. The genetics literature is dominated by using linear models to estimate heritability.



An exception
▶ Twin study is a classical method for estimating heritability. Falconer’s formula:

h2twin = 2(ρMZ − ρDZ).

ρMZ/ρDZ is the correlation of a trait (e.g. height) between monozygotic/dizygotic twins.
(The study of correlation between relatives goes back to Fisher’s classic 1918 paper.)

▶ This is often justified using the ACE model: Y = A+ C + E .

▶ Kohler et al. (2011)1 formalized this as a linear structural equation model:

1Social science methods for twins data: Integrating causality, endowments, and heritability.
Biodemography and Social Biology 2011.



Our first idea

▶ We made real progress after thinking about the “fraternal twin counterfactual”.

▶ Let Y (G ) be the potential outcome of someone with genotype G , and Y (G ′) be the
counterfactual of a hypothetical twin with genotype G ′ that is an i.i.d. copy of G .

▶ We can define counterfactual heritability as

ξ =
Var(Y (G )− Y (G ′))

2 Var(Y (G ))
=

Var(Y (G ,E )− Y (G ′,E ))

2 Var(Y (G ,E ))
. (Environment E is shared.)

= 1− Cor(Y (G ),Y (G ′)).

▶ Not hard to see that under the ACE model, ξ = h2twin/2. The factor 1/2 is because ξ only
measure heritability in one generation.

▶ In many way, this is a nice definition. A practical challenge is that, without further strong
assumptions (e.g. additivity in the ACE model), the value of ξ cannot be uniquely
determined even with infinite amount of data.



Distinguishing notions of heritability by the counterfactual comparison

▶ Geneticists talk about broad-sense heritability, narrow-sense heritability, and SNP
heritability. Often only defined under specific models and are tricky to interpret.

▶ Let X be parent genotypes and G be children genotypes.

X G Y (X ,G)

(a) Potential outcomes.

X G ′ Y (X ,G ′)

(b) Fraternal counterfactual.

X ′′ G ′′ Y (X ′′,G ′′)

(c) Unrelated counterfactual.

X G ′′ Y (X ,G ′′)

(d) Adopted counterfactual.

(b) Fraternal: “one-generation” heritability ∝ Var{Y (X ,G )− Y (X ,G ′)}.
(c) Unrelated: “infinite-generation” heritability ∝ Var{Y (X ,G )− Y (X ′,G ′′)}.
(d) Adopted: heritability ∝ Var{Y (X ,G )− Y (X ,G ′′)}.

▶ Implicit in relatedness disequilibrium regression (Young et al., 2018)2 but not always ≤ 1.

2Relatedness disequilibrium regression estimates heritability without environmental bias. Nature Genetics.



Partial identification (Theorem 2 in Lei, Shi, Cao, Zhao)
Suppose G ⊥⊥ {Y (g) : g ∈ G} | X . Then

ξ′l ≤ ξl ≤ ξ ≤ min{ξu, ξ′u},

where

ξ′l =
E[Var{E(Y | G ,X ) | X}]

Var(Y )
= 1− E(Var(Y | G ,X )) + Var(E(Y | X ))

Var(Y )
,

ξl =

E

[{
F−1
G ,X (U)− F−1

G ′,X (U)
}2

]
2Var(Y )

, ξu =

E

[{
F−1
G ,X (U)− F−1

G ′,X (1− U)
}2

]
2Var(Y )

,

ξ′u =
E(Var(Y | X ))

Var(Y )
= 1− Var(E(Y | X ))

Var(Y )
.

▶ F−1
G ,X (·) is the conditional quantile function of Y given G ,X . U ∼ Unif[0, 1].

▶ The lower bound ξl is tight. The upper bound ξu is tight when G is binary but generally
not very useful.



Comparison with other notions of heritability

▶ Let H2 =
Var(E(Y | G ))

Var(Y )
and h2 =

Var(GT θ)

Var(Y )
(θ is the least squares projection).

▶ G1,G2 ∼ Bern(0.5), X ,E1,E2 ∼ N(0, 0.25), all independent.

Y (g) = Narrow h2 Broad H2 Counterfactual ξ Lower ξ′l Tight lower ξl Upper ξ′u

β1g1 + β2g2 + E1
β2
1 + β2

2

1 + β2
1 + β2

2

β2
1 + β2

2

1 + β2
1 + β2

2

β2
1 + β2

2

1 + β2
1 + β2

2

β2
1 + β2

2

1 + β2
1 + β2

2

β2
1 + β2

2

1 + β2
1 + β2

2

1

βg1g2 + E1
2β2

4 + 3β2

3β2

4 + 3β2

3β2

4 + 3β2

3β2

4 + 3β2

3β2

4 + 3β2
1

βg1E2 + E1 0 0
β2

4 + 2β2
0

(
√

1 + β2 − 1)2

4 + 2β2
1

β1g1 + β2X + E1
β2
1

1 + β2
1 + β2

2

β2
1

1 + β2
1 + β2

2

β2
1

1 + β2
1 + β2

2

β2
1

1 + β2
1 + β2

2

β2
1

1 + β2
1 + β2

2

1 + β2
1

1 + β2
1 + β2

2

βg1X + E1 0 0
β2

4 + 2β2

β2

4 + 2β2

β2

4 + 2β2

4 + β2

4 + 2β2



Our second idea

▶ Let ξ(G ) be the counterfactual heritability above. Can similarly define ξ(E ) and ξ(G ∨E).

▶ Row 3 above shows that G receives “credit” from the interaction term G × E .

▶ Can we define interaction explainability using the inclusion-exlusion principle as

ξ(G ∧ E ) = ξ(G ) + ξ(E )− ξ(G ∨ E )?

▶ It turns out that this can be rewritten as

ξ(G ∧ E ) =
Var(Y (G ,E )− Y (G ′,E )− Y (G ,E ′) + Y (G ′,E ′))

4 Var(Y )
≥ 0.

The second-order finite difference has indeed been used to describe interaction.

▶ We wrote a conference paper based on this and shared it with Professor Art Owen. He
pointed out that this is the superset importance introduced by Giles Hooker3 with a
variance-based formula in Liu and Owen (2006)4.

3Discovering additive structure in black box functions. KDD 2004.
4Estimating mean dimensionality of analysis of variance decompositions. JASA 2006.



Related literature: Functional ANOVA
▶ Let f be a function of independent random variables W1, . . . ,WK .

▶ We can always write f (W ) as

f (W ) =
∑

S⊆[K ]

fS(WS),

where the terms can be obtained inductively by (let f∅(W ) = E[f (W )])

fS(wS) = E
[
f (W )−

∑
S′⊂S

fS′(W ) | WS = wS

]
, for S ⊆ [K ].

▶ The terms are orthogonal: E[fS(WS)fS′(WS′)] = 0 for all different S,S ′ ⊆ [K ].

▶ So we have the functional ANOVA decomposition:

var(f (W )) =
∑

S⊆[K ]

σ2
S , where σ2

S := var(fS(WS)).

▶ This goes back to Hoeffding (1948, AOMS).



Related literature: global sensitivity analysis
Some notions of variable importance for a subset S ⊆ [K ]:

▶ Sobol’s lower and upper sensitivity indices: τ 2S =
∑
S′⊆S

σ2
S′ and τ 2S =

∑
S′∩S̸=∅

σ2
S′ .

▶ Super-set importance: σ2
S =

∑
S′⊇S

σ2
S′ .

▶ Shapley value (not going into details...).

Pick-freeze method
The following formulas are used to accelerate GSA:

τ 2S = Cov(f (W ), f (WS ,W
′
−S)) and τ 2S =

1

2
E[{f (W )− f (W ′

S ,W−S)}2],

σ2
S = 2−|S|var{IS(W ,W ′)}, for all S ⊆ [K ],

where IS(w ,w ′) =
∑
S′⊆S

(−1)|S|−|S′|f (w ′
S′ ,w−S′) is an interaction contrast (which forms the

anchored decomposition, not going into details...)



Unified perspective: explainability as a probability measure

▶ The explanation algebra E(W ) is the Boolean algebra generated by W1, . . . ,WK using
conjunction ∨, disjunction ∧, and negation ¬.

Theorem 1 in Gao and Zhao
Let ξ1, ξ2, ξ3, ξ4 be any probability measures on E(W ) such that, for all S ⊆ [K ],

ξ1 ((∧k∈SWk) ∧ (∧k /∈S¬Wk)) =
σ2
S

var(f (W ))
,

ξ2 (¬(∨k ̸∈SWk)) =
τ 2S

var(f (W ))
,

ξ3(∨k∈SWk) =
τ 2S

var(f (W ))
,

ξ4(∧k∈SWk) =
σ2
S

var(f (W ))
.

Then ξ1 = ξ2 = ξ3 = ξ4.



Implications

This is essentially a re-formulation of functiona ANOVA, but we can use the familiar probability
theory to derive many implications:

1. ξ(∨k∈SWk) = 1.

2. ξ(∨k∈S′Wk) ≥ ξ(∨k∈SWk) and ξ(∧k∈S′Wk) ≤ ξ(∧k∈SWk) for any S ⊆ S ′ ⊆ [K ].

3. ξ(W1) + . . . ξ(WK ) ≥ ξ(∨k∈[K ]Wk).

Remarks
▶ 2.2 is what motivated Hooker’s superset-importance (name is unhelpful...).

▶ 3 is the Efron-Stein inequality

Var(f (W )) ≤
K∑

k=1

Var(f (W )− f (W ′
k ,W−k)).

This can be improved by the Boole-Bonferroni inequalities.

▶ For practice, the important thing is that we can use Venn’s diagram to visualize ξ.



Examples

Left to right:

1. Linear: f (w) = w1 + w2 + w3;

2. Quadratic: f (w) = w1w2 + w1w3 + w2w3;

3. Single-layer NN (sigmoid activation): f (w) = (1 + e10w1+10w2)−1 + (1 + e10w2+10w3)−1;

4. Multilinear monomial: f (w) = w1w2w3.



Third idea

▶ How to extend this to dependent explanations?

▶ Our idea is to use a directed acyclic graph (DAG) to model their causal dependence and
define “fraternal counterfactuals” by resampling the intrinsic noise.

Example

W1

W3 Y

W2

Pearl’s NPSEM-IE assumes (in potential outcomes terms)

W1 = f1(E1),

W2 = f2(E2),

W3(w1,w2) = f3(w1,w2,E3),

Y (w1,w2,w3) = f4(w1,w2,w3,E4),

▶ By recursive substitution, we can write Y as a function of the intrinsic noises
E1,E2,E3,E4, which are assumed to be independent in Pearl’s model.

▶ Janzing et al. (2024, AISTATS) suggested the same idea for causal extensions of general
dependence measures (e.g. mutual information) in a more conceptual paper.



Toy example



Real data example: Explaining income inequality

Race

Education log(Annual Income)

Sex

▶ Datasets: UCI Adult (1994) and ACSIncome (2018).

▶ We assumed the basic potential outcomes are comonotone (⇒ point identification) and
sampled the counterfactuals after estimating the conditional distributions using XGBoost.



Results
Age Income in 1994 Income in 2018

[25, 30)

Race

Sex

Education

0.009

0.029

0.054

Sex /\ Education

0.0118

Race

Sex

Education

0.007

0.013

0.066

Sex /\ Education

0.0071

[40, 45)

Race

Sex

Education

0.01

0.062

0.089

Sex /\ Education

0.0205

Race

Sex

Education

0.013

0.054

0.157

Sex /\ Education

0.011

Over 60

Race

Sex

Education

0.004

0.095

0.123

Sex /\ Education

0.0299

Race

Sex

Education

0.008

0.049

0.105

Sex /\ Education

0.0057



Consistency across graphs

Race

Sex

Education

0.004

0.095

0.123

Sex /\ Education

0.0299

Race

Sex

0.009

0.102

Sex
0.11

▶ Counterfactual explainability generally depends on the causal DAG but has certain
consistency properties with respect to finer mechanistic explanations (see the paper for
some formal results).

▶ In this example, Sex should have the same total explainability regardless of whether Race
and Education are included.



Conclusion

The papers have more theorems (inc. an axiomatization of ξ), examples, and discussion.

Why is counterfactual heritability/explainability a good idea?

In theory
It provides a counterfactual extension to functional ANOVA that can be applied with
dependent explanations and non-deterministic outputs. Has certain consistency properties.

In practice
Uses contextual mechanistic information. Easy to visualize and interpret.

Thank you!


