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What is MR?

I A year ago, I would give you this definition by Wikipedia:

In epidemiology, Mendelian randomization is a method of using
measured variation in genes of known function to examine the
causal effect of a modifiable exposure on disease in observational
studies.

I Or I would tell you

MR = Using genetic variation as instrumental variables.

I But now I think this view is too narrow.
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It all goes back to

I am joking... Not quite to the dawn of humankind, but definitely to the
dawn of modern statistics and genetics.
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Original ideas of (Mendelian) randomization

(a) Gregor Mendel (1822-1884). (b) Charles Sanders Perice (1839-1914).

(c) Sewall Wright (1889-1988). (d) Ronald Aylmer Fisher (1890-1962).



Old ideas

Gregor Mendel (1822-1884)

I Mendel conducted a series of pea plant experiments between 1856
and 1863 and established several rules of heredity (now called laws
of Mendelian inheritance).

I However, the profound significance of his work was not recognized
until 1900.

Charles Sanders Perice (1839-1914)

I With Joseph Jastrow, Peirce first introduced blinded, controlled
randomized experiments to psychology in 1884.

Sewall Wright (1889-1988)

I Wright introduced causal diagrams and path analysis in 1918.

I In 1920, he used selective inbreeding to investigate genetic causes.
In a later defense, he argued that “the universality of Mendelian
inheritance under sexual reproduction” justifies causal inference.
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Old ideas

Ronald Aylmer Fisher (1890-1962)

I Fisher first put these ideas together and formally introduced
randomization as the “reasoned basis for inference” in 1925.

I He later revealed in the 1951 Bateson Lecture that his factorial
method of experimentation derives “its structure and its name from
the simultaneous inheritance of Mendelian factors”.

I Most relevant quote:

The different genotypes possible from the same mating have been
beautifully randomised by the meiotic process. A more perfect
control of conditions is scarcely possible, than that of different
genotypes appearing in the same litter.

My current definition of MR

MR = Base causal inference on randomness in Mendelian inheritance.



Old ideas

Ronald Aylmer Fisher (1890-1962)

I Fisher first put these ideas together and formally introduced
randomization as the “reasoned basis for inference” in 1925.

I He later revealed in the 1951 Bateson Lecture that his factorial
method of experimentation derives “its structure and its name from
the simultaneous inheritance of Mendelian factors”.

I Most relevant quote:

The different genotypes possible from the same mating have been
beautifully randomised by the meiotic process. A more perfect
control of conditions is scarcely possible, than that of different
genotypes appearing in the same litter.

My current definition of MR

MR = Base causal inference on randomness in Mendelian inheritance.



Old ideas

Ronald Aylmer Fisher (1890-1962)

I Fisher first put these ideas together and formally introduced
randomization as the “reasoned basis for inference” in 1925.

I He later revealed in the 1951 Bateson Lecture that his factorial
method of experimentation derives “its structure and its name from
the simultaneous inheritance of Mendelian factors”.

I Most relevant quote:

The different genotypes possible from the same mating have been
beautifully randomised by the meiotic process. A more perfect
control of conditions is scarcely possible, than that of different
genotypes appearing in the same litter.

My current definition of MR

MR = Base causal inference on randomness in Mendelian inheritance.



Old ideas

Ronald Aylmer Fisher (1890-1962)

I Fisher first put these ideas together and formally introduced
randomization as the “reasoned basis for inference” in 1925.

I He later revealed in the 1951 Bateson Lecture that his factorial
method of experimentation derives “its structure and its name from
the simultaneous inheritance of Mendelian factors”.

I Most relevant quote:

The different genotypes possible from the same mating have been
beautifully randomised by the meiotic process. A more perfect
control of conditions is scarcely possible, than that of different
genotypes appearing in the same litter.

My current definition of MR

MR = Base causal inference on randomness in Mendelian inheritance.



Heredity as a natural experiment



Heredity as a natural experiment



More (not so old) ideas

I The current literature on (narrow sense) MR often attribute the idea
to Katan (1986), who proposed to address reverse causation in the
hypothesised effect of low serum cholesterol on cancer risk via
polymorphisms in the APOE gene.

I The same reasoning is applied to study the effectiveness of bone
marrow transplantation in treating leukaemia by Gray and Wheatley
(1991). They also coined the term “Mendelian randomization”.

I MR becomes more widely known after the seminal lecture and article
by Davey Smith and Ebrahim (2003).

I Later, it is recognized that the proposal amounts to an instrumental
variable analysis (Thomas and Conti 2004; Didelez and Sheehan
2007).

I A great talk by George Davey Smith on where MR came from:
https://www.youtube.com/watch?v=Ai5Vf74xVmQ.

https://www.youtube.com/watch?v=Ai5Vf74xVmQ
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Surging popularity of MR
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I Fueled by the availability of GWAS datasets.1

1
Data are obtained from Web of Science (https://www.webofknowledge.com/).

https://www.webofknowledge.com/
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Example: Causal effect of the “bad” cholesterol

A well understood pathway of heart disease

Basic idea
People who inherited certain alleles of rs17238484 and rs12916 have
naturally higher concentration of LDL cholesterol.
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When do genetic instruments give correct answers?

The IV diagram

Z (HMGCR variants) X (LDL-C) Y (Heart disease)

U (Unmeasured confounder)

1

2
××

3
×

Must assume 3 core IV assumptions =⇒ Partial identification

1 Relevance: Z 6⊥⊥ X .

2 Exogeneity (natural experiment): Z ⊥⊥ U.

3 Exclusion restriction: Z has no direct effect on Y .

Plus 1 extra assumption =⇒ Point identification
Could be linearity, monotonicity (Angrist, Imbens & Rubin, 1996), or
homogeneity (Hernán & Robins, 2006; Wang & Tchetgen Tchetgen,
2018).
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Basic idea: division

Z X Y

U

γ β0

The Wald estimator

Causal effect of X on Y (β0) =
Causal effect of Z on Y (Γ = γ · β0)

Causal effect of Z on X (γ)
.

Heuristic: Linear structural equation model

X = γZj + ηXU + EX ,

Y = β0X + ηYU + EY

= (β0γ)Z + f (U,EX ,EY )︸ ︷︷ ︸
independent of Z
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Example: Causal effect of LDL-cholesterol
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Main challenge of Mendelian randomization

Violation of exclusion restriction due to pleiotropy
(multiple functions of genes)

Example: HMGCR is associated with body weight2

Z (HMGCR variants)

Statin

X (LDL-C)

Body weight Type 2 diabetes

Y (Heart disease)

U (Unmeasured confounder)

I Recent studies show that pleiotropy is indeed wide-spread.3

2
Swerdlow, D. I., et al. “HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight:

evidence from genetic analysis and randomised trials.” Lancet (2015).
3

Boyle, E. et al. (2017). “An expanded view of complex traits: from polygenic to omnigenic”. Cell 169,
p1177–1186.
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Two recent ideas to deal with pleiotropy
Useful metaphor: genetic instruments are rusty.

Question 1: What would you do if you have a rusty caliper?

Today’s Answer: Find many rusty-if-not-broken calipers!!

Question 2: When is that enough?

1. < 50% of the calipers are broken (Kang et al., 2016); or

2. Rusty readings are balanced around the truth (Bowden et al., 2015).

Remaining issues

1. Both situations are common in MR.

2. Need to deal with many weak instruments.
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3-sample summary-data MR

Instrumental variables Z1:p: Independent SNPs.

Exposure variable X : Body mass index (BMI).

Outcome variable Y : Systolic blood pressure (SBP).

Data preprocessing (non-overlapping 3 GWAS)

Name Selection GWAS Exposure GWAS Outcome GWAS

Dataset BMI-FEM BMI-MAL SBP-UKBB

Source GIANT (female) GIANT (male) UK BioBank

Sample size 171977 152893 317754

GWAS lm(X ∼ Zj) lm(X ∼ Zj) lm(Y ∼ Zj)

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj σYj

Step 1 Use BMI-FEM to select significant and independent SNPs
(p-value ≤ psel = 5 × 10−8, p = 25).

Step 2 Use BMI-MAL to obtain (γ̂j , σXj)
p
j=1.

Step 3 Use SBP-UKBB to obtain (Γ̂j , σYj)
p
j=1.
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Assumption 1

Measurement error model(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
, I2p

)
.

Pre-processing warrants Assumption 1

Name Selection GWAS Exposure GWAS Outcome GWAS

GWAS lm(X ∼ Zj) lm(X ∼ Zj) lm(Y ∼ Zj)

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj = 1 σYj = 1

I Large sample size ⇒ CLT.

I (Approximate) Independence due to

1. Non-overlapping samples (in all three GWAS).
2. Independent SNPs.



Assumption 2

Linking the genetic associations
The causal effect β0 satisfies Γ ≈ β0γ. This contains two claims:

1. The relationship is approximately linear.

2. The slope β0 has a causal interpretation.

We will consider 3 versions of Assumption 2 below.



Assumptions 1 & 2.1 =⇒ Profile score (PS)

Assumption 2.1 (All accurate calipers)
The linear relation Γj = β0γj is true for every j .

I Log-likelihood of the data:

l(β, γ1, . . . , γp) = −1

2

[ p∑
j=1

(γ̂j − γj)2 +

p∑
j=1

(Γ̂j − γjβ)2
]
.

I Profile likelihood: l(β) = max
γ

l(β, γ) = −
1

2

p∑∑∑
j=1

(Γ̂j − βγ̂j )2

1 + β2
.

I This extends the limited information maximum likelihood
(LIML) (Anderson & Rubin, 1949) to the two-sample
summary-data setting.

I Can prove consistency and asymptotic normality when ‖γ‖2 →∞
(instruments are collectively strong).



Diagnostic plots show clear overdispersion

BMI-SBP Example (continued)
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I Left (p = 25, psel < 5 · 10−8): Scatter-plot of GWAS summary data.

I Right (p = 160, psel < 10−4): Q-Q plot of standardized residual:

tj(β̂) =
Γ̂j − β̂γ̂j√

1 + β̂2

.



Why did Assumption 2.1 fail? =⇒ Assumption 2.2

Heuristic: Linear structural equation model (with invalid IVs)

X =

p∑
j=1

γjZj + ηXU + EX ,

Y = β0X +

p∑∑∑
j=1

αjZj + ηYU + EY

=

p∑
j=1

(β0γj +αj︸ ︷︷ ︸
Γj

)Zj + f (U,EX ,EY )︸ ︷︷ ︸
independent of Z

Assumption 2.2 (Random rusty calipers)

Assume αj = Γj − β0γj is independent of γj and αj
i.i.d.∼ N(0, τ 2

0 ).

I Independence is crucial but non-verifiable.

I First occurred in Bowden et al. (2015) with a neat acronym—InSIDE
(Instrument Strength Independent of Direct Effect).
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A Neyman-Scott problem

MLE is not consistent under Assumption 2.2

I The profile likelihood under Assumption 2.2 is given by

l(β, τ 2) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)2

1 + β2 + τ 2
+ log(1+τ 2),

I Easy to verify

E
[ ∂
∂β

l(β0, τ
2
0 )
]

= 0.

I But the other score function is biased:

∂

∂τ 2
l(β, τ 2) =

1

2

p∑
j=1

(Γ̂j − βγ̂j)2(
1 + β2 + τ 2

)2 −
1

1 + τ 2
.



Assumptions 1 & 2.2 =⇒ Adjusted profile score (APS)

I We take the approach of McCullagh & Tibshirani (1990) to adjust
the profile score

ψ1(β, τ 2) = − ∂

∂β
l(β, τ 2),

ψ2(β, τ 2) =

p∑
j=1

{
(Γ̂j − βγ̂j)2(

1 + β2 + τ 2
)2 −

1

1+β2 + τ 2

}
.

I Under reasonable assumptions, can show any nontrivial (finite)
solution is consistent and asymptotic normal.



Diagnostic plots show influential outlier
I Same 160 SNPs (psel < 10−4).
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Left: Q-Q plot of std. residuals; Right: Influence of a single SNP.

I A clear outlier: rs11191593, with high influence.

I A GWAS catalog search: rs11191593 is strongly associated with immature
red blood cell count.4

I Slightly underdispersed (probably because β is underestimated).

4
Astle, W. et al. (2016). “The allelic landscape of human blood cell trait variation and links to common

complex disease.” Cell 167: 1415-1429.



Assumptions 1 & 2.3 =⇒ RAPS

Assumption 2.3 (Random rusty calipers & a few broken)
Most αj ∼ N(0, τ 2

0 ), but a small number of |αj | might be very large.

Robust adjusted profile score (RAPS)

I Define standardized residual: tj(β, τ
2) =

Γ̂j − βγ̂j√
1 + β2 + τ 2

.

I For some robust loss ρ (let ψ = ρ′), the RAPS equations are

ψ
(ρ)
1 (β, τ 2) =

p∑
j=1

ψ(tj ) ·
∂

∂β
tj ,

ψ
(ρ)
2 (β, τ 2) =

p∑
j=1

tj ·ψ(tj )− E[Tψ(T )]

1 + β2 + τ 2
, for T ∼ N(0, 1).

I Reduces to APS when ρ(t) = t2/2 so ψ(t) = t.

I Can establish local identifiability and asymptotic normality.
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Diagnostic plots show satisfactory fit

I Same 160 SNPs, now using RAPS with Huber’s loss function.
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I Influence of the outlier rs11191593 is limited.

More details about MR.RAPS can be found in our paper.5

5
Zhao, Q. et al. (2020). ”Statistical inference in two-sample summary-data Mendelian randomization

using robust adjusted profile score.” Annals of Statistics, 48(3):1742-1769.
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Extensions

I Improve statistical efficiency with many weak instruments.6

I Idea due to Lindsay (1985): Solve the following equation

p∑
j=1

(
Estimated quality

of instrument j

)
·
(

Estimated error
of instrument j

)
= 0.

I Quality of instrument is estimated by empirical Bayes.

I Deal with multiple exposures, overlapping samples, determining
causal direction.7

I Discover mechanistic heterogeneity.8

I Idea: Instruments can be clustered based on βj = Γj/γj . Each
cluster corresponds to a distinct biological pathway.

I More information:
http://www.statslab.cam.ac.uk/~qz280/project/iv-mr/.

6
Zhao, Q. et al. (2019). “Powerful three-sample genome-wide design and robust statistical inference in

summary-data Mendelian randomization”. International Journal of Epidemiology, 48(5):1478-1492.
7
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Are genes trully randomized?

Z (HMGCR variants) X (LDL-C) Y (Heart disease)

U (Unmeasured confounder)

1

2
××

3
×

Recall the core IV assumptions

1 Relevance: Z 6⊥⊥ X .

2 Exogeneity (natural experiment): Z ⊥⊥ U.

3 Exclusion restriction: Z has no direct effect on Y .

Genes are Mendelian randomized, but GWAS sampling is not!
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Within-family MR

I Davey Smith and Ebrahim (2003): MR is best justified in
parent-offspring design.

I But this has not been widely used due to lack of data.

Model-based
I Brumpton et al. (2020): dynastic effect, assortative mating, and

population stratification can strongly bias MR.

I Add family fixed effects to the linear structural equations.

Almost exact inference
I Base inference exactly on the randomness in inheritance.

I Ideas are drawn from:

1. Randomization inference for experiments (Fisher) and observational
data (Rubin, Rosenbaum).

2. Randomization tests to find causal variants (Spielman, McGinnis, &
Ewens, 1993; Bates et al., 2020).
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Mendelian randomization: Two stages

Genetic recombination in meiosis

I Meiosis is a special type of cell division to produce gametes.

Fertilization
I Fusion of gametes (sperm and egg cell) is completely at random.

I However, mating is usually at random.
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Genetic trio studies

Data: Genotypes and phenotypes of mother, father, and offspring.

Notation for genetic data

I M/F/Z : mother/father/offspring.

I Superscript f /m: Haplotypes inherited from father/mother.

I So M f
j ∈ {0, 1} is mother’s haplotype at locus j inherited from her

father.

I No superscript means genotypes: Zj = Z f
j + Zm

j ∈ {0, 1, 2}.

Key ideas

I Spielman et al. (1993): Conditional on parental haplotypes.

I Bates. et al (2020): Use existing models for meiosis to obtain the
conditional distribution of Z given Mm,M f ,Fm,F f :

Zm
j = M

Um
j

j , Z f
j = F

U f
j

j .

I Haldane (1919): Ancestry indicator U follows a Poisson process.
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Ongoing work

I More general results for sufficient adjustment sets.

I Simplification by the Markov structure on U (Haldane, 1919; Bates
et al., 2020).

I Randomization test for the sharp null H0 : Y (1)− Y (0) = β.
I Key idea: Under H0, Y (0) = Y − βX .
I This is “almost exact” (exact if model on U is correct).

I Constructing powerful test statistics by incorporating the propensity
score (Rosenbaum & Rubin, 1983).



Take-home messages

I Mendelian randomization dates back to the dawn of modern
statistics and genetics.

I New life of an old idea:

MR = Base causal inference on randomness in Mendelian inheritance.

I Challenges remain:

1. Pleiotropy;
2. Computation;
3. Incomplete pedigrees.
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