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The role of randomization tests became obscure

Fisher (1935): To substitute t-test when normality is not true and to restore randomization as “the
physical basis of the validity of the test”.

Extension by Pitman, Welch, Wilcoxon, Kempthorne, among many others.

“Nonparametric tests”; Randomization tests = permutation tests.

In Wikipedia, described on a page about “Resampling (statistics)” together with bootstrap,
subsampling, and cross-validation.

Cambridge dictionary of statistics: “procedures for determining statistical significance directly from
data without recourse to some particular sampling distribution”.
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Rejuvenated interest in randomization tests

Testing genomic associations;

Testing conditional independence;

Conformal inference for machine learning methods;

Analysis of complex experimental designs;

Evidence factors in observational studies;

Causal inference with interference.

Advantage: randomization tests are distribution-free, so no need to derive the sampling distribution
analytically.
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Goals
This work tries to provide a unified framework that incorporates recent (or not recent) ideas

Explicit conditioning on the counterfactual or potential outcomes of the experiment;

Algebraic structure of permutation tests;

Randomization model versus population model;

Post-experiment conditioning and randomization;

Using exchangeability to obtain distribution-free predictive intervals.

Main thesis
Randomization inference should be precisely understood as what its name suggests: it is a mode of
statistical inference that is based on randomization and nothing more than randomization.

A trichotomy of randomness in data
1 Randomness in nature (counterfactual variables);

2 Randomness introduced by the experimenter (drawing balls, using a pseudo-RNG, etc.);

3 Randomness introduced by the analyst (optional).
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Setup

N “experiment” “units”; “treatment” Z ∈ Z is randomized.

Example: Z = (Z1, . . . ,ZN) collects a common attribute of the units. But this is not required.

Potential or counterfactual “outcomes”: (Y1(z), . . . ,YN(z) | z ∈ Z). Observed or factual
outcome: Yi = Yi (Z ).

No interference/SUTVA is treated as part of the null hypothesis instead of an assumption.

Vector notation: Y (z) = (Y1(z), . . . ,YN(z)) ∈ Y ⊆ Rn and Y = (Y1, . . . ,YN) ∈ Y.

Let W = (Y (z) : z ∈ Z) ∈ W be the potential outcomes schedule.1 W contains all functions
from Z to Y.

Observed covariates X are always conditioned on.

Assumption 1: Randomized experiment

We assume Z ⊥⊥W and the density function π(·) of Z is known and positive everywhere.

1This terminology is due to David Freedman.
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Null hypothesis

A typical (partially) sharp null hypothesis assumes that certain potential outcomes are equal or related.

Example 1: no interference H0 : Yi (z) = Yi (z∗) whenever zi = z∗i ;

Example 2: constant treatment effect τ (on top of no interference) H0 : Yi (1)− Yi (0) = τ .

Definition

A (partially) sharp null hypothesis H defines an imputability mapping

H : Z × Z → 2[N],

(z , z∗) 7→ H(z , z∗),

where H(z , z∗) is the largest subset of [N] = {1, . . . ,N} such that YH(z,z∗)(z∗) is imputable from
Y (z) under H.

Fully sharp means that H(z , z∗) ≡ [N]. Otherwise partially sharp.
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Conditional randomization tests for discrete treatments
A conditional randomization test (CRT) for a discrete treatment Z is defined by

1 A partition R = {Sm}Mm=1 of Z; and

2 A collection of test statistics (Tm(·, ·))Mm=1, where Tm : Z ×W → R.

Importance of partitioning

Any partition R defines an equivalent relation ≡R (and vice versa).

Let Sz denote the equivalence class containing z .

For any z ∈ Z and z∗ ∈ Sz , we have z ∈ Sz , Sz∗ = Sz and Tz∗(·, ·) = Tz(·, ·).

Definition: p-value

P(Z ,W ) = P∗{TZ (Z∗,W ) ≤ TZ (Z ,W ) | Z∗ ∈ SZ ,W }
= P∗{TZ (Z∗,W ) ≤ TZ (Z ,W ) | Z∗ ≡R Z ,W }.

where Z∗ is an independent copy of Z conditional on W .
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Properties of CRT

Computable?

Tz(·, ·) is said to be imputable under H if for all z∗ ∈ Sz , Tz(z∗,W ) only depends on W through
its imputable part YH(z,z∗)(z∗).

Lemma: Suppose Assumption 1 is satisfied and Tz(·, ·) is imputable for all z ∈ Z. Then P(Z ,W )
only depends on Z and Y .

In this case we say the p-value is computable under H and denote it by P(Z ,Y ).

Valid?

Theorem: P {P(Z ,W ) ≤ α | Z ∈ Sz ,W } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Moreover, given Assumption 1 and a partially sharp null H, if P(Z ,W ) is computable, then
P {P(Z ,Y ) ≤ α} ≤ α, ∀α ∈ [0, 1].

Proof: Apply probability integral transform.

Remark: Validity does not depend on computability.
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How to construct a CRT? I

Method 1: Condition on a function of the treatment (Hennessy et al. 2016)

Condition on g(Z ) or equivalently the set Sz = {z∗ ∈ Z : g(z∗) = g(z)}.

Method 2: Imputable intersection

Challenge: In many problems, Tz(z∗,W ) = Tz(z∗,Y (z∗)). However, only the sub-vector
YH(z,z∗)(z∗) is imputable under H.

Natural solution: Use test statistics Tm(z ,YHm(z)) where Hm =
⋂

z,z∗∈Sm

H(z , z∗).

Tradeoff: Coarser R =⇒ larger subset of treatment assignments but smaller subset of experimental
units.

Problem becomes: How to choose R? Difficult with complex H(z , z∗).
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How to construct a CRT? II

Method 3: Focal units (Aronow 2012; Athey et al. 2018)

Suppose H has a level-set structure (Athey et al. 2018) in the sense that it exists exposure
functions Di : Z → D, such that (Manski 2013; Ugander et al. 2013; Aronow and Samii 2017)

H(z , z∗) = {i ∈ [N] : Di (z) = Di (z∗)}.

Consequently, H(z , z∗) is symmetric, and

Hm =
⋂

z,z∗∈Sm

H(z , z∗) = {i ∈ [N] : Di (z) is a constant over z ∈ Sm} .

The other direction is often easier: choose R such that Hm = I (“focal units”) for all m.

Specifically, the conditioning set is

Sz = {z∗ ∈ Z : DI(z∗) = DI(z)},

where DI(·) = (Di (·) : i ∈ I). Easy to verify that this is a partition.
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How to construct a CRT? III

Method 4: Bipartite graph representation (Puelz et al. 2019)

Suppose the imputability mapping admits the form (suppose 0 ∈ D)

H(z , z∗) = {i ∈ [N] : Di (z) = Di (z∗) = 0}.

Then
Hm =

⋂
z,z∗∈Sm

H(z , z∗) = {i ∈ [N] : Di (z) = 0,∀z ∈ Sm}.

This can be represented as a bipartite null exposure graph with vertex set V = [N] ∪ Z and edge
set E = {(i , z) ∈ [N]×Z : Di (z) = 0}.
Key insight in Puelz et al. (2019): Hm ∪ Sm forms a biclique (complete bipartite subgraph).

So the problem is reduced to finding a collection of large bicliques Hm ∪ Sm in the graph such that
{Sm}Mm=1 partitions Z.
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How to construct a CRT? IV

More general viewpoint

Condition on the σ-algebra: G = σ ({Z ∈ Sm}∞m=1).

This allows us to consider continuous treatments and more complicated conditioning events.

Method 5: Randomized CRTs (Basse et al. 2019)

Motivation: We may have several ways to partition Z (e.g. multiple sets of focal units).

Key idea: condition on G = g(Z ,V ) where V is randomized by the analyst, so V ⊥⊥ Z ⊥⊥W .

Post-randomization and conditioning change the density of Z :

π(z | g) =
P(G = g | Z = z)π(z)∫
P(G = g | Z = z)π(z)dz

.

The randomized p-value is defined as

P(Z ,W ;G ) = P∗ {TG (Z∗,W ) ≤ TG (Z ,W ) | G ,W } .
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Setup

K conditional randomization tests, defined by partitions R(k) =
{
S(k)
m

}∞
m=1

and test statistics

(T (k)
m (·, ·))∞m=1, for K possibly different hypotheses H(k), k = 1, . . . ,K .

Corresponding p-values: P(1)(Z ,W ), . . . ,P(K)(Z ,W ).

For any subset of tests J ⊆ [K ], we define the union, refinement and coarsening of the
conditioning sets as

RJ =
⋃
k∈J

R(k), RJ =

⋂
j∈J

S(j)
z : z ∈ Z

 , and RJ =

⋃
j∈J

S(j)
z : z ∈ Z

 .

Generated σ-algebras: G(k), GJ , GJ , GJ .
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Main theorem

Suppose the following two conditions are satisfied for all j , k ∈ [K ], j 6= k:

R{j,k} ⊆ R{j,k}, (1)

T
(j)
Z (Z ,W ) ⊥⊥ T

(k)
Z (Z ,W ) | G{j,k},W . (2)

Then we have

P
{
P(1)(Z ,W ) ≤ α(1), . . . ,P(K)(Z ,W ) ≤ α(K) | G[K ]

,W
}
≤

K∏
k=1

α(k), ∀α(1), . . . , α(K) ∈ [0, 1].

Moreover, given Assumption 1 and the null hypotheses H(1), . . . ,H(K), if the CRTs are computable, then

P
{
P(1)(Z ,Y ) ≤ α(1), . . . ,P(K)(Z ,Y ) ≤ α(K)

}
≤

K∏
k=1

α(k), ∀α(1), . . . , α(K) ∈ [0, 1].
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A simple case: K = 2

What does the theorem say?

Condition (1) assumes a nested structure between the partitions:

S(1)
z ∩ S(2)

z = S(1)
z or S(2)

z for all z ∈ Z.

It allows S(1)
z ⊆ S(2)

z for some z and S(1)
z∗ ⊇ S(2)

z∗ for another z∗ 6= z .

Condition (2) assumes the conditional independence

T (1)
z (Z ,W ) ⊥⊥ T (2)

z (Z ,W ) | Z ∈ S(1)
z ∩ S(2)

z ,W , ∀z ∈ Z.

The main conclusion of the Theorem is that

P
{
P(1)(Z ,W ) ≤ α(1),P(2)(Z ,W ) ≤ α2 | Z ∈ S(1)

z ∪ S(2)
z ,W

}
≤ α(1)α(2)

for all z ∈ Z and α(1), α(2) ∈ [0, 1].
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A simple case: K = 2

Proof under strong conditions

Consider a stronger version of condition (1): S(1)
z ⊇ S(2)

z for all z ∈ Z. Then G(1) ⊆ G(2).

Furthermore, suppose T (1)(z ,w) only depends on z through the indicators 1{z ∈ S(2)
m },m = 1, . . . .

In other words, T (1)(Z ,w) is G(2)-measurable, which implies the conditional independence (2).

Let ψ(k)(Z ,W ) = 1{P(k)(Z ,W ) ≤ α(k)}, k = 1, 2 be the test functions.

Then by the law of iterated expectation, for any w ∈ W,

P
{
P(1)(Z ,w) ≤ α(1),P(2)(Z ,w) ≤ α(2) | G(1)

}
= E

{
ψ(1)(Z ,w)ψ(2)(Z ,w) | G(1)

}
= E

{
E
[
ψ(1)(Z ,w)ψ(2)(Z ,w) | G(2)

]
| G(1)

}
= E

{
ψ(1)(Z ,w)E

[
ψ(2)(Z ,w) | G(2)

]
| G(1)

}
≤ α(2)E

{
ψ(1)(Z ,w) | G(1)

}
≤ α(1)α(2).
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General case: Main ideas of the proof

1 The conditioning events R[K ] can be partially ordered by set inclusion. This induces a directed
acyclic graph (so-called Hasse diagram): S → S ′ if S ⊃ S ′ and there is no other S ′′ such that
S ⊃ S ′′ ⊃ S ′.

2 Let K(S) = {k ∈ [K ] : S ∈ R(k)}. The nested events condition (1) implies certain properties of the
Hasse diagram. For example, {K(an(S)),K(S),K(de(S))} forms a partition of [K ].

3 The conditions (1) and (2) imply that for any S ∈ R[K ], j ∈ K(S), and k ∈ K(an(S) ∪ {S}) \ {j},

P(j)(Z ,W ) ⊥⊥ P(k)(Z ,W ) | Z ∈ S,W .

4 Using this and induction, we can show a stronger result than the main theorem: for any S ∈ R[K ],

P
{
P(1)(Z ,W ) ≤ α(k), . . . ,P(K)(Z ,W ) ≤ α(K) | Z ∈ S,W

}
≤ P

{
P(k)(Z ,W ) ≤ α(k) for k ∈ K(an(S)) | Z ∈ S,W

} ∏
j∈K({S}∪de(S))

αj .
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How to construct ”nearly independent” CRTs? I

Method 1: Independent treatment variables

Proposition: the conditions (1) and (2) are satisfied if

1 The tests are unconditional: S(k)
z = Z for all k and z ; and

2 T (k)(Z ,W ) only depends on Z through Z (k) = h(k)(Z ) for all k and Z (j) ⊥⊥ Z (k) for all j 6= k.

This can be easily extended to the case where R(1) = · · · = R(K).

Method 2: Sequential CRTs

Proposition: the conditions (1) and (2) are satisfied if

1 S(1)
z ⊇ · · · ⊇ S(K)

z for all z ∈ Z; and

2 T (j)(z ,W ) does not depend on z when z ∈ S(k)
m for all m and k > j .
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How to construct ”nearly independent” CRTs? II

Method 3: Post-randomization (Bates et al. 2020)

Suppose the test statistics are T (k)(Z (k),W ) and there exists a U such that

Z (1) ⊥⊥ · · · ⊥⊥ Z (K) | U.

U is unobserved but the joint distribution of (U,Z ) is known.

The key idea of Bates et al. (2020) is that we can construct a post-randomization G = g(Z ,V )

such that G
d
= U | Z . Then

Z (1) ⊥⊥ · · · ⊥⊥ Z (K) | G .

We can then condition on G (this changes the distribution of Z ) and use Method 1.

This might seem magical at first, but notice that the power of the test will depend on how G
resembles U.
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Permutation tests for treatment effect

Equivalent to a CRT that conditions on the order statistics of Z . Equivalently,

Sz = {(zσ(1), . . . , zσ(N)) : σ is a permutation of [N]}.

What if we condition on more events? Efron et al. (2001) consider a “balanced” permutation test

Sz = {z∗ : z∗ is a permutation of z and zT z∗ = N/4},

when Z is randomized uniformly over Z = {z ∈ {0, 1}N : zT1 = N/2}.
A counterexample with inflated type I error is provided by Southworth et al. (2009), who argued
that the problem is that Sz is not a group under balanced permutations (nor is Sz ∪ {z}).

In view of our theory, the problem is that this violates the invariance: Sz∗ = Sz whenever z∗ ∈ Sz .
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Permutation tests for independence

Suppose we observed i.i.d. variables (Z1,Y1), . . . , (Zn,Yn) and would like to test H0 : Z1 ⊥⊥ Y1.

In classical treatment, the key is to establish the permutation principle under the null:

(Z1, . . . ,ZN ,Y1, . . . ,YN)
d
= (Zσ(1), . . . ,Zσ(N),Y1, . . . ,YN) for all permutations σ of [N].

Lehmann (1975) refers to this as the population model and the causal inference problem as the
randomization model. Ernst (2004) argues that the reasoning behind these two models is
fundamentally different.

Two sides of the same coin

CRT is valid if Assumption 1 (randomized experiment) and H are both satisfied.

In causal inference, Assumption 1 is given, so CRT tests H.

In independence testing, suppose we “define” the potential outcomes as Y (z) = Y for all z ∈ Z.
The “causal” null hypothesis H0 : Y (z) = Y (z∗),∀z , z∗ ∈ Z is automatically satisfied, so CRT
tests Assumption 1 which in this case says Z ⊥⊥ Y .
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Randomization tests for conditional independence

Observing i.i.d. (Z1,Y1,X1), . . . , (Zn,Yn,Xn), we would like to test Z1 ⊥⊥ Y1 | X1.

Randomization tests (as introduced) can be easily applied by treating X = (X1, . . . ,Xn).

What should we call this, randomization tests or conditional randomization tests? We prefer the
former, but some others have chosen the latter (Candès et al. 2018; Berrett et al. 2020).
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Evidence factors for observational studies
In sensitivity analysis for unmeasured confounders, it is common to use the upper bounding p-value

P(Z ,Y ) = sup
π∈Π

P(Z ,Y ;π)

where Π contains the set of allowed distributions of Z .

Rosenbaum derives analytic forms of P(Z ,Y ) for signed-score tests under his Γ-sensitivity model.

Rosenbaum (2017) demonstrates that when there are multiple CRTs, the upper-bounding p-value
are “nearly independent” when the permutation groups have a knit product structure.

We think the key insight lies in the construction of sequential CRTs. Specifically, the conditions
below does not depend on the distribution of Z , so P(1)(Z ,Y ;π), . . . ,P(K)(Z ,Y ;π) are “nearly
independent” for all π.

Recall the Proposition for sequential CRTs

The conditions (1) and (2) are satisfied if

1 S(1)
z ⊇ · · · ⊇ S(K)

z for all z ∈ Z; and

2 T (j)(z ,W ) does not depend on z when z ∈ S(k)
m for all m and k > j .
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Conformal prediction
Suppose (X1,Y1), . . . , (XN ,YN) are exchangeable and YN is unobserved.

Would like to construct a prediction interval Ĉ(XN) such that

P(YN ∈ Ĉ(XN)) ≤ 1− α.

Key idea: invert the permutation test for H0 : YN = y .

For example, we may fit any regression model to (X1,Y1), . . . , (XN−1,YN−1), (XN , y) and let the
p-value be the percentile of the residual for (XN , y). Small p-value means (XN , y) “conforms”
poorly with other observations.

Our main point: this is a randomization test by viewing random sampling as a kind of
randomization.

Suppose there is a (potentially infinite) super-population (Xi ,Yi )i∈I . “Treatment” Z : [N]→ I
selects which units are observed and the order. “Potential outcomes” are given by

Y (z) =
(
(Xz(1),Yz(1)), . . . , (Xz(N),Yz(N))

)
.

We can use a CRT for H0 : YN = y by conditioning on the unordered Z . This can be extended to
allow “covariate shift” (i.e. the distribution of Z (N) differs from the rest) (Tibshirani et al. 2019).
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Discussion

Main thesis: Randomization inference is simple—It is based on randomization and nothing more
than randomization.

This is made precise by trichotomizing the randomness into those introduced by nature,
experimenter, and analyst.

To appreciate the flexibility of CRTs, the paper has another example about testing lagged
treatment effect in stepped-wedge randomized trials.

To understand clever proposals, sometimes we need to redefine “potential outcomes” or
“randomization”. Or perhaps this is the responsibility of the methodologists?

The postulate of randomness thus resolves itself into the question, ‘Of what population is this
a random sample?’ which must frequently be asked by every practical statistician.

—Fisher “On the Mathematical Foundations of Theoretical Statistics” (1922)
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