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Sensitivity Analysis

» Observational studies = Treatment is not randomized.

» The core but unverifiable assumption: treatment ignorability,
aka no unmeasured confounding. (Fisher's criticism of
“smoking causes lung cancer”.)

» Sensitivity analysis: what if this assumption is violated (in a
controlled way captured by one or a few sensitivity
parameters)?

» There is a long list of approaches of sensitivity analysis. | will
consider Rosenbaum’s sensitivity analysis for a pair-matched
study. (Cornfield's response to Fisher.)
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What does a sensitivity analysis look like?

v

each matched pair,

1/T < odds ratio(1st unit treated, 2nd unit treated) <T.

» [ =1 corresponds to ignorable treatment. Can test the sharp

Sensitivity parameter [ > 1 in Rosenbaum’s model: within

null hypothesis by e.g. Wilcoxon's signed rank test.

» When I > 1: Rosenbaum obtained lower and upper bounds of
the p-value of any signed score test.
> An example:
probe set sensitivity analysis sensitivity value
r 1 2 3 5 7 10 | 1.84 2.44
37583t | 5 000 002 013 060 1.00 1.00 | 0.01 0.05
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Sensitivity value

Definition (“Truncated” sensitivity value)

r;*:inf{rz 1|ﬁ|—>a}.

Interpretation: If the unmasured confounder changes the
within-pair odds ratio of treatment by more than I'.", then the
sharp null hypothesis could be not significant.

» 77 > 1iff p; = p1 < . What if the null hypothesis is not
significant even when [ =17

» Mathematically, pr can be defined for 0 < T < 1 as well. It is

more convenient to work with '’ that takes the infimum over
Ir>0.
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Some motivations |

» Sensitivity value is a concise summary of the study’s
“sensitivity to measured confounding”.

» A value vs. A table.

> Analogy: p-value for a randomized experiment vs. sensitivity
value for an observational study.
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Some motivations |l

» Asymptotics of sensitivity value <> Power of sensitivity
analysis:
P(I, > ) = P(pr < a).
» The “favorable situation”: no unmeasured confounding and
nonzero causal effect.

» Fixed I' asymptotics: Rosenbaum [2015] considered the
Bahadur efficiency of a sensitivity analysis by studying how
fast pr — 0.

» Fixed o asymptotics: examine the distribution of I7,.
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Background

» A general and common strategy is to use the signed score test
(Y; is the within-pair difference)

r_ Zimsen(Yi)ai .:¢<rank(lyfl))
21{:1qi Y ] /—|—1 .

» Rosenbaum found bounding variable Tr in the sense that
P(T > t|F) < P(Tr > t|F) = pr,
» CLT for Tr:

Tr—-T/1+T 11 g
Vi /(1+T) 4 N(0,1), o2 > i—19;

q,! _ 2°
r/(1+T)%02, (I @)
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CLT for sensitivity value

Theorem (Z, 2017)

Suppose Y; "% F and V1 - (T —ur)/oF < N(0, 1), the transformed
sensitivity value k%, =T /(1 4+ T%) for fixed 0 < o < 1 satisfies

VI [HZ - MF] & N( —0g® M)V pr(l - pr), 0;2r>~

C(UF, Og) /1 {HF

QF/ﬁ

K*
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Design sensitivity

ClHe, Og) /1 HF

QF/ﬁ

K*

» Rosenbaum [2004] noticed a phase transition at pf:
» If kK > uF, sensitivity analysis has no asymptotic power.
» If kK < g, power — 1 as | — 0.
» He calls the value pg/(1 — ur) “design sensitivity”.
» The CLT for sensitivity value separates the contribution by
design and by obtaining more sample.
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Design sensitivity
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Design sensitivity
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Implication: select statistics

» The goal: maximize I}, stochastically.

VI [k - r] 4 N( N ) gz> |

» The expecation of [}, is determined by two quantities:

1. purp =< w,zgp >;2
2. oq = |Yl3/11¥15-

» Tradeoff: want to maximize ur without making o4 too large.

» Manuscript has detailed comparison of different choices of
under different F.

» Practically, can estimate g by sample splitting and then
decide.
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Implication: select subgroups

» Hsu, Small, and Rosenbaum [2013] noticed a dilemma.

Suppose there are two subgroups with unequal ur.
Heuristically,
» If | — o0, should use the subgroup with larger pr.
» If | is small, should combine the samples.
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Implication: select subgroups

» Hsu, Small, and Rosenbaum [2013] noticed a dilemma.
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critical sample size

Suppose there are two subgroups with unequal ur.
Heuristically,

» If | — o0, should use the subgroup with larger pr.

» If | is small, should combine the samples.

» Can use the asymptotics to compute the critical sample size.
» For example, for Noether's statistics ¢(u) = 1 (ratio of
sample sizes below: 1:1 and 3:1).

prefer group 2

prefer both

prefer group 1

critical sample size

10000 -

prefer group 2

prefer both

prefer group 1
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0.0
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0.2
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Implication: select hypotheses

» One treatment and hundreds of outcomes that are susceptible

to unmeasured confounding.

» Can use sensitivity value to screen causal hypotheses.

» The manuscript has an application to genomics screening.

Sample quantile of k*

» Zhao, Small, and Rosenbaum [2017] proposed a related
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