On Sensitivity Value of Pair-Matched Observational Studies

Qingyuan Zhao

Department of Statistics, University of Pennsylvania

August 2nd, JSM 2017

Manuscript and slides are available at http://www-stat.wharton.upenn.edu/~qyzhao/.

Sensitivity Analysis

- Observational studies = Treatment is not randomized.
- ► The core but unverifiable assumption: treatment ignorability, aka no unmeasured confounding. (Fisher's criticism of "smoking causes lung cancer".)
- Sensitivity analysis: what if this assumption is violated (in a controlled way captured by one or a few sensitivity parameters)?
- ► There is a long list of approaches of sensitivity analysis. I will consider Rosenbaum's sensitivity analysis for a pair-matched study. (Cornfield's response to Fisher.)

What does a sensitivity analysis look like?

• Sensitivity parameter $\Gamma \geq 1$ in Rosenbaum's model: within each matched pair,

 $1/\Gamma \le \text{odds ratio}(1\text{st unit treated}, 2\text{nd unit treated}) \le \Gamma.$

- ho $\Gamma = 1$ corresponds to ignorable treatment. Can test the sharp null hypothesis by e.g. Wilcoxon's signed rank test.
- When Γ > 1: Rosenbaum obtained lower and upper bounds of the p-value of any signed score test.
- An example:

probe set	sensitivity analysis							sensitivity value	
37583_at	Γ	1	2	3	5	7	10	1.84	2.44
	\overline{p}_{Γ}	0.00	0.02	0.13	0.60	1.00	1.00	0.01	0.05

Sensitivity value

Definition ("Truncated" sensitivity value)

$$\Gamma_{\alpha}^{**} = \inf \Big\{ \Gamma \ge 1 \, | \, \overline{p}_{\Gamma} > \alpha \Big\}.$$

Interpretation: If the unmasured confounder changes the within-pair odds ratio of treatment by more than Γ_{α}^{**} , then the sharp null hypothesis could be not significant.

- ▶ $\Gamma_{\alpha}^{**} > 1$ iff $\overline{p}_1 = p_1 \le \alpha$. What if the null hypothesis is not significant even when $\Gamma = 1$?
- ▶ Mathematically, \overline{p}_{Γ} can be defined for $0 < \Gamma < 1$ as well. It is more convenient to work with Γ_{α}^* that takes the infimum over $\Gamma > 0$.

Some motivations I

- Sensitivity value is a concise summary of the study's "sensitivity to measured confounding".
- A value vs. A table.
- ▶ Analogy: *p*-value for a randomized experiment vs. sensitivity value for an observational study.

Some motivations II

▶ Asymptotics of sensitivity value ↔ Power of sensitivity analysis:

$$P(\Gamma_{\alpha}^* \geq \Gamma) = P(\overline{p}_{\Gamma} \leq \alpha).$$

- The "favorable situation": no unmeasured confounding and nonzero causal effect.
- ▶ Fixed Γ asymptotics: Rosenbaum [2015] considered the Bahadur efficiency of a sensitivity analysis by studying how fast $\overline{p}_{\Gamma} \rightarrow 0$.
- ▶ Fixed α asymptotics: examine the distribution of Γ_{α}^* .

Background

▶ A general and common strategy is to use the signed score test (Y_i is the within-pair difference)

$$T = \frac{\sum_{i=1}^{I} \operatorname{sgn}(Y_i) q_i}{\sum_{i=1}^{I} q_i}, \ q_i = \psi\left(\frac{\operatorname{rank}(|Y_i|)}{I+1}\right).$$

Problem Rosenbaum found bounding variable \bar{T}_{Γ} in the sense that

$$P(T \ge t|\mathcal{F}) \le P(\overline{T}_{\Gamma} \ge t|\mathcal{F}) = \overline{p}_{\Gamma},$$

▶ CLT for \bar{T}_{Γ} :

$$\sqrt{I} \cdot \frac{\overline{T}_{\Gamma} - \Gamma/(1+\Gamma)}{\sqrt{\Gamma/(1+\Gamma)^2 \sigma_{q,I}^2}} \xrightarrow{d} N(0,1), \ \sigma_{q,I}^2 = \frac{I^{-1} \sum_{i=1}^{I} q_i^2}{\left(I^{-1} \sum_{i=1}^{I} q_i\right)^2}.$$

CLT for sensitivity value

Theorem (Z, 2017)

Suppose $Y_i \overset{i.i.d.}{\sim} F$ and $\sqrt{I} \cdot (T - \mu_F)/\sigma_F \overset{d}{\rightarrow} \mathrm{N}(0,1)$, the transformed sensitivity value $\kappa_{\alpha}^* = \Gamma_{\alpha}^*/(1 + \Gamma_{\alpha}^*)$ for fixed $0 < \alpha < 1$ satisfies

$$\sqrt{I} \cdot \left[\kappa_{\alpha}^* - \mu_F \right] \stackrel{d}{\to} \mathcal{N} \left(-\sigma_q \bar{\Phi}^{-1}(\alpha) \sqrt{\mu_F (1 - \mu_F)}, \ \sigma_F^2 \right).$$

Design sensitivity

- ▶ Rosenbaum [2004] noticed a phase transition at μ_F :
 - If $\kappa > \mu_F$, sensitivity analysis has no asymptotic power.
 - ▶ If $\kappa < \mu_F$, power $\to 1$ as $I \to \infty$.
 - ▶ He calls the value $\mu_F/(1-\mu_F)$ "design sensitivity".
- ► The CLT for sensitivity value separates the contribution by design and by obtaining more sample.

Design sensitivity

- ▶ Rosenbaum [2004] noticed a phase transition at μ_F :
 - If $\kappa > \mu_F$, sensitivity analysis has no asymptotic power.
 - ▶ If $\kappa < \mu_F$, power $\to 1$ as $I \to \infty$.
 - ▶ He calls the value $\mu_F/(1-\mu_F)$ "design sensitivity".
- ► The CLT for sensitivity value separates the contribution by design and by obtaining more sample.

Design sensitivity

- ▶ Rosenbaum [2004] noticed a phase transition at μ_F :
 - If $\kappa > \mu_F$, sensitivity analysis has no asymptotic power.
 - ▶ If $\kappa < \mu_F$, power $\to 1$ as $I \to \infty$.
 - ▶ He calls the value $\mu_F/(1-\mu_F)$ "design sensitivity".
- ► The CLT for sensitivity value separates the contribution by design and by obtaining more sample.

Implication: select statistics

▶ The goal: maximize Γ_{α}^* stochastically.

$$\sqrt{I} \cdot \left[\kappa_{\alpha}^* - \mu_F \right] \stackrel{d}{\to} N \left(-\sigma_q \bar{\Phi}^{-1}(\alpha) \sqrt{\mu_F (1 - \mu_F)}, \ \sigma_F^2 \right).$$

- ▶ The expecation of Γ_{α}^* is determined by two quantities:
 - 1. $\mu_F = <\psi, g_F>;$
 - 2. $\sigma_q = \|\psi\|_2^2 / \|\psi\|_1^2$.
- ▶ Tradeoff: want to maximize μ_F without making σ_q too large.
- ▶ Manuscript has detailed comparison of different choices of ψ under different F.
- ▶ Practically, can estimate μ_F by sample splitting and then decide.

Implication: select subgroups

- ▶ Hsu, Small, and Rosenbaum [2013] noticed a dilemma. Suppose there are two subgroups with unequal μ_F . Heuristically,
 - If $I \to \infty$, should use the subgroup with larger μ_F .
 - ▶ If *I* is small, should combine the samples.

Implication: select subgroups

- ▶ Hsu, Small, and Rosenbaum [2013] noticed a dilemma. Suppose there are two subgroups with unequal μ_F . Heuristically,
 - If $I \to \infty$, should use the subgroup with larger μ_F .
 - ▶ If *I* is small, should combine the samples.
- ▶ Can use the asymptotics to compute the critical sample size.
- ▶ For example, for Noether's statistics $\psi(u) \equiv 1$ (ratio of sample sizes below: 1:1 and 3:1).

Implication: select hypotheses

- One treatment and hundreds of outcomes that are susceptible to unmeasured confounding.
- Can use sensitivity value to screen causal hypotheses.
- The manuscript has an application to genomics screening.

▶ Zhao, Small, and Rosenbaum [2017] proposed a related method called "Cross Screening".

References

Manuscript:

 Q. Zhao. On sensitivity value of pair-matched observational studies. arXiv:1702.03442.

Additional references:

- J. Y. Hsu, D. S. Small, and P. R. Rosenbaum. Effect modification and design sensitivity in observational studies. *Journal of the American Statistical Association*, 108(501):135–148, 2013.
- P. R. Rosenbaum. Design sensitivity in observational studies. *Biometrika*, 91(1): 153–164, 2004.
- P. R. Rosenbaum. Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509):205–217, 2015.
- Q. Zhao, D. S. Small, and P. P. Rosenbaum. Cross-screening in observational studies that test many hypotheses. arXiv:1703.02078, 2017.