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Information cascade

An information cascade occurs when people engage in the same actions.

Source:wikimedia.org Source: adweek.com

https://commons.wikimedia.org/wiki/File:France_Lozere_Runes_Cascade.jpg
http://www.adweek.com/socialtimes/can-viral-cascades-predicted/146649
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Twitter

Twitter provides the ideal playground to study information cascades.

Start: a Twitter user posts a 140-character message which can
be seen by his/her followers.

Spread: a tweet is forwarded in Twitter by another user.
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Predicting cascades in real time

Goal

Given the tweet and retweets up to time T , predict its final
popularity.

Applications

Ranking content.

Detecting viral/breakout tweets.

Understanding human social behavior.
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Mathematical definitions

Data

Relative retweet time t0 = 0, t1, t2, . . .

Number of retweets by time t: Rt =
∑
ti≤t

1.

Number of followers of each retweeter n0, n1, n2, . . .

Number of exposed users by time t: Nt =
∑
ti≤t

ni .

Problem statement

Given (Rt ,Nt) for 0 ≤ t ≤ T , predict R∞.
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Approaches to cascade prediction

Broadly categorized into two groups:

Feature based methods (the majority):

Feature engineering: temporal, network structure, content,
user, . . .
Supervised learning: linear regression, collaborative
filtering, regression trees, topic modeling, . . .

Point process based methods:

Dynamic Poisson process, reinforced Poisson process
Our model (SEISMIC): self-exciting point process.
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Example
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Example
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SEISMIC

SEISMIC (Self-Exciting Model of Information Cascades) is a
flexible model of information cascades.

Highlights

Generative model.

Easy interpretation.

Scalable: prediction takes O(# retweets).

State-of-the-art performance.
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Background: point processes

Point process models

Rt is characterized by its intensity λt = lim
∆↓0

P (Rt+∆ − Rt = 1)

∆
.

Examples

Poisson process: λt = λ;

Reinforced Poisson process1: λt = p · φ(t) · g(Rt).

They are not suitable to model viral tweets.

1S. Gao, J. Ma, and Z. Chen. Modeling and predicting retweeting
dynamics on microblogging platforms. In WSDM ’15, 2015.
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SEISMIC

Key steps of retweeting

How often does a user check Twitter?

Memory kernel (power law distribution).

What is the user’s probability of retweeting a given tweet?

Tweet infectiousness.

Self-exciting point process

Infectiousness: “probability” of retweeting

λt = p ·
∑
ti≤t

niφ(t − ti ) , t ≥ t0.

Self-exciting: “rate” of viewing
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Time-varying infectiousness

Fixed p is not enough to model viral tweets.

0

25

50

75

0 2 4 6

R
et

w
ee

t C
ou

nt
Histogram of Retweet Times

0.00

0.02

0.04

0.06

0 2 4 6

In
fe

ct
io

us
ne

ss

Infectiousness Estimated by SEISMIC

SEISMIC replaces p by a smooth process pt .
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Estimate infectiousness

We estimate pt by locally smoothing the maximum likelihood
estimator (MLE):

“Number of retweets”

p̂t =

Rt∑
i=1

Kt(t − ti )

Rt∑
i=0

ni

∫ t

ti

Kt(t − s)φ(s − ti )ds

.

“Number of views”
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Predict popularity

SEISMIC prediction formula

Assume the out-degrees in the network have mean n∗ and the
infectiousness parameter pt ≡ p for t ≥ T . Then

E[R∞| FT ] =


RT +

p(NT − Ne
T )

1− pn∗
, if p <

1

n∗
,

∞, if p ≥ 1

n∗
.

where Ne
T =

RT∑
i=0

ni

∫ T

ti

φ(t − ti )dt.

See our paper for derivation.
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Example
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Experiments: dataset

Raw dataset: all tweet and retweet activities
from October 7 to November 7, 2011.

Filter by:

Posted in the first 15 days.
English tweets;
No hashtag;
At least 50 retweets;

End up with 166076 cascades (in total over 34 million
tweets/retweets).
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Baselines

We compare SEISMIC to four different baselines:

1 LR: linear regression

2 LR-D: linear regression with degree

3 DPM: dynamic Poisson model

4 RPS: reinforced Poisson model
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Comparison: Absolute Percentage Error (APE)

APE = |R̂∞ − R∞|/R∞.

15% vs 25% percentage error when observe 1 hour.
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Comparison: Coverage of breakouts

A list of true top 500 tweets with most retweets.
Lists of predicted top 500 tweets at all time points.

70% vs 55% coverage when observe 25% retweets.
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Summary

In conclusion, SEISMIC

Effectively models information cascades by self-exciting
point processes;

Efficiently updates parameters and makes prediction;

Outperforms several baselines and state-of-the-art.

Code and data available online at
http://snap.stanford.edu/seismic.

http://snap.stanford.edu/seismic
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Estimation of memory kernel φ(t)
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More detail: final tweak

The prediction is unstable when p̂t is close to
1

n∗
.

The real ps is likely to decrease.

Stabilized prediction

R̂∞(t) = Rt + αt
p̂t(Nt − Ne

t )

1− γt p̂tn∗
where 0 < αt , γt ≤ 1 are trained for the network.
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