
Simultaneous Hypothesis Testing using Internal Negative Controls

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

March 29, 2023, Statistics Seminar, University of Pennsylvania

(Joint work with Zijun Gao)



Motivating application

Use proteomic profiling to identify cell membrane proteins in certain brain regions.
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Motivating application: More detail

Shuster et al. (2022) extracted developing Purkinje cells from mice and prepared them for
mass spectrometry under two conditions: HRP+H2O2 and HRP only (control).

A common challenge: lack of biological repeats.

Instead, they used a heuristic in Hung et al. (2014)1 to select a “cut-off”.

This is based on using the UniPort database to classify proteins as
▶ Under investigation: annotated with plasma membrane; (n = 740)
▶ Negative controls:2 nuclear, mitochondrial, or cytoplasmic but not plasma membrane.

(m = 2, 067)

1V. Hung et al., Molecular Cell 55, 332–341 (2014).
2Shuster et al. (2022) referred to internal negative control proteins as “false positives” and proteins under

investigation as “true positives”.
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Illustration of the dataset
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Dashed threshold: Hung et al. (2014)
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Seems quite ad hoc (but actually not).
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Solid threshold: A “new” method

There are two ways to obtain this threshold:

1 Use negative controls to form an empirical null distribution, and then apply the
Benjamini-Hochberg procedure;

2 Use negative controls to directly estimate the false discovery rate of a rejection set.
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Literature

Empirical null: Efron (2004); population stratification (Price et al. 2006); batch effect
(Leek et al. 2010).

Negative control: internal (e.g. non-membrane proteins) vs. external (e.g. HRP only);
essential concept in scientific methods; applications in genomics (Gagnon-Bartsch and
Speed 2012), epidemiology (Lipsitch, Tchetgen Tchetgen, and Cohen 2010), causal
inference (Miao, Geng, and Tchetgen Tchetgen 2018).

Use negative controls in multiple testing: several informal proposals (Nix, Courdy, and
Boucher 2008; Listgarten et al. 2013; Slattery et al. 2011; Parks, Raphael, and Lawrence
2018; Zhang et al. 2008; Song et al. 2007).

Closely related to conformal inference/prediction and semi-supervised learning.
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Setup

n +m hypotheses: I = {1, . . . , n} are under investigation; I0 ⊆ I is the unknown set of
true null hypotheses; Inc = {n + 1, . . . , n +m} are known to be true (negative controls).

Each hypothesis Hi is associated with a test statistic Ti with CDF Fi . Small Ti indicates
evidence against Hi .

Common error rates in multiple testing: familywise error rate (FWER), false discover rate
(FDR), tail probability of false discovery proportion (FDP), local false discovery rate
(local-FDR).
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RANC p-values: Two definitions

We define pi = F̂ (Ti ) for i = 1, . . . , n, where F̂ is the empirical CDF of
(−∞,Tn+1, . . . ,Tn+m):

F̂ (t) =
1 +

∑
j∈Inc 1{Tj≤t}

1 +m
.

Equivalently, pi is simply the normalized rank of Ti among (Tj)j∈{i}∪Inc :

pi =
1 + (number of negative control statistics ≤ Ti )

1 + (number of negative control statistics)
.

This is why we call pi the Rank Among Negative Control (RANC) p-value.

If we assume (Ti )i∈I0∪Inc is exchangeable, pi is exactly the permutation test p-value of
exchangeability for Ti .
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An illustration using the proteomic dataset
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(a) P-values from a two-sample “t-test”.
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(b) RANC p-values. Red: BH with FDR = 0.2.
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Useful definitions

Next: properties of RANC p-values and implications for multiple testing.

Partial/conditional exchangeability

(Xi )i∈I is exchangeable on a subset (Xi )i∈J for some J ⊆ I, if for any permutation

g : I → I such that g(i) = i for all i ̸∈ J , we have (Xg(i))i∈I
d
= (Xi )i∈I .

When this holds for J = I, we simply say (Xi )i∈I is exchangeable.

A set D ⊆ Rn is increasing if D contains all y ⪰ x ∈ D.

PRDS

(Xi )i∈I exhibits positive regression dependence on a subset (PRDS) (Xj)j∈J for some

J ⊆ I, if P
(
(Xj)j∈I ∈ D | Xj = x

)
is increasing in x for any increasing set D ⊆ R|I| and

j ∈ J .
When this holds for J = I, we simply say (Xi )i∈I is PRD.
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Validity

Proposition

Fix some i ∈ I0 and suppose the following assumptions are satisfied:

1 Fi (t) ≤ Fj(t) for all j ∈ Inc and t;

2 (Fj(Tj))j∈{i}∪Inc is exchangeable.

Then the RANC p-value pi is valid in the sense that P(pi ≤ α) ≤ α for all 0 < α < 1.

Allows null statistics to be conservative (or equivalent, negative controls to be
anti-conservative). Useful for one-sided testing and misclassification of negative controls.
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PRDS

Theorem

Suppose one of the two sets of conditions below holds:

1 1 Ti
d
= Tj for any i ∈ I0 and j ∈ Inc;

2 (Ti )i∈I ⊥⊥ (Tj)j∈Inc
;

3 (Tj)j∈Inc
is mutually independent;

4 (Ti )i∈I is PRDS on (Ti )i∈I0
;

2 (Ti )i∈I∪Inc is exchangeable on (Ti )i∈I0∪Inc .

Then the RANC p-values are valid and (pi )i∈I is PRDS on (pi )i∈I0 .

Allows some dependence between test statistics.

Proof is based on the following heuristic: if we swap any Ti , i ∈ I0 with the next
smallest NC statistic, the probability of (pi )i∈I is in an increasing set can only increase.
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Multiple testing procedures

Enabled by validity

FWER: Bonferroni’s correction, Holm’s procedure, graph-based procedures (fixed
sequence, fall-back, etc.).

Enabled by validity + PRDS

Global/intersection null: Simes’ test;

FWER: Hochberg-Hommel procedure (closure of Simes’ test);

FDP control: Lehmann-Romano step-down procedure;

FDR control: Benjamini-Hochberg procedure.

Remark: By using the monotonicity of Simes’ test, the sufficient condition for it can be
relaxed to stochastic dominance + exchangeability of (Fi (Ti ))i∈I0∪Inc .
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Empirical estimation of FDR
Dates back to at least Storey, Taylor, and Siegmund (2004) and Genovese and
Wasserman (2004). For simplicity, assume Ti ∈ [0, 1] for all i .

The empirical processes for false rejections, all rejections, and the FDP are defined as

V (t) :=
∑
i∈I0

1{Ti≤t}, R(t) :=
∑
i∈I

1{Ti≤t}, and FDP(t) :=
V (t)

R(t) ∨ 1
, 0 ≤ t ≤ 1.

Further define

Vnc(t) :=
∑
j∈Inc

1{Tj≤t}, V̄nc(t) :=
n · (Vnc(t) + 2)

m + 1
, 0 ≤ t ≤ 1.

An estimator of FDR(t) = E [FDP(t)] based on negative controls is

F̂DRλ(t) :=
π̂(λ) · V̄nc(t)

R(t) ∨ 1
, for some 0 < λ ≤ 1,

where π̂(λ) is an estimator of the null proportion π = |I0|/|I| (π̂(λ) = 1 when λ = 1).
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An illustration using the proteomic dataset
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Solid red: rejection threshold (FDR = 0.2).
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Relation to method 1

In method 2, Hi is rejected if

Ti ≤ τq := sup
{
0 ≤ t ≤ λ : F̂DRλ(t) ≤ q

}
.

Proposition

A hypothesis Hi , i ∈ I is rejected by the above step-up procedure with λ = 1 if and only if it
is rejected by the BH procedure with the following modified RANC p-values:

p̃i =
2 +

∑
j∈Inc 1{Tj≤Ti}

1 +m
∧ 1.

Extends the well known empirical process interpretation of the Benjamini-Hochberg
procedure.
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FDR control

Useful definition (Zhao, Small, and Su 2019)

For two random variables X , Y supported on [0, 1], we say X is uniformly stochastically larger than
Y if P(X ≤ t) > 0, P(Y ≤ t) > 0, and P(X ≤ s | X ≤ t) ≤ P(Y ≤ s | Y ≤ t) for all 0 < s ≤ t ≤ 1.

Theorem

The above step-up procedure controls the FDR at level q under the following conditions:

1 Ti is uniformly stochastically larger than Tj for all i ∈ I0 and j ∈ Inc;
2 (Ti )i∈I∪Inc is mutually independent.

Our proof extends Storey, Taylor, and Siegmund (2004) by showing the following is a
backward super-martingale:

M(t) =
V (t)

(1 + Vnc(t))/(1 +m)
.

From there, the condition about uniformly stochastic dominance naturally arises.
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Local FDR

Consider the two-mixture model: (Hi ,Ti ), i = 1, . . . , n are i.i.d., Hi ∼ Bernoulli(1− π),
Ti | Hi ∼ FHi

. So the marginal CDF is F (t) = πF0(t) + (1− π)F1(t).

Let the corresponding density functions be f0 and f1.

The local FDR at t is defined as (Efron et al. 2001)

local-FDR(t) = P(Hi = 0 | Ti = t) =
πf0(t)

f (t)
=

πf0(t)

πf0(t) + (1− π)f1(t)
.
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Estimation of local FDR: PDF-based methods
Common to plug in estimator of the density function(s), but often doesn’t work well.

Example: π = 0.5, F0 = t10, F1 = Exp(1), n = 400, m = 1000, q = 0.3.
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(a) Kernel density estimator.
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(b) Kernel density estimator on z-scores.
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A CDF-based method
Solve the next optimization problem for some given λ = q/π and 0 < q < 1:

τ̂λ,n,m = argmin
t

F0,m(t)− λFn(t),

where F0,m and Fn are the empirical CDFs of (Ti )i∈Inc and (Ti )i∈I , respectively.

Intuitively, τ̂λ,n,m should converge to

τ∗λ = argmin
t

F0(t)− λF (t).

By taking the derivative, we obtain

f0(τ
∗
λ) = (q/π)f (τ∗λ) ⇔ local-FDR(τ∗λ) = q.

The heuristic in Hung et al. (2014) corresponds to using λ = 1 or q = π, which is quite
sensible!
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Remarks
By assuming f0 and f are differentiable at τ∗λ and (f0/f )

′(τ∗λ) > 0, we show in the paper
that τ̂λ,n,m − τ∗λ = Op((n ∧m)−1/3). Such convergence is uniform over λ if (f0/f ) is
monotone.
The optimization can be rewritten as a decision-theoretic problem, which dates back to at
least Sun and Cai (2007). Let Ĥi (t) = 1{Ti≤t}, then

τ∗λ = argmin
t

EF0

[
Ĥi (t)

]
− λEF

[
Ĥi (t)

]
= argmin

t
E
[
(1− q)1{Hi<Ĥi (t)} + q1{Hi>Ĥi (t)}

]
.

By using order stats. p(1) < · · · < p(n) of RANC p-values, the optimization can be
rewritten as

τ̂λ,n,m = T(i∗), where i∗ = argmin
i

m + 1

m
p(i) −

λi

n
.

This can then be inverted to estimate the entire local-FDR curve:

q̂(t) = inf
q
{q : τ̂(q) ≥ t}.

This is basically Grenander (1956)’s estimator of a monotone density function.
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Illustration of the CDF-based method
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Even if the density functions doesn’t exist, a simple argument shows that the regret is
Op(n

−1/2).
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And the twist...

Shortly after completing the first draft of the paper, we discovered that all three methods have
been independently proposed in the last 2 years:

Method 1: Bates, Candès, Lei, Romano, and Sesia (2021) called this conformal p-value
and considered outlier detection in machine learning outputs.

Method 2: Mary and Roquain (2022) called this semi-supervised multiple testing and
considered applications to astrostatistics.

Method 3: Soloff, Xiang, and Fithian (2022) developed basically the same estimator.
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Some distinctions

Neither Bates et al. (2021) or Mary and Roquain (2022) paid attention to the possibility
that the hypotheses could be one-sided/the negative controls could be misclassified.

Soloff, Xiang, and Fithian (2022) worked with the conventional setup with known F0 and
showed that the method controls expected maximum local-FDR. It is unclear if this still
holds when F0 must be estimated.

Some of our theoretical treatments that I skipped appear novel.

Surprisingly, the connection between empirical null and conformal inference seems has
never been pointed out.

In particular, negative control is arguably a better name:
▶ Highlights the nature of the method;
▶ Can be be immediately understood by practitioners and be falsified (example in paper).
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Lesson

Good methodological ideas may hide in

the old literature;

the most recent literature;

the the literature that calls things different or doesn’t make the expected citations;

the practice.

Link to paper & slides: http://www.statslab.cam.ac.uk/~qz280/publication/ranc.
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