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Abstract. The fields of machine learning and causal inference have developed many

concepts, tools, and theory that are potentially useful for each other. Through explor-

ing the possibility of extracting causal interpretations from black-box machine-trained

models, we briefly review the languages and concepts in causal inference that may

be interesting to machine learning researchers. We start with the curious observa-

tion that Friedman’s partial dependence plot has exactly the same formula as Pearl’s

back-door adjustment and discuss three requirements to make causal interpretations:

a model with good predictive performance, some domain knowledge in the form of

a causal diagram and suitable visualization tools. We provide several illustrative ex-

amples and find some interesting and potentially causal relations using visualization

tools for black-box models.

1. Introduction

A central task of statistics and machine learning is to study the relationship between

independent or predictor variables, commonly denoted by X, and dependent or response

variables, Y . Linear regression (and its generalizations such as logistic regression)

persists as the main workhorse for this purpose and is being routinely taught at all

levels of statistics courses. However, the legitimacy of linear regression (as a universal

tool) has been seriously challenged from at least two angles:
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(1) When the goal is to predict Y using X, the predictive accuracy of linear regres-

sion is often far worse than other alternatives.

(2) When the goal is to infer the structural relationship, coefficients of X in the

linear regression may not have any causal interpretation.

Fundamentally, the problem is that linearity may be too simplistic in describing asso-

ciational and structural relationships in real data.

Many researchers took these challenges in the past decades. Once considered mi-

norities, two subjects—machine learning and causal inference—eventually grew out of

these challenges and the developments are now largely embraced by the statistics com-

munity. In machine learning (in particular supervised learning), researchers have de-

vised sophisticated or black-box algorithms such as random forests and neural networks

to greatly improve the predictive accuracy of linear regression. Some statistical theory

has also been developed to understand the behavior of these black-box algorithms. In

causal inference, we now understand the basic assumptions that are necessary to iden-

tify the causal effect of X on Y using causal graphical models and/or counterfactual

languages. In other words, in order to make causal inference we no longer require a

linear model that correctly specifies the structural relationship.

Although machine learning and causal inference may both trace their origins to

dissatisfaction with linear regression, the two subjects were developed mostly in par-

allel and the two communities had few shared research interests. But more recently,

researchers in both fields start to realize that the theory and methods developed in

the other field may help in fundamental challenges that have emerged in their own

field. For example, a fundamental challenge in causal inference is the estimation of

nuisance functions, for which machine learning may provide many useful and flexible

tools (van der Laan and Rose, 2011, Chernozhukov et al., 2018). Machine learning

algorithms may also help us to discover heterogeneity in causal relations and optimize

treatment decision (Hill, 2011, Shortreed et al., 2011, Green and Kern, 2012, Zhao

et al., 2012, Wager and Athey, 2018). This literature is actually exploding and only a

short list of references is provided here to show the variety of problems and techniques
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that are being considered. The Atlantic Causal Inference Conference has even held a

machine-learning-style competition to compare the various causal inference methods

every year since 2016 (Dorie et al., 2019).

On the other side, the good performance of black-box machine learning systems may

fail to generalize to the environments that are different from the training dataset. For

example, Caruana et al. (2015) built several machine learning models to predict the

risk of death among those who develop pneumonia. A rule-based learning algorithm

learned a counterintuitive phenomenon that patients with asthma are less likely to die

from pneumonia. However, this was due to an existing policy that asthmatics with

pneumonia should be directly admitted to the intensive care unit and thus received

better care. Thus, this model may be dangerous to deploy in practice because asth-

matics may actually have much higher risk if not hospitalized. To resolve this problem,

more intelligible or even causal models must be built (Caruana et al., 2015, Schulam

and Saria, 2017). Fairness is another crucial concern for deploying black-box models

in practice. The definition of fairness and the solution to this problem may be closely

related to causality (Kilbertus et al., 2017, Kusner et al., 2017). Causal interpreta-

tion of black-box models, the main topic of this article, is another good example for

the usefulness of causal language and theory for machine learning researchers. Pearl

(2018) postulated fundamental impediments to today’s machine learning algorithms

and summarized “sparks” from “The Causal Revolution” that may help us circumvent

them.

There are a large number of excellent books, tutorials, and online resources for ma-

chine learning, some even directed to applied researchers working on causal questions

(e.g. Mullainathan and Spiess, 2017, Mooney and Pejaver, 2018, Athey and Imbens,

2019). In comparison, despite some good efforts to introduce causal inference concepts

to the machine learning community (Spirtes, 2010, Peters et al., 2017, Pearl, 2018), the

learning curve remains steep for researchers who are used to building black-box pre-

dictive models. We, the authors of this article, frequently encounter machine learning

researchers and statisticians who find the language used in causal inference obscure,
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and we also deliberate upon causal concepts in our own research when the goal seemed

to be prediction.

By exploring the possibilities of making causal interpretations of black-box machine-

learned models, this article is aimed at introducing language, concepts, and problems

in causal inference to researchers who are not trained to grasp such subtleties. We

will assume no prior knowledge about causal inference and use a language that we

believe will be most accessible to machine learning researchers. We will discuss a

popular visualization tool for black-box predictive models, the partial dependence plot

(Friedman, 2001), and its generalization, individual conditional expectation (Goldstein

et al., 2015), and use several examples from the UCI machine learning repository, a

widely used public database for machine learning research. Our hope is that this will

arouse broader interest in accomplishments and ongoing research in causal inference.

More resources that we find helpful to learn about causal inference can be found at the

end of this article.

2. Interpretations of black-box models

Interpretation is an ambiguous term and we will start with discussing possible inter-

pretations of black-box models. Many if not most of the statistical analyses implicitly

hold a determinism view regarding this relationship: the input variables X go into

one side of a black box and the response variables Y come out from the other side.

Pictorially, this process can be described by

X nature Y

A common mathematical interpretation of this picture is

Y = f(X, ε), (1)

where f is the law of nature and ε is some random noise. Having observed data that

is likely generated from (1), there are two goals in the data analysis:

Science: Extract information about the law of nature—the function f .
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Prediction: Predict what the response variables Y are going to be with the predictor

variables X revealed to us.

In an eminent article, Breiman (2001b) contrasts two cultures of statistical analysis

that emphasize on different goals. The “data modeling culture” assumes a parametric

form for f (e.g. generalized linear model). The parameters are often easy to interpret.

They are estimated from the data and then used for science and/or prediction. The

“algorithmic modeling culture”, more commonly known as machine learning, trains

complex models (e.g. random forest, neural nets) that approximates f to maximize

predictive accuracy. These black-box models often perform significantly better than

the parametric models (in terms of prediction) and have achieved tremendous success

in applications across many fields (see e.g. Hastie et al., 2009).

However, the results of the black-box models are notoriously difficult to interpret.

The machine learning algorithms usually generate a high-dimensional and highly non-

linear function g(x) as an approximation to f(x) with many interactions, making the

visualization very difficult. Yet this is only a technical challenge. The real challenge is

perhaps a conceptual one. For example, one of the most commonly asked question is

the importance of a component of X. Jiang and Owen (2002) notice that there are at

least three notions of variable importance:

(1) The first notion is to take the black-box function g(x) at its face value and

ask which variable xj has a big impact on g(x). For example, if g(x) = β0 +∑p
j=1 βjxj is a linear model, then βj can be used to measure the importance

of xj given it is properly normalized. For more general g(x), we may want to

obtain a functional analysis of variance (ANOVA). See Jiang and Owen (2002)

and Hooker (2007) for methods of this kind.

(2) The second notion is to measure the importance of a variable Xj by its con-

tribution to predictive accuracy. For decision trees, Breiman et al. (1984) use

the total decrease of node impurity (at nodes split by Xj) as an importance

measure of Xj. This criterion can be easily generalized to additive trees such as

boosting (Freund and Schapire, 1996, Friedman et al., 2000) and random forests
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(Breiman, 2001a). Breiman (2001a) proposes to permute the values of Xj and

use the degradation of predictive accuracy as a measure of variable importance.

(3) The third notion is causality. If we are able to make an intervention on Xj

(change the value of Xj from a to b with the other variables fixed), how much

will the value of Y change?

Among the three notions above, only the third is about the science instead of prediction.

Lipton (2018) discusses several other notions of model interpretability and acknowl-

edges the difficulty of making causal interpretations. Next we will examine whether

certain causal interpretations can indeed be made if we use the right visualization tool

and are willing to make additional assumptions.

3. Partial dependence plots

Our discussion starts with a curious coincidence. One of the most used visualization

tools of black-box models is the partial dependence plot (PDP) proposed in Friedman

(2001). Given the output g(x) of a machine learning algorithm, the partial dependence

of g on a subset of variables XS is defined as (let C be the complement set of S)

gS(xS) = EXC [g(xS , XC)] =

∫
g(xS , xC) dP (xC). (2)

That is, the PDP gS is the expectation of g over the marginal distribution of all

variables other than XS . This is different from the conditional expectation

E[g(XS, XC)|XS = xS] = EXC [g(xS , XC)] =

∫
g(xS , xC) dP (xC|XS = xS),

where the expectation is taken over the conditional distribution of XC given XS = xS .

In practice, PDP is simply estimated by averaging over the training data {Xi, i =

1, . . . , n} with fixed xS :

ḡS(xS) =
1

n

n∑
i=1

g(xS , XiC).

The consideration of partial effect of some independent variables XS on a dependent

variable Y is common in social science when model parameters are not immediately

interpretable (e.g. King et al., 2000, Imai et al., 2010, Wooldridge, 2015). What is
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under the spotlight here is the distribution of XS where the partial effect should be

averaged over. An appealing property that motivated the proposal of PDP is that

it recovers the corresponding individual components if g is additive. For example,

if g(x) = hS(xS) + hC(xC), then the PDP gS is equal to hS(xS) up to an additive

constant. Furthermore, if g is multiplicative g(x) = hS(xS) · hC(xC), then the PDP gS

is equal to hS(xS) up to a multiplicative constant. These two properties do not hold

for conditional expectation.

Interestingly, the equation (2) that defines PDP is exactly the same as the famous

back-door adjustment formula of Pearl (1993) to identify causal effect of XS on Y

from observational data. To be more precise, Pearl (1993) shows that if the causal

relationship of the variables in (X, Y ) can be represented by a graph and XC satisfies

a graphical back-door criterion (to be defined in Section 4.2) with respect to XS and

Y , then the causal effect of XS on Y is identifiable and is given by

P(Y |do(XS = xS)) =

∫
P(Y |XS = xS , XC = xC) dP (xC). (3)

Here P(Y |do(XS = xS)) stands for the distribution of Y after we make an intervention

on XS that sets it equal to xS (Pearl, 2009). We can take expectation on both sides of

(3) and obtain

E[Y |do(XS = xS)] =

∫
E[Y |XS = xS , XC = xC] dP (xC). (4)

Typically, the black-box function g is the expectation of the response variable Y .

Therefore the definition of PDP (2) appears to be the same as the back-door adjustment

formula (4), if the conditioning set C is the complement of S.

Readers who are more familiar with the potential-outcome notations may interpret

E[Y |do(XS = xS)] as E[Y (xS)], where Y (xS) is the potential outcome that would be

realized if treatment xS is received. When XS is a single binary variable (0 or 1), the

difference E[Y (1)]−E[Y (0)] is commonly known as the average treatment effect (ATE)

in the literature. We refer the reader to Holland (1986) for some introduction to the

Neyman-Rubin potential outcome framework and the Ph.D. thesis of Zhao (2016) for

an overview of the different frameworks of causality.
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Next, we shall use several illustrative examples to discuss under what circumstances

we can make causal interpretations by PDP and other visualization tools for machine

learning algorithms.

4. Causal Model

4.1. Structural Equation Model. First of all, we need a causal model to talk about

causality. In this paper we will use the non-parametric structural equation model

(NPSEM) of Pearl (2009, Chapter 5). In the NPSEM framework, each random variable

is represented by a node in a directed acyclic graph (DAG) G = (V , E), where V is the

node set (in our case V = {X1, X2, . . . , Xp, Y }) and E is the edge set. A NPSEM

assumes that the observed variables are generated by a system of nonlinear equations

with random noise. In our case, the causal model is

Y = f(pa(Y ), εY ), (5)

Xj = fj(pa(Xj), εj), (6)

where pa(Y ) is the parent set of Y in the graph G and the same for pa(Xj).

Notice that (5) and (6) are different from regression models in the sense that they

are structural (the law of nature). To make this difference clear, consider the following

hypothetical example:

Example 1. Suppose a student’s grade is determined by the hours she studied via

Grade = α + β · (Hours studied) + ε, (7)

where the noise variable ε is independent of “Hours studied”. This corresponds to the

following causal diagram

Hours studied Grade

If we are given the grades of many students and wish to estimate how many hours they

studied, we can invert (7) and run a linear regression:

Hours studied = α′ + β′ ·Grade + ε′. (8)
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Equation (7) is structural but Equation (8) is not. To see this, (7) means that if a

student can study one more hour (either voluntarily or asked by her parents), her grade

will increase by β on average. However, we cannot make such interpretation for (8).

The linear regression (8) may be useful for the teacher to estimate how many hours

a student spent on studying, but that time will not change if the teacher gives the

student a few more points since “hours studied” is not an effect of “grade” in this

causal model. Equation (8) is not structural because it does not have any predictive

power in the interventional setting. For more discussion on the differences between

a structural model and a regression model, we refer the reader to Freedman (2009),

Bollen and Pearl (2013).

Notice that it is not necessary to assume a structural equation model to derive the

back-door adjustment formula (3). Here we use NPSEM mainly because it is easy to

explain and is close to what a black-box model tries to capture.

4.2. The Back-Door Criterion. Pearl (1993) shows that the adjustment formula

(3) is valid if the variables XC satisfy the following back-door criterion (with respect

to XS and Y ) in the DAG G:

(1) No node in XC is a descendant of XS ; and

(2) XC blocks every “back-door” path between XS and Y . (A path is any consecu-

tive sequence of edges, ignoring the direction. A back-door path is a path that

contains an arrow into XS . A set of variables block or d-separates a path if the

path contains a chain Xi → Xm → Xj or a fork Xi ← Xm → Xj such that the

middle node Xm is in the set, or the path contains a collider Xi → Xm ← Xj

such that Xm nor its descendant is in the set.)

More details about the back-door criterion can be found in Pearl (2009, Section 3.3).

Heuristically, each back-door path corresponds to a common cause of XS and Y . To

compute the causal effect of XS on Y from observational data, one needs to adjust

for all back-door paths including those with hidden variables (often called unmeasured

confounders).
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X1

X3 X4

X2

Y X1

X5X3 X4

X2

Y

Figure 1. Two examples: the red thick edges are back-door paths from

X1 to Y . {X4} blocks all the back-door paths in the left panel but not

the right panel (because X4 is a collider in the path X1 ← X3 → X4 ←

X5 → Y indicated using the blue color).

Figure 1 gives two examples where we are interested in the causal effect of X1

on Y . In the left panel, X1 ← X3 ← X4 → Y (in red color) is a back-door path

but X1 → X2 → Y is not. The set XC to adjust can be {X3} or {X4}. In the

right panel X1 ← X4 → Y and X1 ← X3 → X4 ← X5 → Y are back-door paths,

but X1 → X2 ← Y is not. In this case, applying the adjustment formula (3) with

XC = {X4} is not enough because X4 is a collider in the second back-door path.

Thus the PDP of black-box models estimates the causal effect of XS on Y , given that

the complement set C satisfies the back-door criterion. This is indeed a fairly strong

requirement as no variables in XC can be a causal descendant of XS . Alternatively if C

does not satisfy the back-door criterion, PDP does not have a clear causal interpretation

and domain knowledge is required to select the appropriate set C.

Example 2 (Boston housing data1). We next apply PDP for three machine learning

algorithms in our first real data example. In an attempt to quantify people’s willingness

to pay for clean air, Harrison and Rubinfeld (1978) gathered the housing price and other

attributes of 506 suburb areas of Boston. The primary variable of interest XS is the

nitrix oxides concentration (NOX, in parts per 10 million) of the areas, and the response

1Taken from https://archive.ics.uci.edu/ml/datasets/Housing.

https://archive.ics.uci.edu/ml/datasets/Housing
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variable Y is the median value of owner-occupied homes (MEDV, in $1000). The other

measured variables include the crime rate, proportion of residential/industrial zones,

average number of rooms per dwelling, age of the houses, distance to the city center

and highways, pupil-teacher ratio, the percentage of blacks and the percentage of lower

class.

In order to obtain causal interpretations from the PDP, we shall assume that NOX is

not a cause of any other predictor variables.2 This assumption is quite reasonable as air

pollution is most likely a causal descendant of the other variables in the dataset. If we

further assume these predictors block all the back-door paths, PDP indeed estimates

the causal effect of air quality on housing price.

Three predictive models for the housing price are trained using random forest (Liaw

and Wiener, 2002, R package randomForest), gradient boosting machine (Ridgeway,

2015, R package gbm), and Bayesian additive regression trees (Chipman and McCulloch,

2016, R package BayesTree). Figure 2a shows the smoothed scatter plot (top left

panel) and the partial dependence plots. The PDPs suggest that the housing price

seem to be insensitive to air quality until it reaches certain pollution level around 0.67.

The PDP of BART has some abnormal behaviors when NOX is between 0.6 and 0.7.

These observations do not support the presumption in the theoretical development in

Harrison and Rubinfeld (1978) that the utility of a house is a smooth function of air

quality. Whether the drop around 0.67 is actually causal or due to residual confounding

requires further investigation.

5. Finer visualization

The lesson so far is that we should average the black-box function over the marginal

distribution of some appropriate variables XC. A natural question is: if the causal

diagram is unavailable and hence the confounder set C is hard to determine, can we

still peek into the black box and give some causal interpretations? Of course this is

not always possible, but next we shall see that a finer visualization tool may help us

2This statement, together with all other structural assumptions in the real data examples of this

paper, are only based on the authors’ subjective judgment.
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(a) Scatter plot and partial dependence plots using different

black-box algorithms. The blue curves in the BART plot are

Bayesian credible intervals of the PDP.
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(b) ICE plot. The thick curve with yellow

shading is the average of all the individual

curves, i.e. the PDP. The dots indicate the

actual NOX for each curve.

Figure 2. Boston housing data: impact of the nitrix oxides concentration (NOX)

on the median value of owner-occupied homes (MEDV). The PDPs suggest that the

housing price could be (causally) insensitive to air quality until it reaches certain

pollution level. The ICE plot indicates that the effect of NOX is roughly additive.
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generate another kind of causal hypothesis, namely which variables XM mediates the

causal effect of XS on Y .

5.1. Individual Curves. The individual conditional expectation (ICE) of Goldstein

et al. (2015) is an extension to PDP and can help us to extract more information about

the nature f . Instead of averaging the black-box function g(x) over the marginal

distribution of XC, ICE plots the curves g(xS , XiC) for each i = 1, . . . , n, so PDP

is simply the average of all the individual curves. ICE is first introduced to discover

interaction between the predictor variables and visually test if the function g is additive

(i.e. g(x) = gS(xS) + gC(xC)).

Example 3 (Boston housing data, continued). Figure 2b shows the ICE of the black-box

model trained by random forest for the Boston housing data. The thick curve in the

middle (with yellow shading) is the average of all the individual curves, i.e. the PDP.

The solid black dots represent the actual value of XiS , so each curve shows what “might

happen” if XiS is changed to a different value based on the predictive model. All the

individual curves drop sharply around NOX = 0.67 and are quite similar throughout

the entire region. This indicates that NOX might have (or might be a proxy for another

variable that has) an additive and non-smooth causal impact on housing value.

As a remark, the name “individual conditional expectation” given by Goldstein et al.

(2015) can be misleading. If the response Y is truly generated by g (i.e. g = f), the

ICE curve g(xS , XiC) is the conditional expectation of Y only if none of XC is a causal

descendant of XS (the first criterion in the back-door condition).

5.2. Mediation analysis. In many problems, we already know some variables in the

complement set C are causal descendants ofXS , so the back-door criterion in Section 4.2

is not satisfied. If this is the case, quite often we are interested in learning how the

causal impact of XS on Y is mediated through these descendants. For example, in the

left panel of Figure 1, we may be interested in how much X1 directly impacts Y and

how much X1 indirectly impacts Y through X2.
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Formally, we can define these causal targets through the NPSEM (Pearl, 2014, Van-

derWeele, 2015). Let XC be some variables that satisfy the back-door criterion and

XM be the mediation variables. Suppose XM is determined by the structural equation

XM = h(XS , XC, εM) and Y is determined by Y = f(XS , XM, XC, ε). In this paper, we

are interested in comparing the following two quantities (xS and x′S are fixed values):

Total effect: TE = E[f(xS , h(xS , XC, εM), XC, ε)]−E[f(x′S , h(x′S , XC, εM), XC, ε)]. The

expectations are taken over XC, εM and ε. This is how much XS causally im-

pacts Y in total.

Controlled direct effect: CDE(xM) = E[f(xS , xM, XC, ε)]−E[f(x′S , xM, XC, ε)]. The

expectations are taken over XC and ε. This is how much XS causally impacts

Y when XM is fixed at xM.

In general, these two quantities can be quite different. When a set C (not necessarily

the complement of S) satisfying the back-door condition is available, we can visualize

the total effect by the PDP. For the controlled direct effect, the ICE is more useful

since it essentially plots CDE(xM) at many different levels of xM. When the effect

of XS is additive, i.e. f(XS , XM, XC, ε) = fS(XS) + fM,C(XM, XC, ε), the controlled

direct effect does not depend on the mediators: CDE(xM) ≡ fS(xS) − fS(x′S). The

causal interpretation is especially simple in this case.

Example 4 (Boston housing data, continued). Here we consider the causal impact of the

weighted distance to five Boston employment centers (DIS) on housing value. Since

the geographical location is unlikely a causal descendant of any other variables, the

total effect of DIS can be estimated by the conditional distribution of housing price.

From the scatter plot in Figure 3a, we can see that the suburban houses are preferred

over the houses close to city center. However, this effect is probably indirect (e.g.

urban districts may have higher criminal rate, which lowers the housing value). The

ICE plot for DIS in Figure 3b shows that the direct effect of DIS has an opposite

trend. This suggests that when two districts have the same other attributes, people

are indeed willing to pay more for the house closer to city center. However, this effect
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is substantial only when the house is very close to the city (DIS < 2), as indicated by

Figure 3b.
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(b) ICE plot. The thick curve (with yel-

low shading) in the middle is the average

of all the individual curves, i.e. the PDP.

Figure 3. Boston housing data: impact of weighted distance to the five

Boston employment centers (DIS) on median value of owner-occupied homes

(MEDV). The ICE plot shows that longer distance to the city center has a

negative causal effect on housing price. This is opposite to the trend in the

marginal scatter plot.

6. More examples

Finally, we provide two more examples to illustrate how causal interpretations may

be obtained after fitting black-box models.

Example 5 (Auto MPG data3). Quinlan (1993) used a dataset of 398 car models from

1970 to 1982 to predict the miles per gallon (MPG) of a car from its number of cylin-

ders, displacement, horsepower, weight, acceleration, model year and origin. Here we

investigate the causal impact of acceleration and origin.

3Taken from https://archive.ics.uci.edu/ml/datasets/Auto+MPG.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
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First, acceleration (measured by the number of seconds to run 400 meters) is a causal

descendant of the other variables, so we can use PDP to visualize its causal effect. The

top left panel of Figure 4a shows that acceleration is strongly correlated with MPG.

However, this correlation can be largely explained by the other variables. The other

three panels of Figure 4a suggest that the causal effect of acceleration on MPG is quite

small. However, different black-box algorithms disagree on the trend of this effect. The

ICE plot in Figure 4b shows that the effect acceleration perhaps has some interaction

with the other variables (some curves decrease from 15 to 20 while some other curves

increase).

Next, origin (US for American, EU for European and JP for Japanese) are causal

ancestors of all other variables, so its total effect can be inferred from the box plot in

Figure 5a. It is apparent from this plot that Japanese cars have the highest MPG,

followed by European cars. However, this does not necessarily mean Japanese man-

ufacturers have the technological advantage of saving fuel. For example, the average

displacement (the total volume of all the cylinders in an engine) of American cars in

this dataset is 245.9 cubic centimeters, but this number is only 109.1 and 102.7 for Eu-

ropean and Japanese cars. In other words, American cars usually have larger engines

or more cylinders. To single out the direct effect of manufacturer origin, we can use

the ICE plots of a random forest model, shown in Figure 5b. From these plots, one can

see Japanese cars seem to be slightly more fuel-efficient (as the ICE curves are mostly

increasing) and American cars seem to be slightly less fuel-efficient than European cars

even after considering the indirect effects of displacement and other variables.

Example 6 (Online news popularity dataset4). Fernandes et al. (2015) gathered 39, 797

news article published by Mashable and used 58 predictor variables to predict the

number of shares in social networks. For a complete list of the variables, we refer the

reader to their dataset page on the UCI machine learning repository. In this example,

we study the causal impact of the number of keywords and title sentiment polarity.

Since both of them are usually decided near the end of the publication process, we

4Taken from https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity.

https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity


CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS 17

●

●

●

●
●

●
●● ●

● ●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

● ●
●

●

●
●

● ●

●

●
●

●
●

●● ●●

●
●●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●
●
●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
● ●●

●

●●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

● ●●

●

●

●

●

●

● ●

● ●

●

●

● ●

●● ● ●

●

●

●●

●

●

●●

●● ●

●

●

●

●

●

●●
●

●
●●

●

●
●

● ●

●●
●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

5 10 15 20 25

10
15

20
25

30
35

40

Scatter plot

acceleration

m
pg

5 10 15 20 25

20
22

24
26

28

Random Forest

acceleration

m
pg

5 10 15 20 25

20
22

24
26

28

GBM

acceleration

m
pg

5 10 15 20 25

20
22

24
26

28

●
●

●●
●

●●●●

●●
●●●

●
●

●

●●
●●

●

●
●

●
●●

●●

●
●●

●
●

●●

●

●●
●

●

●

●●
●

●●●●

●●
●●●

●
● ●

●●

●

BART

acceleration

m
pg

(a) Scatter plot and partial dependence plots using dif-

ferent black-box algorithms.
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low shading) in the middle is the average

of all the individual curves, i.e. the PDP.

Figure 4. Auto MPG data: impact of acceleration (in number of seconds to

run 400 meters) on MPG. The PDPs show that the causal effect of acceleration

is smaller than what the scatter plot may suggest. The ICE plot shows that

there are some interactions between acceleration and other variables.
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treat all other variables as potential confounders and use the partial dependence plots

to estimate the causal effect.

The results are plotted in Figure 6. For the number of keywords, the left panel of

Figure 6a shows that it has a positive marginal effect on the number of shares. The

PDP in the right panel shows that the actual causal effect might be much smaller and

only occur when the number of keywords is less than 4.

For the title sentiment polarity, both the LOESS plot of conditional expectation and

the PDP suggest that articles with more extreme titles get more shares, although the

inflection points are different. Interestingly, sentimentally positive titles attract more

reshares than negative titles on average. The PDP shows that the causal effect of title

sentiment polarity (no more than 10%) is much smaller than the marginal effect (up

to 30%) and the effect seems to be symmetric around 0 (neutral title).

7. Conclusion

We have demonstrated that it is possible to extract causal information from these

models using the partial dependence plots (PDP) and the individual conditional expec-

tation (ICE) plots, but this does not come for free. In summary, a successful attempt

of causal interpretation requires at least three elements:

(1) A good predictive model, so the estimated black-box function g is (hopefully)

close to the law of nature f .

(2) Some domain knowledge about the causal structure to assure the back-door

condition is satisfied.

(3) Visualization tools such as the PDP and its extension ICE.

For these reasons, we want to emphasize that PDP and ICE, although useful to

visualize and possibly make causal interpretations about the black-box models, should

not replace a randomized controlled experiment or a carefully designed observational

study to establish causal relationships. Verifying the back-door condition often requires

considerable domain knowledge and deliberation, which is usually neglected when col-

lecting data for a predictive task. PDPs can suggest causal hypotheses which should
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be verified by a more carefully designed study. When a PDP behaves unexpectedly

(such as the PDP of BART in Figure 2a), it is important to dig into the data and look

for the root of spurious association such as unmeasured confounding or conditioning

on a causal descendant of the response. Structural learning tools developed in causal

inference may be helpful for this purpose, see Spirtes et al. (2000, Chapter 8) for some

examples.

Our hope is that this article can encourage more machine learning practitioners

to peek into their black-box models and look for causal interpretations. This article

only reviews the minimal language and concepts in causal inference needed to discuss

possible causal interpretations of PDP and ICE. There are many additional resources

that an intrigued reader may find useful. Lauritzen (2001) is an excellent review of

probabilistic graphical models for causal inference; A more thorough treatment can be

found in Spirtes et al. (2000). Pearl (2009) contains many philosophical considerations

about statistics and causal inference and also gives a good coverage of nonparametric

structural equation model that is used in this article. Rosenbaum (2002), Imbens and

Rubin (2015) focus on statistical inference for the causal effect of a single treatment

variable X and another dependent variable Y . Morgan and Winship (2015) is a good

introduction to causal inference from a social science perspective, and a book by Hernan

and Robins (forthcoming) gives a cohesive presentation of concepts and methods in

causal inference to readers of a broader background.
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(b) ICE plots. The baseline (level 0) in both plots is origin

being EU. For clarity, only 50% of the ICE curves in the left

panel are shown.

Figure 5. Auto MPG data: impact of origin on MPG. Marginally, Japanese

cars have much higher MPG than American cars. This trend is maintained in

the ICE plots but the difference is much smaller.
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shows that the actual causal effect might be much smaller than

the marginal effect and only occur when the number of keywords

is less than 4.
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suggest that extreme titles get more shares. The PDP shows that

the causal effect might be much smaller than the marginal effect.

Figure 6. Results of online news popularity dataset.


	1. Introduction
	2. Interpretations of black-box models
	3. Partial dependence plots
	4. Causal Model
	4.1. Structural Equation Model
	4.2. The Back-Door Criterion

	5. Finer visualization
	5.1. Individual Curves
	5.2. Mediation analysis

	6. More examples
	7. Conclusion
	Acknowledgment
	References

