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Summary: The increasing availability and scale of biobanks and “omic” datasets bring new horizons for un-

derstanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures

using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation

model where traits are regulated by both genetic and environmental pathways. PathGPS decouples the genetic

and environmental components by contrasting the GWAS associations of “signal” genes with those of “noise”

genes. From the estimated genetic component, PathGPS then extracts genetic pathways via principal component

and factor analysis leveraging the low-rank and sparse properties. In addition, we provide a bootstrap aggregating

(“bagging”) algorithm to improve stability under data perturbation and hyper-parameter tuning. When applied
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to a metabolomics dataset and the UK Biobank, PathGPS confirms several known gene-trait clusters and suggests

multiple new hypotheses for future investigations.
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1. Introduction

Understanding the biological mechanisms by which genetic variation influences phenotypes

is one of the primary challenges in human genetics [Lappalainen and MacArthur, 2021].

Genome-wide association studies (GWAS) have successfully mapped thousands of genetic

loci associated with complex human traits. However, it is extremely time-consuming and

inefficient to investigate every identified association and validate the function [Visscher

et al., 2017]. Moreover, complex traits are usually highly polygenic and are associated with

a large number of variants across the genome, each explaining only a small fraction of the

genetic variance [Manolio et al., 2009, Shi et al., 2016]. These difficulties have hindered

the translation of GWAS findings into drug development and clinical applications [Cano-

Gamez and Trynka, 2020].

Recently, studies have revealed that many complex traits are associated with the same

genomic loci [Pickrell et al., 2016] and identified many pairs of traits with strong ge-

netic correlation [Solovieff et al., 2013, Bulik-Sullivan et al., 2015, Ning et al., 2020]. This

phenomenon indicates that disease-causing variants may cluster into key pathways that

drive several diseases at the same time [Boyle et al., 2017]. Motivated by the underlying

connection among traits, we aim to use large-scale biobank data containing thousands of

phenotypes to aggregate information from correlated complex traits and infer their shared

genetic architectures. In this article, we aim to use large-scale biobank data to aggregate

the information from various traits and infer their shared genetic architectures.

Our motivating dataset is the UK Biobank, a rich database of genetic and pheno-

typic information from hundreds of thousands of participants across the UK. Participants

are genotyped to capture genome-wide genetic variation at millions of single nucleotide

polymorphisms (SNPs). A wide variety of phenotypes are recorded, including biological
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measurements, lifestyle indicators, bio-markers in blood, and disease diagnosis. The UK

Biobank data provide plenty of opportunities for identifying genetic associations with

complex traits.

There are several non-trivial hurdles to recover shared genetic architectures from GWAS

data. First, any trait is a product of genetic and environmental influences. The envi-

ronmental factors can both lead to spurious associations or shadow true genetic signals.

Unfortunately, environmental factors are not directly observed in most datasets, making

it difficult to isolate the genetic contribution from the environmental influences. Second,

the biobank data are usually gathered in multiple batches and are regularly augmented

with newly collected data. Therefore, the database includes observations from several

cohorts and the summary statistics are derived from multiple population. Third, the set of

measured traits in large biobanks is evergrowing and many traits are repeatedly measured

in slightly different ways. It is desirable to develop a statistical method that is insensitive

to data perturbation and yields consistent statistical conclusions as the dataset continues

to be enriched.

[Figure 1 about here.]

In this paper, we develop a new statistical method—PATHway discovery through Genome-

Phenome Summary data (PathGPS)—based on a model that assumes most human traits

are regulated by one or several genetic or environmental pathways (Figure 1a). PathGPS

can generate clusters of genes and traits associated with the same biological pathways

(Figure 1b) and addresses the aforementioned challenges. First, by subtracting the em-

pirical covariance of traits computed using “noise” genes (genetic variants showing no

or weak associations with the traits) from that using “signal” genes (genetic variants

showing strong associations with some traits), PathGPS disentangles genetic mechanisms
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from environmental factors. PathGPS then applies principal component analysis (PCA)

to the disentangled covariance matrix and provides a low-rank representation of genetic

associations. Second, PathGPS can be applied to summary statistics derived from several

cohorts as long as the underlying genetic pathways are shared across cohorts. Third,

to stabilize PathGPS, we design a novel implementation of the bootstrap aggregation

(“bagging”) applied to unsupervised learning (Figure 1c). In particular, by resampling

the genes, PathGPS obtains a weighted graph which estimates the likelihood that a pair

of variables (could be genes or traits) appear in the same pathway. Dimension reduction

techniques and clustering algorithms are then applied to visualize this graph and produce

clusters.

PathGPS only requires GWAS summary statistics, which can be more easily accessed

compared to individual genetic data. An additional benefit is that the computational

complexity of our method does not depend on the sample size of the GWAS, once the

summary statistics are already produced. Our proposal is motivated by the literature

investigating summary statistics for heritability and latent factor characterization [Fin-

ucane et al., 2015, Tanigawa et al., 2019, Bulik-Sullivan et al., 2015]. In addition, we

draw upon statistical methods with both sparsity and low-rank structures [Zou et al.,

2006,Witten et al., 2009,Kaiser, 1958,Jennrich, 2001]. PathGPS also builds on the idea of

using bootstrap resamples to reduce the variance of statistical learning methods [Breiman,

2001].

The paper is organized as follows. In Section 2, we introduce the statistical model and the

PathGPS algorithm. In Section 3, we investigate the performance of PathGPS in simulated

and real datasets and discuss findings using the UK BioBank data. We conclude the paper

with more discussion in Section 4.
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2. Method

In Section 2.1, we lay out the model characterizing latent pathways. We discuss column

space estimation in Section 2.2.1, a preparation step for the gene-trait clustering in Sec-

tion 2.2.2. In Section 2.3, we propose to use bootstrap aggregation to boost the stability

of the proposed clustering algorithm.

2.1 Structural Equation Model of Latent Pathways

We describe latent genetic and environmental pathways connecting SNPs and traits using

a linear structural equation model (SEM). We start with an individual level model of the

SNPs and traits, and then derive the summary statistics from the individual level model.

Suppose there are p SNPs X = (X1, . . . , Xp) and q traits Y = (Y1, . . . , Yq). We as-

sume the traits are influenced by the SNPs through r latent genetic mediators M =

(M1, . . . ,Mr). Meanwhile, we assume the traits are also affected by s unobserved environ-

mental mediators m = (m1, . . . ,ms). Mathematically, we adopt the linear SEM,

M = XU + εM , (1)

Y = MV> +mW> + εY , (2)

where εM ∈ Rr, εY ∈ Rq denote zero-mean errors in the mediators M and traits Y ,

respectively, and U ∈ Rp×r, V ∈ Rq×r, W ∈ Rq×s are coefficient matrices. We assume the

errors εM , εY are zero-mean and independent of the SNPs as well as the environmental

mediators.

Our goal is to discover genetic pathways: SNPs → genetic mediator (latent) → traits.

Since the genetic mediators are unobserved, we look for clusters of SNPs and traits related

to the same underlying genetic pathway. Figure 1 displays an example: there are two genetic

pathways: X1, X2 → M1 → Y1, Y2 in red and X2, X3 → M2 → Y3 in blue, and we aim to
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uncover the corresponding gene-trait clusters {X1, X2, Y1, Y2} and {X2, X3, Y3}. In terms

of the SEM, let U·k, V·k be the k-th column of U, V, and Eq. (1) and (2) are equivalent

to

Mk = XU·k + εMk , 1 ≤ k ≤ r,

Y =
r∑

k=1

MkV
>
·k +

s∑
k=1

mkW
>
·k + εY .

The k-th genetic pathway refers to the SNPs’ effects on the k-th mediator Mk, denoted

by XU·k, and the effect of Mk on the traits Y , denoted by MkV
>
·k. The k-th gene-trait

cluster comprises the SNPs and traits with non-zero loadings in U·k and V·k, respectively.

Our analysis does not operate with the individual level data but instead handles the

more readily available summary statistics—gene-trait effect (marginal association) esti-

mates. The estimated marginal associations of gene-trait pairs, denoted by β̂, are obtained

from running simple linear regressions with one trait as the response and one SNP as

the predictor. For pre-processing, we use the PLINK software to select (approximately)

independent index SNPs. We normalize the SNP vectorsX to zero mean and unit variance,

and the matrix X>X is close to an identity matrix. Under the SEM model and the above

normalization, the estimated marginal associations of the index SNPs ideally take the form

β̂ = X>Y . (3)

By plugging Eq. (1), (2) into Eq. (3) and collecting zero-mean environmental mediators

m, two sources of errors εM , εY in E = X>mW> + X>EMV> + X>EY , the estimated

marginal association matrix β̂ ∈ Rp×q satisfies

β̂ = UV> + E. (4)
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In the following, we explain how to use β̂ to uncover the gene-trait clusters—non-zero

loadings in matching column pairs of U and V.

2.2 Estimation of Gene-Trait Clusters

Two biological phenomena facilitate the learning of gene-trait clusters from the summary

statistics β̂. First, the ubiquity of pleiotropy—a single mutation may affect multiple traits—

is supported by increasing evidence. Correspondingly, in model (1) and (2), the number

of strong genetic pathways is expected to be significantly smaller than the numbers of

traits and SNPs collected, i.e., r � p, q, and thus the product matrix UV> ∈ Rp×q is

low-rank (of rank at most r). Second, though the total number of SNPs is colossal, only

a small proportion of SNPs are expected to get involved in a certain genetic pathway.

In the statistical terminology, the underlying true coefficient matrix U should consist of

sparse columns. In addition, a genetic pathway may only influence a limited number of the

traits collected. Therefore, most of the elements in the columns V·k are anticipated to be

zero. The low-rank and sparse structures together imply that the traits and SNPs can be

grouped into a few clusters (low-rank property), each containing a relatively small number

of SNPs and traits (sparse property).

We discuss our proposal PathGPS leveraging the low-rank and sparse structures. We

start with estimating the low-dimensional column spaces of U and V in Section 2.2.1.

In Section 2.2.2, we discuss methods to find Û, V̂ with sparse columns in the estimated

column spaces ĉolsp(U), ĉolsp(V), respectively. Finally, we construct a gene-trait cluster

for each column pair (Û·k, V̂·k), 1 ≤ k ≤ r, corresponding to the k-th genetic pathway.

The whole procedure is summarized in Algorithm 1.
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Algorithm 1: PathGPS

Input: Estimated marginal association matrices β̂ ∈ Rp×q (signal SNPs) and
β̂0 ∈ Rp0×q (noise SNPs), number of latent mediators r.

Initialization: List L = ∅ of gene-trait clusters.
1. Remove environmental confounders: compute the truncated eigen-decomposition
with r components

β̂>β̂ − p

p0
β̂0
>
β̂0 = ṼD̃Ṽ>,

where Ṽ ∈ Rq×r is orthonormal, D̃ ∈ Rr×r is diagonal. Let Ũ = β̂Ṽ.
2. Apply Varimax or Promax to Ṽ and find the transformation matrix R ∈ Rr×r such
that the transformed columns have high loadings on a few coordinates but near-zero
values on the rest. Let V̂ = ṼR , Û = Ũ(R−1)>. We further truncate the near-zero
elements in V̂ and Û to zero.

3. for k from 1 to r do
Define the k-th gene-trait cluster as

Ck :=
{
Xi : Ûik 6= 0

}
∪
{
Yj : V̂jk 6= 0

}
.

Add the k-th cluster into the cluster list L ← L ∪ {Ck}.
end
Output: List L of gene-trait clusters.

2.2.1 Column Space Estimation. Matrices U, V in Eq. (4) are not identifiable without

further assumptions. In fact, for any invertible matrix R ∈ Rr×r, define V′ = VR, U′ =

U (R−1)
>

, then U′V′> = UV>. However, the column spaces colsp(U) and colsp(V) are

uniquely defined. Therefore, we start with estimating colsp(U) and colsp(V).

We use a baseline method to demonstrate the challenge posed by the presence of envi-

ronmental influences in estimating the column spaces. Provided with the true number of

latent mediators r, arguably the most straightforward column space estimator, which we

call “simple SVD”in the following, consists of two steps,

(1) Compute the singular value decomposition (SVD) of β̂ and take the top r singular

vectors ÛSVD, V̂SVD;

(2) Let ĉolsp(U) = colsp(ÛSVD), ĉolsp(V) = colsp(V̂SVD).
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However, by using Eq. (4) and taking expectation over errors εM and εY , the estimated

marginal associations satisfy

E
[
β̂>β̂

]
= VU>UV> +

p

n

(
WΣmW> + VΣεMV> + ΣεY

)
. (5)

The decomposition suggests that the column space of β̂>β̂, concentrated around its ex-

pectation E
[
β̂>β̂

]
, is contaminated by the environmental variation WΣmW> and the

response error covariance matrix ΣεY . The contamination is serious when the ratio p/n is

not ignorable. As a consequence, the “simple SVD”will mistake environmental influences

for genetic components.

To separate the genetic and environmental components in Eq. (5), we propose a method

using noise SNPs. The idea is to use the estimated marginal associations β̂0 of p0 noise

SNPs, which are not (or only weakly) associated with traits, to learn the non-genetic struc-

ture and remove it from the estimated marginal associations β̂ of signal SNPs. Explicitly,

the marginal associations of the noise SNPs, satisfy

E
[
β̂0
>
β̂0
]

=
p0

n

(
WΣmW> + VΣεMV> + ΣεY

)
. (6)

Compared to Eq. (5), the expectation of β̂0
>
β̂0 of the noise SNPs does not contain any

genetic component and is a scalar multiple of the environmental effects. As a direct corollary

of Eq. (5) and (6),

E
[
β̂>β̂ − p

p0
β̂0
>
β̂0

]
= VU>UV>. (7)

Eq. (7) demonstrates the environmental influences can be removed by subtracting a scalar

multiple of β̂0
>
β̂0 from β̂>β̂. Motivated by this cancellation of the non-genetic influences,

we introduce the differencing estimator of colsp(V):
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(1) Compute the truncated eigen-decomposition of β̂>β̂ − p
p0
β̂0
>
β̂0 with r components.

Denote the matrix of r eigenvectors by Ṽ. Let ĉolsp(V) = colsp(Ṽ).

(2) As for colsp(U), we suggest

Ũ = β̂Ṽ, ĉolsp(U) = colsp(Ũ). (8)

2.2.2 Gene-trait clustering. In this section, we find sparse matrices in the estimated

column spaces in Section 2.2.1 and construct gene-trait clusters from the non-zero loadings.

Let Ũ, Ṽ be two candidate matrices from ĉolsp(U), ĉolsp(V), respectively. We aim to find

a transformation matrix R ∈ Rr×r such that the columns of Û := Ũ(R−1)>, V̂ := ṼR are

sparse. The task aligns with a number of readily available methods from factor analysis with

an focus on sparsity. In particular, we adopt two commonly used approaches summarized

below.

• Varmiax [Kaiser, 1958]. We start from an orthonormal matrix Ṽ and solve for a rotation

matrix R to maximize the variances of squared loadings of Ṽ>R’s columns. The resulting

V̂ tend to have many small loadings and we set those values to zero. Finally, we let

Û = Ũ(R−1)> = ŨR and again set small values in Û to zero.

• Promax [Hendrickson and White, 1964]. Promax first applies the above Varimax to Ṽ,

and then rotates the orthogonal columns of Varimax to a least squares fit. The approach

relaxes the orthonormal restriction of R in Varimax and thus the loadings in V̂ are

pushed further apart. We let Û = Ũ(R−1)> and truncate small values in Û, V̂ to zero.

Finally, provided with sparse column estimators Û, V̂, we loop over r column pairs

(Û·k, V̂·k) and assign the traits and genes with non-zero loadings into a cluster. Details are

summarized in Algorithm 1. In the upcoming section, we will build upon Algorithm 1 and

enhance its stability by bootstrap aggregation.
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2.3 Bootstrap Aggregation of PathGPS

Several issues may undermine the reliability of Algorithm 1. First, in modern biobanks,

the set of measured traits is evergrowing. Many traits are repeatedly measured in slightly

different ways. It is desirable to obtain stable results if the traits are slightly perturbed.

Second, in the data preprocessing procedures, we use an external SNP dataset to select

signal and noise index SNPs. We expect to arrive at similar gene-trait clusters if we perturb

the index SNP sets, especially the signal SNPs, by a small amount. Third, Algorithm 1

relies on a set of hyper-parameters, such as the number of latent mediators r. The cluster

list L should be robust to the selection of hyper-parameters.

We propose a bootstrap aggregation (bagging) approach to stabilize the pipeline and

make the results more replicable by perturbing the entire procedure many times and then

aggregating the results. In the following, we discuss the two components of the bagging pro-

cedure: SNP bootstrapping (Section 2.3.1) and the aggregation method via a co-appearance

graph (Section 2.3.2). The full bagging procedure is summarized in Algorithm 2.

2.3.1 SNP Bootstrapping. Motivated by [Breiman, 2001], we bootstrap the SNPs used

by Algorithm 1. In each trial, we resample the same number of signal SNPs with replace-

ment and obtain bootstrapped signal estimated marginal associations β̂b. We then apply

Algorithm 1 to β̂b and β̂0 and arrive at a cluster list Lb. We repeat from the resampling

B times and obtain a collection of cluster lists {Lb}. The left panel of Figure 2 describes

an example of the bootstrap process.

[Figure 2 about here.]

2.3.2 Co-appearance Graph Aggregation. Based on the multiple gene-trait clusters {Lb}

generated by the SNP bootstrapping, we propose to aggregate the cluster lists using a co-
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appearance graph. Consider a graph whose nodes denote SNPs and traits. For two nodes

vi and vj, we define the weight for the edge connecting vi and vj (called the co-appearance

frequency in the following)

wij :=
1

B

B∑
b=1

1

|Lb|
∑
Ck∈Lb

1{vi∈Ck}1{vj∈Ck}, (9)

where Ck denotes the gene-trait cluster in the list Lb obtained from the b-th bootstrap

sample. The right panel of Figure 2 displays an example of the co-appearance graph. If

two nodes always show up in the same cluster, the pair will have a high co-appearance

frequency (9), and we are more confident about the connection of the pair.

The co-appearance graph is convenient for downstream clustering and visualization. One

option is using t-SNE [Hinton and Roweis, 2002] or UMAP [McInnes et al., 2018] to

find low-dimensional embeddings. The embeddings can be further used to visualize genes

and traits that are closely connected in the co-appearance graph. The representations

can also be fed to various clustering methods based on feature vectors like k-means.

Alternatively, we can directly use graph clustering methods, such as spectral clustering

and label propagation, to obtain gene-trait clusters.

3. Results

In Section 3.1, we generate simulated datasets following the SEM (1), (2). We demonstrate

the differencing estimator’s performance in estimating the column space in Section 3.1.1.

We showcase that bagging enhances the stability of PathGPS in Section 3.1.2. In Sec-

tion 3.2, we report the findings from applying PathGPS to the metabolomics data and the

UK Biobank data.

3.1 Simulated Datasets
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Algorithm 2: Bagged PathGPS

Input: Marginal association estimate matrix of signal SNPs β̂, marginal association
estimate matrix of noise SNPs β̂0, number of latent mediators r, number of
bootstrap trials B.

Initialization: A set of gene-trait cluster list S = ∅.
1.for b from 1 to B do

a. Resample the same number of signal genes with replacement and obtain β̂b.
b. Apply Algorithm 1 with inputs β̂b, β̂0, r, and get a cluster list Lb. Update the
set of lists S ← S ∪ {Lb}.

end
2. Compute the co-appearance frequency (9) using S for all signal SNPs and traits.
3. Use t-SNE/UMAP to find low-dimensional embeddings and cluster. Alternatively,
run graph clustering algorithms on the co-appearance graph to get gene-trait
clusters. Denote the final list of clusters by L.

Output: Gene-trait cluster list L.

3.1.1 Column Space Estimation. We construct simulation datasets following the SEM (1),

(2). We consider n = 2000 individuals, p = 100 signal SNPs, p0 = 400 noise SNPs, q = 100

traits, r = 4 latent genetic mediators, and s = 2 latent environmental mediators. The

number of latent genetic mediators are significantly smaller than the number of index

SNPs and the number of traits. The signal/noise SNPs, latent environmental mediators,

and the random errors εM , εY are independent standard Gaussian random variables. As for

coefficient matrices, we first generate elements of the coefficient matrices U, V uniformly

from [−1, 1], and then randomly set 80% of the entries to zero to create sparse matrices

U, V. We also generate elements of the environmental mediators’ coefficient matrix W

uniformly from [−4, 4]. We adjust the magnitudes of the environmental influence, the

errors in the mediators εM , and the errors in the traits εY so that the proportion of

the environmental mediators’ variance Var(mW)/Var(ε′) (environmental factor strength)

varies from 10% to 90%, while the total variance of the non-genetic component stays the

same. We compare two column space estimators: the differencing estimator in Algorithm 1
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and the “simple SVD”estimator. We measure the performance of column space estimators

by the column space distance: let U1 and U2 be two arbitrary matrices of dimension p× r,

and let colsp(U1), colsp(U2) be the corresponding column spaces, respectively, define the

column space distance as

dist(colsp(U1), colsp(U2)) := max
ξ∈Rp,‖ξ‖2=1

‖PU1ξ − PU2ξ‖2, (10)

where PU1 , PU2 are the projection operators onto the column spaces of U1, U2.

In Figure 3, we report the column space distances (10) of the two methods under

different levels of environmental influences. The performance of the “simple SVD”approach

deteriorates as the environmental influence increases. The “simple SVD”approach mis-

takenly counts the leading environmental factor as a genetic influence. In contrast, the

proposed column space estimator is robust to the environmental factors. This is because,

despite of the magnitude of the environmental influence, the environmental factors are

nearly entirely captured by its estimator β̂0
>
β̂0 and subtracted from β̂>β̂. When the

environmental factor strength (the proportion of the environmental mediators’ variance

Var(mW)/Var(e) in Eq. (4)) exceeds 75%, the one standard deviation intervals of the col-

umn space distance based on the proposed estimator fall strictly below those produced by

the “simple SVD”approach. In the supplementary materials, we also compare the clustering

results based on the proposed estimator against the “simple SVD”. In the supplementary

materials, we have included additional simulations for a more comprehensive analysis. In

particular, we demonstrate that our proposed method exhibits robustness in the presence

of the many weak effects commonly associated with polygenic traits.

[Figure 3 about here.]
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3.1.2 Gene-Trait Clustering. As in Section 3.1.1, we follow the SEM (1), (2) and con-

sider n = 500 individuals, p = 50 signal SNPs, p0 = 150 noise SNPs, q = 30 traits, r = 3

latent genetic mediators, and s = 2 latent environmental mediators. In the default setting

(default), we design sparse coefficient matrices U, V to have a total of n∅ = 16 genes and

traits in each cluster. We also enforce each gene and trait to belong to at most one cluster.

In addition to the default setting, we consider two variations: a sparse setting (sparse) with

only n∅ = 12 genes and traits per cluster; an overlap setting (overlap) where a gene/trait

may belong to multiple clusters (multiple membership). Details of the three simulation

settings are summarized in Table 1.

We compare several versions of the PathGPS: (a) the one-shot pipeline (baseline) follow-

ing Algorithm 1 (no further clustering is required, clustering method denoted by “NA”);

(b) the clustering without bootstrapping (one-shot) following Algorithm 1; (c) the co-

appearance clustering with bootstrapping (bootstrap) following Algorithm 1 with 200 boot-

strap resamples. As for the clustering methods used by the approach one-shot and bootstrap

based on co-appearance graphs, we consider: (a) first learn the low-dimensional embeddings

via t-SNE or UMAP, and then cluster the embeddings by k-means; (b) directly apply graph

clustering methods: spectral clustering and hierarchical clustering.

We evaluate the performance of the clustering by the minimal clustering error across

label permutation below. In particular, let L be the true list of r clusters defined on set

A, and L̂ be an estimate with the same number of clusters , then we define the clustering

error

min
π

1

r

r∑
k=1

1

|A|
∑
a∈A

(
1{a∈Cπ(k),a/∈Ĉk} + 1{a/∈Cπ(k),a∈Ĉk}

)
, (11)

where π : {1, 2, . . . , r} → {1, 2, . . . , r} denotes a permutation over cluster labels. To test
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the robustness to the misspecification of hyper-parameters, we input a sequence of hyper-

parameters around the true values. For the number of latent genetic pathways r, we provide

r′ such that r′ − r ∈ {−1, 0, 1, 2, 3}, which includes the correct specification r′ = 3. For

the number of genes and traits in each channel n′∅, we input hyper-parameters n′∅ − n∅ ∈

{−4, 0, 4, 8, 12}, which also includes the correct specification.

In Figure 4, across different simulation settings, the baseline achieves the best accuracy

at the true hyper-parameters, while the bootstrap approach is in general more robust.

[Table 1 about here.]

[Figure 4 about here.]

3.2 Real datasets

[Figure 5 about here.]

3.2.1 Metabolomics Data. We use the genome-metabolome wide association study in

[Kettunen et al., 2016] as the main dataset. The summary statistics are derived from

24925 participants and contain 123 metabolites, 1.3 × 107 passing quality control SNPs.

We remove 18 traits with less than 1.5% variance explained according to the Supplementary

Table 1 of [Kettunen et al., 2016]. To select approximately independent index SNPs, we

apply PLINK to an external dataset [Davis et al., 2017] of 72 metabolites including a large

proportion of the traits in the main dataset. We regard 50 index SNPs with at least one

significant marginal association as signal SNPs, and 250 index SNPs with no significant

marginal associations as noise SNPs. We extract the marginal associations corresponding

to the signal and noise SNPs from the main dataset as the input for PathGPS.

We apply PathGPS to a metabolomics dataset (Section 3.2.1) and the UK Biobank

(Section 3.2.2), and discuss the gene-trait clusters produced. Preprocessing procedures can
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be found in the supplementary materials, including the details of choosing “signal” and

“noise” genes. The results, including the lists and visualizations of the gene-trait clusters,

are summarized in Figure 5.

For the metabolomics dataset, PathGPS produces 7 clusters which roughly correspond to

large high-density lipoprotein (HDL), small HDL, low-density lipoprotein (LDL), intermediate-

density lipoprotein (IDL), large very-low-density lipoprotein (VLDL), small VLDL, and

non-lipoprotein measurements (Figure 5a). Thus, using genetic data only, PathGPS is able

to recover the known taxonomy of circulating metabolites. In the supplementary materials,

we provide a comparison of the clusters produced by PathGPS and those of the “simple

SVD” method. PathGPS confirms several known causal genes, such as PLTP as a regulator

of HDL size [Huuskonen et al., 2001] and PCSK9 as a regulator of LDL cholesterol [Maxwell

and Breslow, 2004]. PathGPS also proposes several biological hypotheses that are not as

well established, including RNF111 in relation to HDL [Holmen et al., 2014] and TM4SF5

in relation to lipid measurements [Choi et al., 2021]. In fact, few gene-trait pairs suggested

by PathGPS directly reach the genome-wide significant level after correcting for multiple

testing, but the majority of the gene-trait pairs are at least moderately associated. This

demonstrates the ability of PathGPS to associate a group of genes with a group of traits,

when any single association is not sufficiently strong.

In each trial, we subsample around half of the traits without replacement, and apply

PathGPS to the selected subset of traits. We compare the co-appearance weights (co-

appearing probabilities) obtained with (Figure 5a4 UMAP) and without (Figure 5a4

Baseline) bootstrap aggregation. Close-to-one co-appearance weights (co-appearing proba-

bilities) indicate the associated pairs always fall into the same cluster and close-to-zero

values imply the associated pairs always end up in different clusters. We observe the
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histograms of co-appearance weights (co-appearing probabilities) of PathGPS with bagging

have sharper spikes around 0 and 1. The bowl-shaped histograms indicate the bagging

procedure increases the stability of PathGPS towards trait inclusion.

3.2.2 UK Biobank Data. We use the GWAS summary statistics from the UK Biobank

data generated by the Neale Lab. The summary statistics are derived from 3.6 × 105

participants of white-British ancestry and contain 1.3× 107 passing quality control SNPs.

For data preprocessing, we first remove traits with missing female or male summary

statistics. The female summary statistics are used for SNP and trait selection, and the

male summary statistics are used for downstream gene-trait cluster exploration. We select

approximately independent index SNPs based on the female summary statistics using

the PLINK software [Purcell et al., 2007]. To eliminate unreliable estimates of genetic

associations, we focus on the 175 traits with at least one significant index SNPs at a

5% confidence level. The resulting traits are a combination of lab measurements, disease

diagnoses, medication, and a small number of lifestyle habits. Among the index SNPs, we

regard the SNPs with at least one significant marginal association test as signal SNPs (1200

in total). We regard the SNPs with no significant marginal association tests as noise SNPs

(250 in total). Finally, the estimated marginal associations between the selected traits and

signal (noise) SNPs from the male population are used as the input for PathGPS.

PathGPS produces 10 clusters (Figure 5b3), among which 3 are closely related to some

diseases (venous thromboembolism, cardiovascular diseases, and type 2 diabetes), and the

other 7 contain biometric measurements, such as bone mineral density, immune system,

fat-free mass, and skin or hair colors. In the UMAP visualization (Figure 5b2), the edges

reflect high (top 350) co-appearances between vertex pairs and may offer insights into

disease mechanisms. For instance, our analysis finds the medication simvastatin is closely
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related to high cholesterol and cardiovascular diseases (CVD), which is not surprising given

that it is widely prescribed to reduce CVD risk [Bibbins-Domingo et al., 2016]. We also

find atorvastatin—another drug in the statin family—is highly related to bone mineral

density (BMD) and associated traits. This finding is consistent with existing evidence that

statin increases BMD [Li et al., 2020,Lupattelli et al., 2004]. In addition, edges connecting

monocyte, neutrophil, and lymphocyte to diabetes and asthma diagnosis have high weights,

suggesting connections between the immune system and the two common diseases. In

particular, diabetes may be related to the immune system through multiple mechanisms:

for example, hyperglycemia in diabetes may cause dysfunction of the immune response

[Berbudi et al., 2020]. As for asthma, T lymphocytes are critical to the development of

asthma [Larché et al., 2003]. The cooccurrence of diabetes and asthma may be attributed

to the shared immunological pathways [Torres et al., 2021]. In the supplementary materials,

we provide a comparison of the clusters produced by PathGPS and those of the “simple

SVD” method.

Regarding the genetic architecture, our analysis confirms many existing discoveries, such

as the association between HERC2 and hair color [Branicki et al., 2011], PELO and red

blood cells [Mills et al., 2016], and NME7 and venous thromboembolism [Heit et al., 2012].

We also find less well established biological hypotheses, such as BCL2 and Atrial fibrillation

[Li et al., 2018], GFI1 and lymphocyte cells [Van der Meer et al., 2010]. The UMAP

embedding provides further information beyond the cluster membership. For example, the

cluster containing smoking, alcohol, and diabetes is adjacent to the cluster containing

CVD, indicating a multifaceted health effect of alcohol consumption and tobacco usage.
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4. Discussion

In this article, we propose PathGPS—a promising statistical tool to discover genes and

traits sharing latent biological pathways. When applied to the UK Biobank and a metabolomics

data, PathGPS not only confirms many established genetic associations but also gener-

ates novel biological hypotheses. By grouping diseases with shared biological pathways,

PathGPS can enhance the understanding of comorbidities and contribute to the develop-

ment of comprehensive clinical practices.

We highlight that PathGPS only requires summary statistics and thus can be readily

applied to a number of biobank datasets [Chen et al., 2011,Christensen et al., 2012,Avlund

et al., 2014]. It is possible that, for certain traits, the underlying genetic pathways differ

across sub-populations around the globe. The heterogeneity of genetic pathways can po-

tentially lead to individualized treatments. Therefore, it is of value to compare the output

gene-trait clusters of PathGPS applied to various biobank datasets.

Our proposal of using PathGPS with bootstrap aggregation addresses the call of re-

producibility research. When scientific findings rely on statistical analysis, the statistical

results should be stable under “reasonable” data perturbations [Yu, 2013]. In particular,

biobanks and other databses are often regularly augmented by additional measurements

and samples, and it would be desirable to obtain consistent conclusions when more data

become available.

There are several avenues for future work. First, research shows that the interactions

between genes and environment shape human development, and childhood experiences

can alter gene expression. So it may be useful to extend the current model to include the

interaction of genetic and environmental factors. Second, PathGPS outputs groups of traits

associated with the same pathway and it would be of great interest to further investigate
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the causal mechanism. Third, given that it is difficult to develop rigorous uncertainty

quantification and inference for clustering and unsupervised learning tasks, it would be

useful to consider how experiments can be designed to validate or disprove the potential

pathways generated by PathGPS. Finally, the PathGPS deliberately selects index SNPs to

be distant from each other to ensure their independence, which results in a limited number

of such SNPs. To expand the scope and involve a larger number of SNPs, our method

would need to be extended to handle dependent SNPs. This would require us to model the

covariance matrix of the index SNPs in order to establish connections between marginal

associations and the coefficients derived from a full regression.
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Larché, M., Robinson, D. S., and Kay, A. B. (2003). The role of t lymphocytes in the

pathogenesis of asthma. Journal of Allergy and Clinical Immunology, 111(3):450–463.

Li, G. H.-Y., Cheung, C.-L., Au, P. C.-M., Tan, K. C.-B., Wong, I. C.-K., and Sham, P.-C.

(2020). Positive effects of low ldl-c and statins on bone mineral density: an integrated

epidemiological observation analysis and mendelian randomization study. International

journal of epidemiology, 49(4):1221–1235.

Li, Y., Song, B., and Xu, C. (2018). Effects of guanfu total base on bcl-2 and bax expression



24 Biometrics, 000 0000

and correlation with atrial fibrillation. Hellenic Journal of Cardiology, 59(5):274–278.

Lupattelli, G., Scarponi, A. M., Vaudo, G., Siepi, D., Roscini, A. R., Gemelli, F., Pirro,

M., Latini, R. A., Sinzinger, H., Marchesi, S., et al. (2004). Simvastatin increases

bone mineral density in hypercholesterolemic postmenopausal women. Metabolism,

53(6):744–748.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter,

D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H.,

Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M.,

Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G.,

Haines, J. L., Mackay, T. F. C., McCarroll, S. A., and Visscher, P. M. (2009). Finding

the missing heritability of complex diseases. Nature, 461(7265):747–753.

Maxwell, K. N. and Breslow, J. L. (2004). Adenoviral-mediated expression of pcsk9 in

mice results in a low-density lipoprotein receptor knockout phenotype. Proceedings of

the National Academy of Sciences, 101(18):7100–7105.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation

and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Mills, E. W., Wangen, J., Green, R., and Ingolia, N. T. (2016). Dynamic regulation of a

ribosome rescue pathway in erythroid cells and platelets. Cell reports, 17(1):1–10.

Ning, Z., Pawitan, Y., and Shen, X. (2020). High-definition likelihood inference of genetic

correlations across human complex traits. Nature Genetics, 52(8):859–864.

Pickrell, J. K., Berisa, T., Liu, J. Z., Ségurel, L., Tung, J. Y., and Hinds, D. A. (2016).

Detection and interpretation of shared genetic influences on 42 human traits. Nature

Genetics, 48(7):709–717.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller,



PathGPS 25

J., Sklar, P., De Bakker, P. I., Daly, M. J., et al. (2007). Plink: a tool set for whole-

genome association and population-based linkage analyses. American journal of human

genetics, 81(3):559–575.

Shi, H., Kichaev, G., and Pasaniuc, B. (2016). Contrasting the genetic architecture of

30 complex traits from summary association data. The American Journal of Human

Genetics, 99(1):139–153.

Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., and Smoller, J. W. (2013). Pleiotropy

in complex traits: challenges and strategies. Nature Reviews Genetics, 14(7):483–495.

Tanigawa, Y., Li, J., Justesen, J. M., Horn, H., Aguirre, M., DeBoever, C., Chang,

C., Narasimhan, B., Lage, K., Hastie, T., et al. (2019). Components of genetic

associations across 2,138 phenotypes in the uk biobank highlight adipocyte biology.

Nature communications, 10(1):1–14.

Torres, R. M., Souza, M. D. S., Coelho, A. C. C., de Mello, L. M., and Souza-Machado,

C. (2021). Association between asthma and type 2 diabetes mellitus: Mechanisms and

impact on asthma controla literature review. Canadian respiratory journal, 2021.

Van der Meer, L., Jansen, J., and Van Der Reijden, B. (2010). Gfi1 and gfi1b: key regulators

of hematopoiesis. Leukemia, 24(11):1834–1843.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., and

Yang, J. (2017). 10 years of gwas discovery: Biology, function, and translation. The

American Journal of Human Genetics, 101(1):5–22.

Witten, D. M., Tibshirani, R., and Hastie, T. (2009). A penalized matrix decomposition,

with applications to sparse principal components and canonical correlation analysis.

Biostatistics, 10(3):515–534.

Yu, B. (2013). Stability. Bernoulli, 19(4):1484–1500.



26 Biometrics, 000 0000

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.

Journal of computational and graphical statistics, 15(2):265–286.



PathGPS 27

X1

M1

Y4

Y3

Y2

Y1

M2

X 4

m1

X3

SNP

latent 
mediator}

Trait

Genetic
Environ-
mental

X2

X

M

m

Y
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n′∅ (second row) around the true values, and plot the average clustering errors aggregated
over 100 trials.
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Figure 5: Applications of PathGPS. Panel A displays the summary of the metabolomics data (a1), the UMAP
embeddings of 7 gene-trait clusters produced by PathGPS with co-appearance edge weights (a2), and representative
traits and mapped genes in each cluster (a3). In (a4), we subsample traits without replacement, and PathGPS
(UMAP) produces more consistent cluster memberships than the baseline method (Figure 1b5). Panel B displays
the summary of the UK Biobank data (b1), the UMAP visualization (b2), and representative genes and traits
of the 10 clusters produced by PathGPS (b3). PathGPS (UMAP) again produces more stable clusters (b4). The
representative traits and mapped genes in (a3) and (b3) are selected manually.
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setting number of genes & traits/cluster multiple membership
default 16 ×
sparse 12 ×
overlap 16 X

Table 1: Summary of simulation settings of gene-trait cluster discovery.


	1 Introduction
	2 Method
	2.1 Structural Equation Model of Latent Pathways
	2.2 Estimation of Gene-Trait Clusters
	2.3 Bootstrap Aggregation of PathGPS

	3 Results
	3.1 Simulated Datasets
	3.2 Real datasets

	4 Discussion
	References

