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Motivation: Epidemiology of cardiovascular diseases
I Cardiovascular diseases take the lives of 17.7 million people every

year, 31% of all global deaths.1

I Risk factors: hypertension, high cholesterol, smoking, . . .
I Ascertainment of a risk factor requires a large body of studies.

Expert opinions, case reports, animal studies

Observational studies
(case-control and cohort design)

Natural experiments

(Mendelian randomization)

RCTs
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Figure: (A rough) Hierarchy of evidence.2

1
Source: World Health Organization www.who.int/cardiovascular_diseases/en/

2
Based on: American Academy of Pediatrics clinical guidelines. Gidding, et al. (2012). “Developing the

2011 Integrated Pediatric Guidelines for Cardiovascular Risk Reduction.” Pediatrics 129(5).

www.who.int/cardiovascular_diseases/en/


2/33

The Lipid Hypothesis

“Decreasing blood cholesterol significantly reduces
the risk of cardiovascular diseases.”3

1913 First evidence from a rabbit study.

1950s – 1980s Accumulation of evidence from observational studies.
Transformation to the LDL hypothesis.

1970s Discoveries of the regulation of LDL cholesterol → Brown and
Goldstein winning the Nobel prize in 1985.

1980s More evidence from US Coronary Primary Prevention Trial.

1990s Skepticism continue until landmark statin trials.

2010s Reaffirmation from Mendelian randomization.

However, the role of HDL cholesterol remains quite controversial.

3
History based on: Academy of Medical Sciences Working Group (2007). “Identifying the environmental

causes of disease: how should we decide what to believe and when to take action?” Academy of Medical
Sciences.
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The HDL Hypothesis

“HDL is protective against heart diseases.”4

1960s Formulation of the hypothesis from observational studies. The
inverse association has been firmly established over the years.

1980s Supporting evidence from animal studies.

But... 2000s Null findings from studies of Mendelian disorders.

2010s Failed RCTs, though each has its own caveats.

2010s Null findings from Mendelian randomization.

“I’d say the HDL hypothesis is on the ropes right now,” said
Dr. James A. de Lemos . . . Dr. Kathiresan said. “I tell them, ’ It
means you are at increased risk, but I don’t know if raising it will
affect your risk.”’ — New York Times, May 16, 2012.

I Reasons of null findings: flawed design, lack of power, HDL function
hypothesis . . .

I We will reassess the evidence for HDL using a new design and
new statistical methods of Mendelian randomization.

4
History based on: Rader and Hovingh (2014). “HDL and cardiovascular disease” Lancet 384.
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Fundamental challenge of observational studies

“Correlation is not causation”.

Observational studies = Enumerating confounders

I Idea: Conditioning on possible sources of spurious correlation.

I For HDL and heart disease, confounders include:
I Age.
I Sex.
I Smoking status.
I Diabetes.
I Blood pressure.
I . . .

I Fundamental challenge: We can never be sure this list is
complete.

I The promise of Mendelian randomization: unbiased estimation of
causal effect without enumerating confounders.
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What is Mendelian randomization (MR)?

“Using genetic variants as instrumental variables.”

Causal diagram for instrumental variables (IV)

Z (Gene) X (HDL) Y (Heart disease)

C (Confounder)

1

2
××

3
×

Core IV assumptions

1. Relevance: Z is associated with the exposure (X ).

2. Effective random assignment: Z is independent of the
unmeasured confounder (C ).

3. Exclusion restriction: Z cannot have any direct effect on the
outcome (Y ).
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Examine the core IV assumptions for MR

Z (Gene) X (HDL) Y (Heart disease)

C (Confounder)

1

2
××

3
×

Criterion 1 X
Massive pool of potential IVs,

Large-scale GWAS identifies many causal variants

Criterion 2 X Due to Mendel’s Second Law

Criterion 3 ?
Problematic because of wide-spread pleiotropy

(multiple functions of genes).

Additional challenges
I Many genetic variants are only weakly associated with X .

I Most GWAS data come in summary-statistics format due to privacy.
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MR studies in epidemiology

Surging interest in MR5
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I MR methods are also increasingly used in human genetics.6

Conventional design: a 2012 MR study of HDL in Lancet7

Methods . . . First, we used as an instrument a single
nucleotide polymorphism (SNP) in the endothelial lipase
gene (LIPG Asn396Ser) . . . Second, we used as an instrument a
genetic score consisting of 14 common SNPs that
exclusively associate with HDL cholesterol . . .

5
Thomson Reuters Web of Science, topic “Mendelian randomization”, www.webofknowledge.com.

6
Gamazon, E. et al. (2015). “A gene-based association method for mapping traits using reference

transcriptome data.” Nature Genetics 47.
7

Example from: Voight et al. (2012). “Plasma HDL cholesterol and risk of myocardial infarction: a
mendelian randomisation study.” Lancet 380: 572–580.

www.webofknowledge.com
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New methods for MR
Part 1: Increased robustness to pleiotropy
We will derive an estimator that is robust to both

1. Sparse pleiotropy/invalid IV.
I Works of Hyunseung Kang and coauthors.8

2. Dense but balanced pleiotropy.
I Works of Jack Bowden, Stephen Burgess and coauthors (e.g.

MR-Egger).9

Part 2: Increased efficiency in genome-wide MR

I Due to “missing heritability”, we would like to use as many SNPs as
possible to gain statistical power.

I Example: for height, there are extremely large number of causal
variants tiny effect sizes, spreading widely across the genome.10

I Statistical insights are needed to guarantee increased efficiency.

8
Kang, H. et al. (2016). “Instrumental variables estimation with some invalid instruments and its

application to Mendelian randomization.” Journal of American Statistical Association, 111.
9

Bowden, J. et al. (2015). “Mendelian randomization with invalid instruments: effect estimation and bias
detection through Egger regression.” International Journal of Epidemiology, 44.

10
Shi, H. et al. (2016). “Contrasting the genetic architecture of 30 complex traits from summary

association data.” American Journal of Human Genetics, 99. See also a 2017 Cell paper by Boyle et al.
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Rest of the talk

Part 0: Data Structure & Modeling Assumptions

Part 1: Increased robustness to pleiotropy

Part 2: Increased efficiency in genome-wide MR
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Outline

Part 0: Data Structure & Modeling Assumptions

Part 1: Increased robustness to pleiotropy
Evolution of pleiotropy models: Assumption 2.1 → 2.2 → 2.3
Evolution of statistical methods: PS → APS → RAPS
Example: BMI and blood pressure

Part 2: Increased efficiency in genome-wide MR
RAPS with Empirical Partially Bayes
Example: HDL and Coronary Heart Disease
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Working example

Instrumental variables Z1:p: Single nucleotide polymorphisms (SNPs).

Exposure variable X : Body mass index (BMI).

Outcome variable Y : Systolic blood pressure (SBP).

Data preprocessing for two-sample summary-data MR

Dataset BMI-FEM BMI-MAL SBP-UKBB

Source GIANT (female) GIANT (male) UK BioBank

Sample size 171977 152893 317754

GWAS lm(X ∼ Zj) lm(X ∼ Zj) lm(Y ∼ Zj)

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj σYj

Step 1 Use BMI-FEM to select significant (p-value ≤ 5× 10−8)
and independent SNPs (p = 25).

Step 2 Use BMI-MAL to obtain (γ̂j , σXj), j = 1 : p.

Step 3 Use SBP-UKBB to obtain (Γ̂j , σYj), j = 1 : p.
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Assumption 1

Measurement error model(
γ̂

Γ̂

)
∼ N

((
γ
Γ

)
,

(
ΣX 0
0 ΣY

))
,

ΣX = diag(σ2
X1, . . . , σ

2
Xp),

ΣY = diag(σ2
Y 1, . . . , σ

2
Yp).

Pre-processing warrants Assumption 1

Dataset BMI-FEM BMI-MAL SBP-UKBB

GWAS lm(X ∼ Zj) lm(X ∼ Zj) lm(Y ∼ Zj)

Coefficient
Used for selection

γ̂j Γ̂j

Std. Err. σXj σYj

I Large sample size ⇒ CLT.

I Independence due to

1. Non-overlapping samples (in all three datasets).
2. Independent SNPs.



13/33

Assumption 2

Linking the genetic associations
The causal effect β0 satisfies Γ ≈ β0γ. This contains two claims:

1. The relationship is approximately linear.

2. The slope β0 has a causal interpretation.

Heuristic: Linear structural equation model
Assume all the IVs are valid.

X =

p∑
j=1

γjZj + ηXC + EX ,

Y = β0X +

p∑
j=1

αjZj + ηYC + EY

=

p∑
j=1

(β0γj︸︷︷︸
Γj

)Zj +

p∑
j=1

αjZj︸ ︷︷ ︸
0 by exclusion restriction

+ f (C ,EX ,EY )︸ ︷︷ ︸
independent of Z
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Statistical problem

Genetic association
inference

=⇒ Epidemiological causation

(γ̂j , Γ̂j , σXj , σYj)j=1:p =⇒ β0

Z (Gene) X (HDL) Y (Heart disease)

C (Confounder)

1

2
××

3
×

γ̂ = lm(X ∼ Z)

Γ̂ = lm(Y ∼ Z)

β0???
Genetic

association

Epidemiological
causation
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Outline

Part 0: Data Structure & Modeling Assumptions

Part 1: Increased robustness to pleiotropy
Evolution of pleiotropy models: Assumption 2.1 → 2.2 → 2.3
Evolution of statistical methods: PS → APS → RAPS
Example: BMI and blood pressure

Part 2: Increased efficiency in genome-wide MR
RAPS with Empirical Partially Bayes
Example: HDL and Coronary Heart Disease
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Assumptions 1 & 2.1 =⇒ Profile score (PS)

Asumption 2.1: No pleiotropy
The linear relation Γj = β0γj is true for every j = 1, . . . , p.

I Log-likelihood of the data (up to additive constant):

l(β, γ1, . . . , γp) = −1

2

[ p∑
j=1

(γ̂j − γj)2

σ2
Xj

+

p∑
j=1

(Γ̂j − γjβ)2

σ2
Yj

]
.

I Profile likelihood: l(β) = max
γ

l(β,γ) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)2

σ2
Yj + β2σ2

Xj

.

I The MLE solves the profile score (PS) equation l ′(β̂PS) = 0.

I This estimator is an extension of the limited information
maximum likelihood (LIML) of Anderson and Rubin (1949)11 to
the two-sample summary-data setting.

I Consistency and asymptotic normality can be proven.

11
Anderson, T. , & Rubin, H. (1949). “Estimation of the parameters of a single equation in a complete

system of stochastic equations.” Annals of Mathematical Statistics, 20.
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Diagnostic plots show clear overdispersion
BMI-SBP Example (continued)

I Left (p = 25, psel < 5 · 10−8): Scatter-plot of GWAS summary data.

I Right (p = 160, psel < 10−4): Q-Q plot of standardized residual

t̂j =
Γ̂j − β̂γ̂j√
β̂2σ2

Xj + σ2
Yj

.
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Why Assumption 2.1 failed?

Answer: pleiotropy (direct effect on the outcome).

Heuristic: Linear structural equation model (with invalid IVs)

X =

p∑
j=1

γjZj + ηXC + EX ,

Y = β0X +

p∑
j=1

αjZj + ηYC + EY

=

p∑
j=1

(β0γj + αj︸ ︷︷ ︸
Γj

)Zj + f (C ,EX ,EY )︸ ︷︷ ︸
independent of Z

Assumption 2.2: Random independent pleiotropy

Assume αj = Γj − β0γj is independent of γj and αj
i.i.d.∼ N(0, τ 2

0 ).
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Assumption 2.2 is consistent with genetic theory

This ubiquitous pleiotropy model is consistent (or not inconsistent) with
the current understanding of genetic effects:

I Fisher’s infinitesimal model (1918).

I Leading edge perspective on pleiotropy12

“In summary, the omnigenic model of complex disease
proposes that essentially any gene with regulatory variants
in at least one tissue that contributes to disease
pathogenesis is likely to have nontrivial effects on risk for
that disease. Furthermore, the relative effect sizes are such
that, since core genes are hugely outnumbered by peripheral
genes, a large fraction of the total genetic contribution to
disease comes from peripheral genes that do not play
direct roles in disease.”

12
Boyle, E. et al. (2017). “An expanded view of complex traits: from polygenic to omnigenic”. Cell 169,

p1177–1186
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Back to statistics: Failure of the profile likelihood

I The profile likelihood under Assumption 2.2 is given by

l(β, τ 2) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)2

(σ2
Yj + τ 2) + β2σ2

Xj

+ log(σ2
Yj + τ 2),

I Easy to verify

E
[ ∂
∂β

l(β0, τ
2
0 )
]

= 0.

I But the other score function is biased:

∂

∂τ 2
l(β, τ 2) =

1

2

p∑
j=1

(Γ̂j − βγ̂j)2[
(σ2

Yj + τ 2) + β2σ2
Xj

]2 − 1

σ2
Yj + τ 2

.

I This is not too surprising as we are profiling out p nuisance
parameters γ1, · · · , γp (the Neyman-Scott problem).
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Assumptions 1 & 2.2 =⇒ Adjusted profile score (APS)
I We take the approach of McCullagh & Tibshirani (1990)13 to

modify the profile score

ψ1(β, τ 2) = − ∂

∂β
l(β, τ 2),

ψ2(β, τ 2) =

p∑
j=1

σ2
Xj

{
(Γ̂j − βγ̂j)2[

(σ2
Yj + τ 2) + β2σ2

Xj

]2 − 1

(σ2
Yj + τ 2) + β2σ2

Xj

}
.

I Trivial roots: β → ±∞ or τ 2 →∞.

I Let β̂APS be the non-trivial finite solution.

Theorem
Let Assumptions 1 & 2.2 be given and assume σ2 = O(1/n) and (β0, pτ

2
0 ) is in

a bounded set B. If p →∞ and p/n2 → 0, then

1. With probability going to 1 there exists a solution in B.
2. All solutions in B are consistent: β̂APS

p→ β0 and pτ̂ 2
APS − pτ 2

0
p→ 0.

I Can obtain asymptotic normality assuming p/n→ λ ∈ (0,∞).
13

McCullagh, P. & Tibshirani, R. (1990). “A simple method for the adjustment of profile likelihoods”.
Journal of the Royal Statistical Society. Series B (Methodological), 52.
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Diagnostic plots show influential outlier
I Same 160 SNPs (psel < 10−4).

Left: Q-Q plot of std. residuals; Right: Influence of a single SNP.
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I A clear outlier: rs11191593, with high influence (right plot).

I A GWAS catalog search reveals that this SNP is strongly associated with
reticulocyte (immature red blood cell) count.14

I Slightly underdispersed (probably because β is underestimated).
14

Astle, W. et al. (2016). “The allelic landscape of human blood cell trait variation and links to common
complex disease.” Cell 167: 1415-1429.
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Assumptions 1 & 2.3 =⇒ RAPS

Assumption 2.3: Random pleiotropy with outliers
Most αj ∼ N(0, τ 2

0 ), but some |αj | might be very large.

Robust adjusted profile score (RAPS)

I Define standardized residual: tj(β, τ
2) =

Γ̂j − βγ̂j√
(σ2

Yj + τ 2) + β2σ2
Xj

.

I For some robust loss function ρ, the RAPS are

ψ
(ρ)
1 (β, τ 2) =

p∑
j=1

ρ′(tj) ·
∂

∂β
tj ,

ψ
(ρ)
2 (β, τ 2) =

p∑
j=1

σ2
Xj

tj · ρ′(tj)− E[Tρ′(T )]

(σ2
Yj + τ 2) + β2σ2

Xj

, for T ∼ N(0, 1).

I Reduces to APS when ρ(t) = t2/2.

I General theory is quite difficult, but local identifiability can be prove.

I Asymptotic normality can be established assuming consistency and
additional technical conditions.
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Diagnostic plots show satisfactory fit

I Same 160 SNPs, now using RAPS with Huber’s loss function.
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I Influence of the outlier rs11191593 is limited.

I Can further reduce its influence using redescending score (e.g.
Tukey’s biweight).
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Comparison of the methods
In the BMI-SBP example

I MR-Egger: Weighted least squares of Γ̂j against γ̂j (ignoring
measurement error in γ̂j and weak IV bias).

MR-Egger β̂ = 0.51 (SE 0.10)

Profile score (PS) β̂ = 0.61 (SE 0.05)

Adjusted PS (APS) β̂ = 0.30 (SE 0.16)

Robust APS (RAPS) w. Huber β̂ = 0.38 (SE 0.12)

In a simulation study
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Outline

Part 0: Data Structure & Modeling Assumptions

Part 1: Increased robustness to pleiotropy
Evolution of pleiotropy models: Assumption 2.1 → 2.2 → 2.3
Evolution of statistical methods: PS → APS → RAPS
Example: BMI and blood pressure

Part 2: Increased efficiency in genome-wide MR
RAPS with Empirical Partially Bayes
Example: HDL and Coronary Heart Disease
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Towards genome-wide MR

Unsatisfactory property of profile score (PS)

I Using Taylor’s expansion we can show Var(β̂PS) ≈ V1/V
2
2 , where

V1 =

p∑
j=1

γ2
j σ

2
Yj + Γ2

j σ
2
Xj + σ2

Xjσ
2
Yj

(σ2
Yj + β2

0σ
2
Xj)

2
, V2 =

p∑
j=1

γ2
j σ

2
Yj + Γ2

j σ
2
Xj

(σ2
Yj + β2

0σ
2
Xj)

2
.

I Paradoxical observation: adding a new SNP Zp+1 with γp+1 ≈ 0
increases the variance.

I This prohibits a truly “genome-wide” design of MR.

Semiparametric mixture model

I Why? Maximum likelihood is not efficient when p →∞!

I Key idea: do not maximize the likelihood over γ, but over the
(empirical) distribution of γ.15

I However, the computation is intractable.

15
Kiefer, J., & Wolfowitz, J. (1956). “Consistency of the maximum likelihood estimator in the presence of

infinitely many incidental parameters”. Annals of Mathematical Statistics, 27, 887–906.
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An alternative approach: Conditional score16

I Recall the log-likelihood of SNP j under Assumption 2.1 is

lj(β,γ) = − (γ̂j − γj)2

2σ2
Xj

− (Γ̂j − γjβ)2

2σ2
Yj

.

I Sufficient statistic for γj : γ̂j,MLE(β) =
γ̂j/σ

2
Xj + βΓ̂j/σ

2
Yj

1/σ2
Xj + β2/σ2

Yj

.

I Conditional score is defined as

Cj(β) =
∂

∂β
lj(β,γ)− E

[
∂

∂β
lj(β,γ)

∣∣∣∣ γ̂j,MLE(β)

]
=

γj (Γ̂j − βγ̂j)
σ2
Yj + β2σ2

Xj

.

I Observation 1: γj only appears as weight to “residual” Γ̂j − βγ̂j.

I Observation 2: γ̂j,MLE(β) is independent of Γ̂j − βγ̂j.
I A general class of unbiased estimating equations:

p∑
j=1

f (γ̂j ,MLE(β)) · (Γ̂j − βγ̂j)
σ2
Yj + β2σ2

Xj

= 0

I Reduces to MLE/profile score if f is identity.
16

This method is based on Lindsay, B. (1985). “Using empirical partially Bayes inference for increased
efficiency”. Annals of Statistics, 13, 914–931.
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Empirical partially Bayes

I Lindsay showed that the optimal choice is the Bayes estimate of γj

f (γ̂j,MLE) = E[γj |γ̂j,MLE(β)].

I Since the distribution of γ is unknown, he suggested to use
empirical Bayes.

I The entire approach is partially Bayes because only the nuisance
parameters γ are modeled in a Bayesian way.

Implementation to genome-wide MR

I It is more convenient to model the effect sizes γj/σXj .

I We find that a good prior is the spike-and-slab Gaussian mixture.

I Selective shrinkage is important to increase efficiency.

I The whole approach can be extended to Assumptions 2.2 & 2.3 to
account for pleiotropy.
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Application to HDL and coronary heart disease

Dataset

I Used a 2010 GWAS of blood lipids to select 1122 independent SNPs
not associated with LDL or triglycerides (p-value ≥ 0.01).

I 23 SNPs were genome-wide significant for HDL.

I HDL dataset: an non-overlapping 2013 GWAS of blood lipids.

I Coronary artery disease dataset: CARDIoGRAMplusC4D consortium.

Fitted prior for γj/σXj

I Spike: p1 = 0.91, σ1 = 0.73;

I Slab: p2 = 0.09, σ2 = 4.57.

Increase of efficiency (rough estimates from simulation)

Conventional MR
↑100%
=⇒ Genome-wide MR

↑20%
=⇒ Empirical partially Bayes.
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Visualization of empirical partially Bayes
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N 23 genome-wide significant SNPs in the selection GWAS.
• Rest 1099 SNPs.
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Results
I Method: RAPS with Huber’s loss + empirical partially Bayes.
I Scale: Odds ratio (95% CI) per 1 SD increase of LDL/HDL.

LDL HDL

Observational study

2009 JAMA 1.50 (1.39–1.61) 0.78 (0.74–0.82)
Previous MR

2012 Lancet 2.13 (1.69–2.69) 0.93 (0.68–1.26)
2016 JAMA Cardiology 1.68 (1.51–1.87) 0.95 (0.85–1.06)

New MR

Significant SNPs 1.76 (1.53–2.03) 0.88 (0.74–1.04)
All SNPs 1.61 (1.45–1.80) 0.82 (0.73–0.91)

Caveats and future work
I It is unclear if the selected SNPs are truly unrelated to LDL or

triglycerides =⇒ Our pleiotropy model might be insufficient.

I Estimates using strong instruments and weak instruments are not identical
=⇒ The causal mechanism might be heterogeneous.

I The CARDIoGRAMplusC4D seems to have a small fraction of overlapping
samples =⇒ We are working on a correction.

Conclusion
It is perhaps too soon to give up hope on the HDL hypothesis.
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Software

I R package mr.raps is available on CRAN.

I Can be directly called from the TwoSampleMR platform
(https://github.com/MRCIEU/TwoSampleMR).

https://github.com/MRCIEU/TwoSampleMR
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