
Selective Inference for Effect Modification

Qingyuan Zhao
(Joint work with Dylan Small and Ashkan Ertefaie)

Department of Statistics, University of Pennsylvania

May 24, ACIC 2017

Manuscript and slides are available at
http://www-stat.wharton.upenn.edu/~qyzhao/.

http://www-stat.wharton.upenn.edu/~qyzhao/


Effect
modification

Qingyuan
Zhao

Problem
formulation

Selective
inference: why
and how

Selective
inference for
effect
modification

Numerical
examples

Future work

References

2/28

Effect modification

Effect modification means the treatment has a different
effect among different subgroups.

In other words, there is interaction between treatment and
covariates in the outcome model.

Why care about effect modification?

Extrapolation of average causal effect to a different
population.
Personalizing the treatment.
Understanding the causal mechanism.
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Subgroup analysis and regression analysis

Subgroup analysis and regression analysis are the most
common ways to analyze effect modification.

Prespecified subgroups/interactions:

Free of selection bias. Scientifically rigorous.
Limited in number. No flexibility.

Post hoc subgroups/interactions.

Scheffé, Tukey (1950s): multiple comparisons.
Lots of recent work on discovering effect modification.
But how to guarantee coverage? A call for valid inference
after model selection.
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Setting

A nonparametric model for the potential outcomes:

Yi (t) = η(Xi ) + t ·∆(Xi ) + εi (t), i = 1, . . . , n.

∆(x) is the parameter of interest.

Saturated if the treatment is binary, t ∈ {0, 1}.
Basic assumptions:

Assumption

1 Consistency of the observed outcome: Yi = Yi (Ti );

2 Unconfoundedness: Ti ⊥⊥ Yi (t)|Xi , ∀t ∈ T ;

3 Positivity/Overlap: Var(Ti |Xi = x) exists and is bounded
away from 0 for all x.
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Naive linear modeling I

A straw man

Instead of the nonparametric model,

Yi (t) = η(Xi ) + t ·∆(Xi ) + εi , i = 1, . . . , n,

fit a linear model (the intercepts are dropped for simplicity)

Yi (t) = γTXi + Ti · (βTXi ) + ε̃i , i = 1, . . . , n.

Dismiss all insignificant interaction terms, then refit the model.
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Naive linear modeling II

Two critical fallacies:

1 Linear model could be misspecified.

Solution: use machine learning algorithms to estimate
the nuisance parameters.
Targeted learning [van der Laan and Rose, 2011], double
machine learning [Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, et al., 2016].

2 Statistical inference ignored data snooping.

Solution: use selective inference.
Lee, Sun, Sun, and Taylor [2016], Fithian, Sun, and Taylor
[2014], Tian and Taylor [2017b].



Effect
modification

Qingyuan
Zhao

Problem
formulation

Selective
inference: why
and how

Selective
inference for
effect
modification

Numerical
examples

Future work

References

8/28

Background: valid inference after model selection I

Acknowledge that the model is selected using the data.

Model selection procedure:

{Xi ,Ti ,Yi}ni=1 7→ M̂ (data 7→ a subset of covariates).

The target parameter β∗M̂ is defined by M̂: xTM̂β∗M̂ is the
“best linear approximation” of ∆(x) [Berk, Brown, Buja,
Zhang, and Zhao, 2013].
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Background: valid inference after model selection II

Two types of confidence intervals:
1 Simultaneous coverage [Berk et al., 2013]:

P
((

β∗M̂
)
j
∈ [D−j ,D

+
j ] for any j ∈ M̂

)
≥ 1− q, ∀M̂.

2 Conditional coverage [Lee et al., 2016]:

P
((

β∗M
)
j
∈ [D−j ,D

+
j ]
∣∣∣ M̂ =M

)
≥ 1− q, ∀M.

Guarantees the control of false coverage rate (FCR, the
average proportion of non-covering intervals among the
reported) [Benjamini and Yekutieli, 2005].
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Background: selective inference in linear models I

Suppose we have noisy observations of ∆:

Yi = ∆(Xi ) + εi , i = 1, . . . , n,

Submodel parameter

β∗M = arg min
α,βM

n∑
i=1

(
∆(Xi )− α− XT

i ,MβM

)2
.

Linear selection rule

{M̂ =M} =
{
AM(X) · Y ≤ bM(X)

}
.

Example: Nonzero elements in the Lasso solution.
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Background: selective inference in linear models II

Main result of Lee et al. [2016]:(
β̂M̂

)
j
|AY ≤ b is truncated normal with mean

(
β∗M̂

)
j
.

Need normality of noise, but can be relaxed in large
sample [Tian and Taylor, 2017a].

Geometric intuition:

Invert the pivotal statistic F (
(
β̂M̂

)
j
,
(
β∗M̂

)
j
) ∼ Unif(0, 1)

to construct selective confidence interval.
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Eliminate the nuisance parameter

Back to the causal model (of the observables)

Yi = η(Xi ) + Ti ·∆(Xi ) + εi , i = 1, . . . , n.

Problem: how to eliminate the nuisance parameter η(x)?

Robinson [1988]’s transformation

Let µy (x) = E[Yi |Xi = x] and µt(x) = E[Ti |Xi = x], so
µy (x) = η(x) + µt(x)∆(x). An equivalent model is

Yi − µy (Xi ) =
(
Ti − µt(Xi )

)
·∆(Xi ) + εi , i = 1, . . . , n.

The new nuisance parameters µy (x) and µt(x) can be
directly estimated from the data.
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Our complete proposal

Estimate µy (x) and µt(x) using machine learning
algorithms (for example random forest).

Select a model for effect modification by solving

min
α,β

n∑
i=1

[
(Yi−µ̂y (Xi ))−

(
Ti−µ̂t(Xi )

)
·(α+XT

i β)
]2

+λ‖β‖1.

Use the pivotal statistic in Lee et al. [2016] to obtain
selective confidence intervals of

β∗M̂ = arg min
α,βM̂

n∑
i=1

(Ti −µt(Xi ))2
(
∆(Xi )−α−XT

i ,M̂βM̂
)2
.
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Main result

Challenge: µy and µt are estimated (with error).

Assumption

Rate assumptions in Robinson [1988]:
‖µ̂t − µt‖∞ = op(n−1/4), ‖µ̂y − µy‖∞ = op(1),

‖µ̂t − µt‖∞ · ‖µ̂y − µy‖∞ = op(n−1/2).

Theorem

Under additional assumptions on the selection event, the
pivotal statistic and hence the selective confidence interval is
asymptotically valid.
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Simulation

Idealized estimation error

The true design and the true outcome were generated by

Xi ∈ R30 i .i .d .∼ N(0, I), Yi
i .i .d .∼ N(XT

i β, 1), i = 1, . . . , n,

where β = (1, 1, 1, 0, . . . , 0)T ∈ R30.
Then the design and the outcome were perturbed by

Xi 7→ Xi · (1 + n−γe1i ), Yi 7→ Yi + n−γe2i ,

where e1i and e2i are independent standard normal.

In the paper we also evaluated the validity of the entire
procedure.



Effect
modification

Qingyuan
Zhao

Problem
formulation

Selective
inference: why
and how

Selective
inference for
effect
modification

Numerical
examples

Future work

References

18/28

Rate assumptions are necessary and sufficient

Crucial rate assumption: ‖µ̂t −µt‖∞ · ‖µ̂y −µy‖∞ = op(n−1/2).
Phase transition at γ = 0.25.

When γ > 0.25: FCR is controlled at 10%.
When γ < 0.25: FCR is not controlled.
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Real data example I

M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener,

and T. B. Harris. Elevated C-reactive protein levels in
overweight and obese adults.
Journal of the American Medical Association, 282(22):
2131–2135, 1999.

Obesity was linked with systemic inflammation in the
body. Prespecified subgroup analysis found effect
modification by gender. Within women, they found effect
modification by age group.

We used a more recent dataset from NHANES 2007–2008
and 2009–2010.
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Real data example II

T : obesity (BMI ≥ 25).

Y : C-reactive protein level.

X: gender, age, income, race, marital status, education,
vigorous work activity (yes or no), vigorous recreation
activities (yes or no), ever smoked, number of cigarettes
smoked in the last month, estrogen usage, and if the
survey respondent had bronchitis, asthma, emphysema,
thyroid, arthritis, heart attack, stroke, liver condition,
gout, and all their interactions.

n = 9677, p = 355.

µy (x) and µt(x) are estimated by randomForest in R.

By running our procedure, lasso found two effect
modifiers: gender and age (no surprise!).
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Real data example III

Model Inference gender age

Naive 2.067(0.607, 3.527) -0.031(-0.081, 0.020)

Full 2.237(0.859, 3.616) -0.029(-0.077, 0.020)

Selected
Naive 0.466(0.330,0.603) -0.020(-0.024,-0.016)
Selective 0.466(0.115,0.600) -0.020(-0.024,-0.016)

Table : Coefficients and confidence intervals of gender (is
female) and age obtained.

Naive model is Yi = XT
i γ + TiX

T
i β + εi .

Full model is Yi − µ̂y (Xi ) = (Ti − µ̂t(Xi ))XT
i β + εi .

Selected model is
Yi − µ̂y (Xi ) = (Ti − µ̂t(Xi ))XT

i ,M̂βM̂ + εi .

Except for “Selective inference”, all coefficients and
confidence intervals are computed using lm in R.
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Future directions

Selective inference in general semiparametric setup.

Target parameters defined by population instead of sample
(ATT vs. SATT).
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Proof Sketch

Suppose we use µ̂y = µy , then the pivot is exact for the
following modified parameter

β̃M = arg min
α,βM

1

n

n∑
i=1

(
Ti−µ̂t(Xi )

)2(
∆(Xi )−α−XT

i ,MβM
)2
.

Show ‖β̃M̂ − β∗M̂‖∞ = op(n−1/2).

Replace β̃M̂ by β∗M̂ and µy by µ̂y in the pivot, show the
difference is op(1).

The actual proof is much more technical (mainly because
estimation error complicates the selection event).
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Assumptions in the paper I

Assumption

(Fundamental assumptions in causal inference) For
i = 1, . . . , n,

1 Consistency of the observed outcome: Yi = Yi (Ti );

2 Unconfoundedness of the treatment assignment:
Ti ⊥⊥ Yi (t)|Xi , ∀t ∈ T ;

3 Positivity (or Overlap) of the treatment assignment: Ti |Xi

has a positive density with respect to a dominating
measure on T . In particular, we assume Var(Ti |Xi ) exists
and is at least 1/C for some constant C > 0 and all
Xi ∈ X .
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Assumptions in the paper II

Assumption

(Accuracy of treatment model) ‖µ̂t − µt‖∞ = op(n−1/4).

Assumption

The support of X is uniformly bounded, i.e. X ⊆ [−C ,C ]p for
some constant C . The conditional treatment effect ∆(X) is
also bounded by C .

Assumption

(Accuracy of outcome model) ‖µ̂y − µy‖∞ = op(1) and

‖µ̂t − µt‖∞ · ‖µ̂y − µy‖∞ = op(n−1/2).
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Assumptions in the paper III

Assumption

(Size of the selected model) For some constant m,
P(|M̂| ≤ m)→ 1.

Assumption

(Gram matrix) For all M such that |M| ≤ m,
E[Xi ,MXT

i ,M] � (1/C )I|M|.

The last two assumptions ensure ‖β̃M̂ − β∗M̂‖∞ = op(n−1/2).
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Assumptions in the paper IV

Assumption

(Truncation threshold) The truncation thresholds L and U
satisfy

P
(U(Y − µ̂y )− L(Y − µ̂y )

σ‖η̃M‖
≥ 1/C

)
→ 1.

Assumption

(Lasso solution)

P
(∣∣(β̂{1,...,p}(λ)

)
k

∣∣ ≥ 1/(C
√

n), ∀k ∈ M̂
)
→ 1.

These two assumptions ensure the pivot is smooth enough.
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