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Microarray experiments

Responses: normalized gene expression
level.

Primary variables (variables of interest):
treatment, disease status, etc.

Control covariates: age, gender, batch,
date, etc.
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Microarray data analysis

Biologist: “Which genes are (causally) related to this disease?”

Statistician: “Let me run some analysis.”

Two common practices

1 Sparse regression: regress the primary variable on the
genes. More common for SNP data and predictive tasks.

2 Association tests/screening (this talk): for each gene,
perform a significance test of correlation with the primary
variable.

Statistician: “Here a short list of candidate genes with false
discovery rate (FDR) ≤ 20%.”

Biologist: “Good, let me validate these discoveries.”
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Concerns

J. P. Ioannidis. Why most published research findings are false.
Chance, 18(4):40–47, 2005

Two major challenges to reproducibility in genetic screening:

1 Correlated tests: Is the FDR still controlled? If not, can
we correct the statistical analysis?

Well studied in the last 15 years [Benjamini and Yekutieli,
2001, Storey et al., 2004, Efron, 2007, Fan et al., 2012].

2 Confounded tests (this talk): the individual association
tests are biased in presence of unobserved confounders.
Can we still provide a good candidate list?

Equally long history [e.g. Alter et al., 2000, Price et al.,
2006]. Still many open questions.
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Confounding

Brief history

Fisher [1935] first uses the term in experiment designs.

Kish [1959] first uses its modern meaning:
A mixing of effects of unobserved extraneous factors
(called confounders) with the effect of interest.

Huge literature, but mostly in causal inference.

Aliases for confounders in genetic screening:

“systematic ancestry differences” [Price et al., 2006].

“batch effects” (widely used by biologists).

“surrogate variables” [Leek and Storey, 2007, 2008].

“unwanted variation” [Gagnon-Bartsch and Speed, 2012].

“latent effects” [Sun et al., 2012].
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Example 1: gender study

Which genes are more expressed in male/female?

A microarray experiment by Vawter et al. [2004]:

Postmortem samples from the brains of 10 individuals.

For each individual, 3 samples from different cortices.

Each sample is sent to 3 different labs for analysis.

Two different microarray platforms are used by the labs.

In total, 10× 3× 3 = 90 samples.

This example was first used by Gagnon-Bartsch and Speed
[2012] to demonstrate the importance to “remove unwanted
variation”.
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Screening

Notation

Y: n × p matrix of gene expression.

X: n × 1 vector of gender.

Simplest association test:

Regress each column of Y (gene) on X.

In R, run summary(lm(Y∼X)).

Equivalent to a two-sample t-test with equal variance.
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Histogram of t-statistics

N(0.055,0.066^2)
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Skewed and very underdispersed.
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Association test

Notation

Y: n × p matrix of gene expression.

X: n × 1 vector of gender.

Z: n × d matrix of control covariates (lab and platform).

Modified association test:

Regress each column of Y (gene) on X and Z.

In R, run summary(lm(Y∼X+Z)).

Report the significance of the coefficients of X.
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Histogram of t-statistics

N(0.043,0.24^2)
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Better, but still problematic.
Reasonable guess: there are more unobserved confounders!
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Example 2: COPD study

COPD = chronic obstructive pulmonary disease.

Singh et al. [2011] tried to find genes associated with the
severity of COPD (moderate or severe).

N(0.024,2.6^2)
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Overdispersed and skewed.
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Example 3: Mutual fund selection

Barras et al. [2010] used the following model to select mutual
funds:

Yit = αi + γT
i Zt + eit , i = 1, . . . , n, t = 1, . . . , p.

Yit : observed log-return of fund i at time t.

αi : risk-adjusted return (Goal: find funds with positive α).

Zt : systematic risk factors.

They assumed:

α is sparse (Berk and Green equilibrium);

No unobserved risk factors (is that possible/necessary?).
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Idea 0: Remove the largest principal component(s)

EIGENSTRAT [Price et al., 2006]

Regression model:

Yn×p = Xn×1β
T
p×1 + Zn×rΓ

T
p×r + En×p,

where Z is the first r PC(s) of Y.

Motivation: in SNP, the largest PC(s) usually correspond
to ancestry difference.

Weakness: can easily remove true signals.
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Idea 1: Use control genes

Same regression model:

Yn×p = Xn×1β
T
p×1 + Zn×rΓ

T
p×r + En×p,

RUV2 [Gagnon-Bartsch and Speed, 2012]

If we know βC = 0 (negative controls),

1 Run PCA on colC(Y) to obtain Z.

2 Run the regression for col -C(Y).

Example: bacterial RNAs (spike-in controls).

Limited to the availability and number of negative
controls.
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Idea 2: Sparsity

Same regression model:

Yn×p = Xn×1β
T
p×1 + Zn×rΓ

T
p×r + En×p,

Idea: If β contains actual effects, it should be a sparse vector.

SVA [Leek and Storey, 2008]

Iterate between

1 Weighted PCA on Y (based on how likely β = 0).

2 Regress Y on X and the estimated PCs.

Does not always converge.
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Idea 2: Sparsity

Same regression model:

Yn×p = Xn×1β
T
p×1 + Zn×rΓ

T
p×r + En×p,

Idea: If β contains actual effects, it should be a sparse vector.

LEAPP [Sun, Zhang, and Owen, 2012]

1 Run PCA on the residuals of Y ∼ X.

2 Run a sparse regression.
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Our contributions: a unifying framework

Missing in previous methods:

Explicit assumptions on the latent variables.

Model identification conditions.

Theoretical guarantees.

Multiple primary and secondary covariates.

Practical guidelines: when is confounder adjustment
necessary/useful?
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Statistical model for confounding

Linear model for the responses (e.g. gene expression)

Yn×p = Xn×1 β
T
p×1 + Zn×r Γ

T
p×r + En×p,

X: primary variable (disease, treatment, gender, etc.);
Z: unobserved confounders;
β: primary effects that we are interested in.

Missing in the literature: dependence of Z and X

Zn×r = Xn×1α
T
r×1 + Wn×r ,

Additional distributional assumptions:

Xi
i.i.d.∼ mean 0, variance 1, i = 1, . . . , n,

E
i.i.d.∼ N(0,Σ), E ⊥⊥ (X,Z), Σ = diag({σ2

j }
p
j=1),

W
i.i.d.∼ N(0, Ir ), W ⊥⊥ X.
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Marginal effects and direct effects

The model can be rewritten as

Yn×p = Xn×1 (βp×1 + Γp×rαr×1)T + (WΓ + E),

which gives the population identity

τp×1 = β + Γα.

τ : marginal effects.

β: direct effects (more meaningful).
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COPD data: marginal effects vs. direct effects
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(a) Before adjustment
(t-statistics for τj = 0).

N(0, 1)

0.0

0.1

0.2

0.3

0.4

−5 0 5
t−statistics

de
ns

ity
(b) After adjustment

(t-statistics for βj = 0).



Confounder
Adjustment

Qingyuan
Zhao

Introduction

Background

Motivating
Examples

Previous Work

Model and
Inference

Model and
Identifiability

Estimation

Hypothesis Tests

Numerical
Examples

Summary

27/49

Identifiability of β

To identify α and β from

τp×1 = βp×1 + Γαr×1,

there are p equations but p + r parameters.

Proposition [Wang, Z., Hastie, and Owen, 2015]

Suppose Γ can be identified. β is identifiable under either of the two
following conditions:

1 Negative control: for a known negative control set C,

βC = 0, |C| ≥ r , rank(ΓC) = r .

2 Sparsity: ‖β‖0 ≤ b(p − r)/2c (the maximum breakdown point),

rank(ΓC) = r , ∀C ⊂ {1, . . . , p} such that |C| = r .
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Rotation

Householder transformation

Xn×1 = QR

where Q ∈ Rn×n is orthogonal with R = (‖X‖2, 0, · · · , 0)T .

For simplicity, assume ‖X‖2 =
√

n.

Can be easily extended to multiple variables X.

Rotation (LEAPP)

Left-Multiply QT to Y = XβT + ZΓT + E, we get

row1(QTY) ∼ N(
√

n(β + Γα),ΓΓT + Σ),

row-1(QTY)
i.i.d.∼ N(0,ΓΓT + Σ).
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Two-step estimation

1 Run factor analysis for

row-1(QTY)
i.i.d.∼ N(0,ΓΓT + Σ)

to obtain Γ̂ and Σ̂. Identifiability follows from classical
results in factor analysis [e.g. Anderson and Rubin, 1956].

2 Run linear regression for the marginal effects

row1(QTY)p×1√
n

= Γ̂p×r αr×1 + βp×1 + Ẽ1/
√

n

response design matrix coefficients
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How accurate is Γ̂?

Assumptions

High-dimensional data: n→∞, p →∞.

Assume that the factors are strong enough:

lim
p→∞

1

p
ΓTΣ−1Γ exists and is positive definite.

Consistent estimate of r [Bai and Ng, 2002].

Theoretical Results for MLE

Consistent estimate of Γ and Σ [Bai and Li, 2012] and
√

n(Γ̂j − Γj)
d→ N(0, σ2

j Ir ),
√

n(σ̂j − σj)
d→ N(0, 2σ4

j ),

Uniform consistency if nk/p →∞ for some k > 0 [Wang,
Z., Hastie, and Owen, 2015].
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Strategy 1: Estimate β via negative controls

Recall the marginal effects are

Ỹ
T
p×1√

n
= Γp×r αr×1 + βp×1 + Ẽ1/

√
n

response design matrix coefficients
In the negative control scenario, we know βC = 0.

Generalized Least Squares (GLS) estimator

α̂NC = (Γ̂T
C Σ̂
−1
C Γ̂C)−1Γ̂T

C Σ̂
−1
C Ỹ

T
1,C/‖X‖2

β̂NC
-C = Ỹ

T
1,-C/‖X‖2 − Γ̂-Cα̂

NC

Note: RUV4 [Gagnon-Bartsch et al., 2013] = Ordinary Least
Squares (OLS).
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Asymptotic distribution of β̂NC

Theorem (Wang, Z., Hastie, and Owen [2015])

Under the assumptions of uniform convergence of Σ̂ and Γ̂ and

lim
p→∞

1

|C|
ΓT
C Σ
−1
C ΓC � 0, then for any finite index set S such

that S ∩ C = ∅:
1 If the number of negative controls |C| → ∞,

√
n(β̂NC

S − βS)
d→ N(0, (1 + ‖α‖2

2)ΣS)

2 If lim
p→∞

|C| <∞,

√
n(β̂NC

S − βS)
d→ N(0, (1 + ‖α‖2

2)(ΣS + ∆S))

where ∆S = lim
p→∞

ΓS(ΓT
C Σ
−1
C ΓC)−1ΓT

S .



Confounder
Adjustment

Qingyuan
Zhao

Introduction

Background

Motivating
Examples

Previous Work

Model and
Inference

Model and
Identifiability

Estimation

Hypothesis Tests

Numerical
Examples

Summary

34/49

Strategy 2: Estimate β via sparsity

Recall

Ỹ
T
p×1√

n
= Γp×r αr×1 + βp×1 + Ẽ1/

√
n

response design matrix coefficients

Idea: if ‖β‖0 � p, βj 6= 0 is an outlier in this regression.

Robust regression estimator (simplification of LEAPP)

α̂RR = arg min

p∑
j=1

ρ

(
Ỹ1j/
√

n − Γ̂T
j α

σ̂j

)

β̂RR = Ỹ
T
1 /
√

n − Γ̂α̂RR
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Asymptotic distribution of β̂RR

Assumptions on the loss function ρ(x)

The derivatives ρ′, ρ′′ and ρ′′′ exist and are bounded.
ρ(0) = ρ′(0) = 0, ρ′′(0) > 0 and ρ′(x) · x ≥ 0.
(e.g. Tukey’s bisquare)

Theorem (Wang, Z., Hastie, and Owen [2015])

Under the assumptions of uniform convergence of Σ̂ and Γ̂ and
the above assumption of the loss function, if
min(‖β‖0, ‖β‖1)

√
n/p → 0, then for any finite index set S:

√
n(β̂RR

S − βS)
d→ N(0, (1 + ‖α‖2

2)ΣS).
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Oracle efficiency

In either the sparsity or negative control scenario (|C| → ∞):
√

n(β̂S − βS)
d→ N(0, (1 + ‖α‖2

2)ΣS)

Oracle estimator

Consider the model

Y = XβT + ZΓT + E.

If Z were observed, the oracle OLS estimator would be
√

n(β̂OLS
S − βS) ∼ N(0, (1 + ‖α‖2

2)ΣS).

β̂S is as efficient asymptotically as the oracle estimator!
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Significance test for confounding

Theorem (Wang, Z., Hastie, and Owen [2015])

Under the above assumptions for oracle efficiency and the null
hypothesis that H0,α : α = 0, we have

n · α̂T α̂
d→ χ2

r

where χ2
r is the chi-square distribution with r degree of

freedom.

Recipes

1 Graphical diagnostics: the histogram of test statistics.

2 Positive controls: e.g. X/Y genes for gender.

3 Asymptotic χ2 test. If significant, check Γ̂.
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Multiple hypothesis testing

Two-sided asymptotic z-tests

Test Hj0 : βj = 0 vs. Hj1 : βj 6= 0 for j = 1, . . . , p.

tj =

√
nβ̂j

σ̂j
√

1 + ‖α̂‖2
, Pj = 2(1− Φ(|tj |)).

Theorem (Wang, Z., Hastie, and Owen [2015])

Under the assumptions for oracle efficiency, the overall type I
error and the familywise error rate (FWER) can be
asymptotically controlled.

FDR control: ongoing work.
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Simulation: n = 100, p = 5000 and r = 10

Sparsity: ‖β‖0/p = 0.05; NC: |C| = 30.

Γ uniform from orthogonal matrices; σ2
i

i.i.d.∼ InvGamma(3, 2).

Variance of X explained by Z: max
ρ

corr(Xi ,ρ
TZi ) =

‖α‖2

1 + ‖α‖2
.
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COPD data: severity as primary variable
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(a) Naive linear regression.
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(b) After adjustment.

r̂ = 1 [Onatski, 2010].

α̂ ≈ 0.98, variance explained is approximately 22%.

Test of confounding: p-value ≈ 0.
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COPD data: gender as primary variable

Genes associated with gender should come from X/Y
chromosomes (positive controls).
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(a) Naive linear regression.
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(b) After adjustment.

α̂ ≈ −0.27, variance explained is approximately 3%.

Test of confounding: p-value ≈ 1.2× 10−3.
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COPD data: gender as primary variable
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COPD data: gender as primary variable

Method X/Y Genes in Top 100

LEAPP(RR) 69
Naive 58
Limma 58
SVA 68
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Mutual fund selection (preliminary results)

p = 469 mutual funds with monthly returns available in
CRSP database in Jan. 1980 – Dec. 2000 (n = 240).

Apply the RR procedure with r = 6 without adjusting for
any observed systematic risk factor.
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(a) Naive linear regression.

N(0.67,2.1^2)
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(b) After adjustment.
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Summary

Recap

Linear model with unobserved confounding factors.

Identification conditions: negative control and sparsity.

Two-step estimation of the primary effects.

Asymptotic distributions and oracle efficiency.

Hypothesis tests for confounding and the primary effects.

Open problems

Correlated noise: approximate factor models.

Weak factors: random matrix theory.

Non-Gaussian data: RNA-seq, GWAS.

Beyond linearity?
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Resources

J. Wang, Z., T. Hastie, and A. B. Owen. Confounder
adjustment in multiple hypothesis testing.
under revision for Annals of Statistics, 2015.

Available on arXiv.

Software: cate on CRAN.
(https://cran.r-project.org/web/packages/cate/index.html)

Package vignette available online.
Unified interface for existing packages sva, ruv, leapp.
We also support formula:

results <- cate(∼ gender | . - gender - 1, data, ...)

https://cran.r-project.org/web/packages/cate/index.html
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