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Setting
Multivariate linear regression

Y
n×p

= X
n×1

α
p×1

T + Z
n×d

β
p×d

T + ε
n×p

.

I Y : “Panel data” or “transposable data”. Modern datasets are often
high dimensional (both n, p � 1).

I X : “Primary variable”, whose coefficients α are of interest.

I Z : “Control variables”, whose coefficients β are not of interest (i.e.
nuisance parameters).

I Noise ε ∼ MN(0, In,Σ) where Σ = diag(σ2
1 , . . . , σ

2
p).

Two examples

I Gene discovery: Y is gene expression (row: tissue; column: gene),
X is the treatment.

I Mutual fund selectioin: Y is the monthly return of mutual funds
(row: month; column: fund), X is the intercept, Z includes
systematic risk factors.
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The confounding problem

Y
n×p

= X
n×1

α
p×1

T + Z
n×d

β
p×d

T + ε
n×p

.

Omitted variable bias
When not all Z are known or measured, the OLS estimate of α can be
severely biased. To see this, suppose

Z
n×d

= X
n×1

γ
d×1

T + W
n×d

, where W ⊥⊥ X .

Therefore Y = X (α + βγ)T + WβT + ε and the OLS estimate of α
indeed converges to α + βγ.
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An illustrative example

The gender study1

Question: Which genes are more expressed in male/female?

A microarray experiment was conducted in this study:

I Postmortem samples from the brains of 10 individuals.

I For each individual, 3 samples from different cortices.

I Each sample is sent to 3 different labs for analysis.

I Two different microarray platforms are used by the labs.

In total, there are 10× 3× 3 = 90 samples.

This example was first used by Gagnon-Bartsch and Speed 2 to
demonstrate the importance of “removing unwanted variation” (RUV).

1
Vawter, Marquis P., et al. “Gender-specific gene expression in post-mortem human brain: localization to

sex chromosomes.” Neuropsychopharmacology 29.2 (2004).
2

Gagnon-Bartsch, J. A., and Speed, T. P. “Using control genes to correct for unwanted variation in
microarray data.” Biostatistics 13.3 (2012).
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A simple association test
I Regress each column of Y (gene) on X .

I In R, run summary(lm(Y∼X)).

I Equivalent to a two-sample t-test with equal variance.

Histogram of t-statistics: skewed and underdispersed
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What happened?

Plot of largest principle components
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Our solution in a nutshell
Recall that (for simplicity, assume Z is entirely unobserved)

Y
n×p

= X
n×1

α
p×1

T + Z
n×d

β
p×d

T + ε
n×p

, Z
n×d

= X
n×1

γ
d×1

T + W
n×d

⇓

Y = X (α + βγ︸ ︷︷ ︸
τ

)T + WβT + ε.

Confounder adjusted testing and estimation (CATE)

1. OLS using the observed regressors:

τ̂ = (XTX )−1XTY ≈ α + βγ, R = (I − PX )Y ≈WβT + ε.

2. Factor analysis of R ⇒ loading matrix β̂.

3. Path analysis: τ̂
p×1
≈ α

p×1
+ β̂

p×d
γ

d×1
.

Problem: the third step is not going to work because it has (p + d)
parameters but only p equations, i.e. α is not identified.
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Identification
Path analysis equation:

τ
p×1
≈ α

p×1
+ β

p×d
γ

d×1
.

I τ and (the column space of) β can be identified from data.

I α and γ cannot be identified from data. In other words, different
values of (α,γ) may correspond to the same distribution of the
observed data.

I Solution to non-identifiability: put additional restrictions.

Proposition
Suppose Γ can be identified from the factor analysis. Then β is
identifiable under either of the two following conditions:

1. Negative control: αC = 0 for a known set C such that |C| ≥ d
and rank(βC) = d .

2. Sparsity: ‖α‖0 ≤ b(p − d)/2c, and

rank(βC) = d , ∀C ⊂ {1, . . . , p} such that |C| = d .
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Estimation under sparsity
Is sparsity reasonable?
Not always, but acceptable in our examples:

I In genomics screening, most genes are probably unrelated.

I Most mutual funds likely have no “alpha” (otherwise they will be
quickly identified by the investors)3

Estimation via robust regression in CATE
Using a robust loss function ρ(·) (such as Huber’s), solve

γ̂ = arg min
γ

p∑
j=1

ρ

(
τ̂j − β̂T

j γ

σ̂j

)
,

α̂ = τ̂ − β̂γ̂.

This is similar to solving a penalized regression in outlier detection:4

(γ̂, α̂) = arg min
α,γ

∥∥τ̂ −α− β̂γ
∥∥2

Σ̂
+ Pρ(α)

.
3

Berk, J. B., & Green, R. C. (2004). “Mutual fund flows and performance in rational markets.” Journal
of Political Economy, 112(6).

4
She, Y., & Owen, A. B. (2011). “Outlier detection using nonconvex penalized regression.” JASA, 106.
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Some theoretical guarantees

Theorem
When n, p →∞, if the factor analysis estimates5 of Γ and Σ are
uniformly consistent, the robust loss function ρ is “nice”, we have for a
fixed j ,

1. α̂j is consistent if ‖β‖1/p → 0;

2. α̂j is asymptotically normal and has “oracle efficiency” if
‖β‖1

√
n/p → 0.

I “Oracle efficiency” means it has the same variance as the OLS
estimator that observes the latent factors Z .

5
Bai, J., & Li, K. (2012). Statistical analysis of factor models of high dimension. Annals of Statistics,

40(1).
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Mutual fund example

Dataset
Mutual fund returns from 1984—2015, obtained from Center for
Research in Security Prices (CRSP).

Factor model
In finance, it is common to fit a linear model to the returns

Ytj − rt︸ ︷︷ ︸
Excess return

= αj︸︷︷︸
”Skill” of manager

+ βT
j Zt︸ ︷︷ ︸

systematic risk

+ εtj︸︷︷︸
idiosyncratic risk

.

People have discovered many systematic risk factors Z over the years:

I Market-average: this is the Capital Asset Pricing Model (CAPM).

I Stock caps and book-to-market ratio6.

I Momentum7.

I ......

6
Fama, E. F., & French, K. R. (1993). “Common risk factors in the returns on stocks and bonds.”

Journal of Financial Economics, 33(1).
7

Carhart, M. M. (1997). “On persistence in mutual fund performance.” Journal of Finance, 52(1).
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Mutual fund selection by CAPM

A recent study8 shows that

I Most investors use CAPM-alpha to select mutual funds.

I More sophisticated investors adjust for more risk factors.

Is CAPM-alpha a good indicator for future performance?
An empirical exercise:

I In the beginning of every quarter, we use data in the past five years
to compute their cash flow, average returns, and CAPM-alpha.

I For each metric, funds are then divided into 10 groups.

I We evaluate the performance of each group in the next year.

8
Barber, B. M., Huang, X., & Odean, T. (2016). “Which factors matter to investors? Evidence from

mutual fund flows.” Review of Financial Studies, 29(10)
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Failure of CAPM-alpha
Q1 Q2 Q3 Q4
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I Mutual funds with higher cash flow/return/CAPM-alpha have
worse performance in the future.

I The phenomenon is not just “regression to the mean”, but a
complete reversal between past and future.



13/17

A possible explanation

Mutual funds also load on other risk factors.

Scenario 1: “Lucky” funds

1. When the other risk factors generated positive returns in the training
period, the CAPM-alpha looks high.

2. High CAPM-alpha attracts investment.

3. Difficult to find investment opportunities ⇒ bad future performance.

Scenario 2: “Unlucky” funds

1. When the other risk factors generated negative returns in the
training period, the CAPM-alpha looks low.

2. Low CAPM-alpha repels investment.

3. Easier to invest ⇒ good future performance.
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Mutual fund selection by CATE

Better measurements of skill

I FFC-alpha: Use Fama-French-Carhart four factor model as Z .

I CATE-alpha: In addition to FFC, use 3 latent factors

Another empirical exercise

I In the beginning of every quarter, we use data in the past five years
to compute their CAPM-alpha, FFC-alpha and CATE-alpha.

I For each metric, funds are then divided into 4 groups.

I For every two skill measurements, we examine the cash flow and the
future return of the 4 × 4 grid.



15/17

High CAPM-alpha attracts investment
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Reversal in future performance

CAPM FFC
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Take-away messages

I We proposed a method to remove confounding bias (omitted
variable bias) in multivariate linear regression.

I The key for identification and estimation is sparsity.

I Two applications were given:

1. Remove batch effects in genomics screening;
2. Estimate mutual fund skill in finance.

I The persistence of mutual fund performance depends on:
I Whether the manager truly has skill (can be estimated by CATE);
I Whether the investors have discovered it (usually using the incorrect

CAPM).


