Confounder adjustment in large-scale linear structural models

Qingyuan Zhao

Department of Statistics, The Wharton School, University of Pennsylvania

June 19 2018, EcoStat

Based on

- Wang, J., Zhao, Q., Hastie, T., & Owen, A. B. Confounder adjustment in multiple hypothesis testing. *Annals of Statistics*, 45(5), 1863-1894, 2017.
- Song, Y., Zhao, Q. Performance evaluation in presence of latent factors. (In preparation).

Slides are available at http://www-stat.wharton.upenn.edu/~qyzhao/.

Setting

Multivariate linear regression

$$\mathbf{Y}_{n imes p} = \mathbf{X}_{n imes 1} \mathbf{\alpha}_{p imes 1}^T + \mathbf{Z}_{n imes d} \mathbf{\beta}_{p imes d}^T + \mathbf{\epsilon}_{n imes p}$$

- Y: "Panel data" or "transposable data". Modern datasets are often high dimensional (both n, p ≫ 1).
- X: "Primary variable", whose coefficients α are of interest.
- Z: "Control variables", whose coefficients β are not of interest (i.e. nuisance parameters).
- Noise $\epsilon \sim MN(\mathbf{0}, \mathbf{I}_n, \Sigma)$ where $\Sigma = diag(\sigma_1^2, \dots, \sigma_p^2)$.

Two examples

- Gene discovery: Y is gene expression (row: tissue; column: gene),
 X is the treatment.
- Mutual fund selectioin: Y is the monthly return of mutual funds (row: month; column: fund), X is the intercept, Z includes systematic risk factors.

The confounding problem

$$\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times 1} \mathbf{\alpha}_{p \times 1}^{T} + \mathbf{Z}_{n \times d} \mathbf{\beta}_{p \times d}^{T} + \mathbf{\epsilon}_{n \times p}.$$

Omitted variable bias

When not all Z are known or measured, the OLS estimate of α can be severely biased. To see this, suppose

$$\mathbf{Z}_{n imes d} = \mathbf{X}_{n imes 1} \frac{\mathbf{\gamma}_{d imes 1}}{\mathbf{\gamma}_{d imes 1}} + \mathbf{W}_{n imes d}, ext{ where } \mathbf{W} \perp \mathbf{X}.$$

Therefore $\mathbf{Y} = \mathbf{X}(\alpha + \beta \gamma)^T + \mathbf{W}\beta^T + \epsilon$ and the OLS estimate of α indeed converges to $\alpha + \beta \gamma$.

An illustrative example

The gender study¹

Question: Which genes are more expressed in male/female?

A microarray experiment was conducted in this study:

- Postmortem samples from the brains of 10 individuals.
- ► For each individual, 3 samples from different cortices.
- Each sample is sent to 3 different labs for analysis.

• Two different microarray platforms are used by the labs. In total, there are $10 \times 3 \times 3 = 90$ samples.

This example was first used by Gagnon-Bartsch and Speed ² to demonstrate the importance of "removing unwanted variation" (RUV).

¹Vawter, Marquis P., et al. "Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes." *Neuropsychopharmacology* 29.2 (2004).

²Gagnon-Bartsch, J. A., and Speed, T. P. "Using control genes to correct for unwanted variation in microarray data." *Biostatistics* 13.3 (2012).

A simple association test

- ▶ Regress each column of **Y** (gene) on **X**.
- ▶ In R, run summary(lm(Y~X)).
- Equivalent to a two-sample *t*-test with equal variance.

Histogram of t-statistics: skewed and underdispersed

What happened?

Our solution in a nutshell

Recall that (for simplicity, assume Z is entirely unobserved)

$$\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times 1} \mathbf{\alpha}_{p \times 1}^{T} + \mathbf{Z}_{n \times d} \mathbf{\beta}_{p \times d}^{T} + \mathbf{\epsilon}_{n \times p}, \quad \mathbf{Z}_{n \times d} = \mathbf{X}_{n \times 1} \mathbf{\gamma}_{d \times 1}^{T} + \mathbf{W}_{n \times d}$$
$$\Downarrow$$
$$\mathbf{Y} = \mathbf{X} (\underbrace{\mathbf{\alpha} + \mathbf{\beta} \mathbf{\gamma}}_{\tau})^{T} + \mathbf{W} \mathbf{\beta}^{T} + \mathbf{\epsilon}.$$

Confounder adjusted testing and estimation (CATE)

1. OLS using the observed regressors:

$$\hat{\boldsymbol{ au}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{Y} pprox lpha + eta \boldsymbol{\gamma}, \ \boldsymbol{R} = (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}}) \boldsymbol{Y} pprox \boldsymbol{W} eta^{\mathsf{T}} + \epsilon.$$

- 2. Factor analysis of $\boldsymbol{R} \Rightarrow$ loading matrix $\hat{\boldsymbol{\beta}}$.
- 3. Path analysis: $\hat{\tau}_{p \times 1} \approx \alpha_{p \times 1} + \hat{\beta}_{p \times d} \gamma_{d \times 1}$.

Problem: the third step is not going to work because it has (p + d) parameters but only p equations, i.e. α is not identified.

Identification

Path analysis equation:

$$au_{p imes 1} pprox lpha_{p imes 1} + eta_{p imes d} \ \gamma_{d imes 1}.$$

- au and (the column space of) eta can be identified from data.
- α and γ cannot be identified from data. In other words, different values of (α, γ) may correspond to the same distribution of the observed data.
- Solution to non-identifiability: put additional restrictions.

Proposition

Suppose Γ can be identified from the factor analysis. Then β is identifiable under either of the two following conditions:

- 1. Negative control: $\alpha_{\mathcal{C}} = 0$ for a known set \mathcal{C} such that $|\mathcal{C}| \ge d$ and $\operatorname{rank}(\beta_{\mathcal{C}}) = d$.
- 2. Sparsity: $\|\boldsymbol{\alpha}\|_0 \leq \lfloor (p-d)/2 \rfloor$, and

 $\operatorname{rank}(\beta_{\mathcal{C}}) = d, \ \forall \mathcal{C} \subset \{1, \dots, p\} \text{ such that } |\mathcal{C}| = d.$

Estimation under sparsity

Is sparsity reasonable?

Not always, but acceptable in our examples:

- In genomics screening, most genes are probably unrelated.
- Most mutual funds likely have no "alpha" (otherwise they will be quickly identified by the investors)³

Estimation via robust regression in CATE

Using a robust loss function $\rho(\cdot)$ (such as Huber's), solve

$$egin{aligned} \hat{m{\gamma}} &= rg\min_{m{\gamma}} \sum_{j=1}^p
ho\left(rac{\hat{ au}_j - \hat{m{eta}}_j^T m{\gamma}}{\hat{\sigma}_j}
ight), \ \hat{m{lpha}} &= \hat{m{ au}} - \hat{m{eta}}\hat{m{\gamma}}. \end{aligned}$$

This is similar to solving a penalized regression in outlier detection:⁴

$$(\hat{\gamma},\hat{lpha}) = rg\min_{oldsymbol{lpha},oldsymbol{\gamma}} ig\| \hat{ au} - oldsymbol{lpha} - \hat{oldsymbol{eta}} \gamma ig\|_{\hat{\Sigma}}^2 + P_
ho(oldsymbol{lpha})$$

⁴She, Y., & Owen, A. B. (2011). "Outlier detection using nonconvex penalized regression." JASA, 106.

 $^{^3}$ Berk, J. B., & Green, R. C. (2004). "Mutual fund flows and performance in rational markets." Journal of Political Economy, 112(6).

Some theoretical guarantees

Theorem

When $n, p \to \infty$, if the factor analysis estimates⁵ of Γ and Σ are uniformly consistent, the robust loss function ρ is "nice", we have for a fixed j,

1. $\hat{\alpha}_j$ is consistent if $\|\beta\|_1/p \to 0$;

2. $\hat{\alpha}_j$ is asymptotically normal and has "oracle efficiency" if $\|\beta\|_1 \sqrt{n}/p \to 0$.

 "Oracle efficiency" means it has the same variance as the OLS estimator that observes the latent factors Z.

⁵Bai, J., & Li, K. (2012). Statistical analysis of factor models of high dimension. *Annals of Statistics*, 40(1).

Mutual fund example

Dataset

Mutual fund returns from 1984—2015, obtained from Center for Research in Security Prices (CRSP).

Factor model

In finance, it is common to fit a linear model to the returns

People have discovered many systematic risk factors Z over the years:

- Market-average: this is the Capital Asset Pricing Model (CAPM).
- Stock caps and book-to-market ratio⁶.
- Momentum⁷.

▶

⁶Fama, E. F., & French, K. R. (1993). "Common risk factors in the returns on stocks and bonds." Journal of Financial Economics, 33(1).

⁷Carhart, M. M. (1997). "On persistence in mutual fund performance." Journal of Finance, 52(1).

Mutual fund selection by CAPM

A recent study 8 shows that

- Most investors use CAPM-alpha to select mutual funds.
- More sophisticated investors adjust for more risk factors.

Is CAPM-alpha a good indicator for future performance?

An empirical exercise:

- In the beginning of every quarter, we use data in the past five years to compute their cash flow, average returns, and CAPM-alpha.
- ► For each metric, funds are then divided into **10 groups**.
- ▶ We evaluate the performance of each group in the next year.

 $^{^{\}rm 8}$ Barber, B. M., Huang, X., & Odean, T. (2016). "Which factors matter to investors? Evidence from mutual fund flows." *Review of Financial Studies*, 29(10)

Failure of CAPM-alpha

- Mutual funds with higher cash flow/return/CAPM-alpha have worse performance in the future.
- The phenomenon is not just "regression to the mean", but a complete reversal between past and future.

A possible explanation

Mutual funds also load on other risk factors.

Scenario 1: "Lucky" funds

- 1. When the other risk factors generated positive returns in the training period, the CAPM-alpha looks high.
- 2. High CAPM-alpha attracts investment.
- 3. Difficult to find investment opportunities \Rightarrow bad future performance.

Scenario 2: "Unlucky" funds

- 1. When the other risk factors generated negative returns in the training period, the CAPM-alpha looks low.
- 2. Low CAPM-alpha repels investment.
- 3. Easier to invest \Rightarrow good future performance.

Mutual fund selection by CATE

Better measurements of skill

- ► FFC-alpha: Use Fama-French-Carhart four factor model as **Z**.
- CATE-alpha: In addition to FFC, use 3 latent factors

Another empirical exercise

- In the beginning of every quarter, we use data in the past five years to compute their CAPM-alpha, FFC-alpha and CATE-alpha.
- For each metric, funds are then divided into 4 groups.
- ► For every two skill measurements, we examine the cash flow and the future return of the 4 × 4 grid.

High CAPM-alpha attracts investment

Reversal in future performance

Take-away messages

- We proposed a method to remove confounding bias (omitted variable bias) in multivariate linear regression.
- The key for identification and estimation is sparsity.
- Two applications were given:
 - 1. Remove batch effects in genomics screening;
 - 2. Estimate mutual fund skill in finance.
- ► The persistence of mutual fund performance depends on:
 - Whether the manager truly has skill (can be estimated by CATE);
 - Whether the investors have discovered it (usually using the incorrect CAPM).