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1 Preliminaries

Let (Xn)n≥0 be a simple random walk in Zd with d ≥ 1. Note that the time index will always
be N. For every n ∈ N and x, y ∈ Zd we write Pn(x, y) = pn(x, y) = Px(Xn = y) for the n-step
transition probability from x to y. Note that if x = 0 we will sometimes omit it from the notation
and we will simply write pn(y) for pn(0, y). Note that by translation invariance of the walk we have
pn(x, y) = pn(0, x− y). We say that n and x are of the same parity if pn(x) > 0. For every n and
x we write

pn(x) = 2 ·
󰀕

d

2πn

󰀖d/2

· exp
󰀕
−d󰀂x󰀂2

2n

󰀖
.

In dimension one, a direct calculation using Stirling’s formula immediately yields the following:

Exercise 1.1. Let X be a simple symmetric random walk on Z starting from 0. Show that for
all n ∈ N and m ∈ Z with m ≤

√
n we have

P0(X2n = 2m) = p2n(2m)(1 + o(1)) as n → ∞.

Hint : Recall Stirling’s formula n! ∼ nn
√
2πn · e−n as n → ∞.

In higher dimensions, one can also obtain an analogous result, but it is more tedious. We state
without proof the local CLT that we will use very often in this course.

Theorem 1.2. (Local CLT [10, Proposition 1.2.5]) Let d ≥ 1 and let X be a simple random walk
in Zd started from 0. Suppose that n and x are of the same parity. Let α < 2/3. If 󰀂x󰀂 ≤ nα, then

pn(x) = pn(x) ·
󰀃
1 +O(n3α−2)

󰀄
.

Exercise 1.3. LetX be a simple random walk on Zd started from 0. Show using Azuma’s inequality
or otherwise that there exist positive constants c1 and c2 so that for all x ∈ Zd

P0(Xn = x) ≤ c1 exp(−c2󰀂x󰀂2/n).

Notation: For functions f, g : N → R+ we write f ≲ g if there exists a positive constant C so that
for all n ∈ N we have f(n) ≤ Cg(n). We write f ≳ g if g ≲ f . Finally we write f ≍ g if f ≲ g
and g ≲ f .

By the local CLT we see that

p2n(0) ≍
1

nd/2
, (1.1)

and hence we recover Polya’s theorem: when d ≤ 2, the SRW is recurrent, while when d ≥ 3 it is
transient.

Exercise 1.4. Prove (1.1) using Stirling’s formula and the concentration of a Binomial random
variable of parameters n and 1/d around its mean.
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In the transient regime, we now define the Green’s function as follows: for x, y ∈ Zd with d ≥ 3

g(x, y) = Ex

󰀥 ∞󰁛

n=0

1(Xn = y)

󰀦
=

∞󰁛

n=0

pn(x, y).

When x = 0 we simply write g(y) for g(0, y). By conditioning on the first step of the random walk
it is immediate to deduce the following:

Lemma 1.5. The Green’s function g : Zd → R+ is harmonic on Zd \ {0}.

Exercise 1.6. Using reversibility and the Cauchy-Schwartz inequality prove that for all x ∈ Zd

p2n(0, x) ≤
󰁳

p2n(0, 0)p2n(x, x) = p2n(0, 0). (1.2)

Combining (1.1) together with (1.2) we see that the Green’s function is well defined when d ≥ 3,
as we get a converging series.

The following asymptotic expression for the Green’s function will be used throughout these notes.

Theorem 1.7 (Spitzer). For all d ≥ 3 and α < d as 󰀂x󰀂 → ∞ we have

g(x) =
c(d)

󰀂x󰀂d−2
+ o(󰀂x󰀂−α), where c(d) =

d

2
Γ(d/2− 1)π−d/2.

Exercise 1.8. Prove Spitzer’s result using the local CLT and by approximating the Riemann sum
by an integral (see [11, Lemma 12.1.1]).

In the following exercise we obtain an upper bound on g(x) of the correct order but without the
sharp constant provided to us by Spitzer’s result, which in turn follows by the local CLT.

Exercise 1.9. Let X be a SRW in Zd with d ≥ 1. Without appealing to the local CLT establish
the following:

1. For all x of the same parity as 0 and satisfying 󰀂x󰀂 ≤
√
n prove that

pn(0, x) ≍
1

nd/2
.

2. Using reversibility prove that

P0(Xn = x) ≤ 2 · P0

󰀃
Xn = x, 󰀂X⌊n/2⌋󰀂 ≥ 󰀂x󰀂/2

󰀄
.

3. Using the above and Azuma’s inequality, show that there exist positive constants c1 and c2
such that for all x

P0(Xn = x) ≤ c1

nd/2
exp(−c2󰀂x󰀂2/n).

4. Combining all of the above show that

g(x) ≍ 󰀂x󰀂2−d.
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For a set A ⊆ Zd we write

HA = inf{n ≥ 0 : Xn ∈ A} and 󰁨HA = inf{n ≥ 1 : Xn ∈ A}

for the first hitting and first return time to A respectively.

For a finite set A with x ∈ A, we write

gA(x, y) = Ex

󰀵

󰀷
HAc󰁛

j=0

1(Xj = y)

󰀶

󰀸

We write B(0, n) = {x ∈ Zd : 󰀂x󰀂 < n} for the Euclidean lattice ball of radius n.

Lemma 1.10. Let x ∈ B(0, n/4) and T = inf{j ≥ 0 : Xj ∈ ∂B(0, n)}. Then for all y ∈ ∂B(0, n)
we have

Px(XT = y) ≍ 1

nd−1
,

where the constants appearing in ≍ are universal over all n.

Sketch of proof. Let ζ = inf{j ≥ 1 : Xj ∈ {0} ∪ ∂B(0, n)}. Then check that

Px(XT = y) = gB(0,n)(0, 0)Py(Xζ = 0) .

Then it suffices to show that Py(Xζ = 0) ≍ n1−d, as gB(0,n)(0, 0) ≍ 1. To prove this, we define an
intermediate scale, i.e. we first wait for the walk to either hit B(0, n− 3) or exit B(0, n). We then
require the walk to be at B(0, n − 3) at this time and estimate the probability that starting from
there the walk hits 0 before hitting ∂B(0, n). Finally to achieve this, we use the harmonicity of the
Green’s function g.

Theorem 1.11 (Harnack inequality). Let f : B(0, n) → R+ be a harmonic function in B(0, n−1).
Then for all 0 < r < 1, there exists a positive constant C = Cr so that

sup
x∈B(0,rn)

f(x) ≤ C inf
x∈B(0,rn)

f(x).

2 Intersections of random walks

In this section we will study the question of intersections of independent simple random walks on Zd

for all d. We start with the question of collisions to see the analogy.

So let X and Y be two independent simple random walks on Zd for d ≥ 1 starting from 0. Let

Cn =

n󰁛

i=0

1(Xi = Yi).

Then taking expectations of both sides we get

E[Cn] =

n󰁛

i=0

P0(X2i = 0) ≍
2n󰁛

i=1

1

id/2
≍

󰀻
󰁁󰀿

󰁁󰀽

√
n if d = 1

log n if d = 2

1 if d ≥ 3.
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We thus see from here that dimension 2 is critical for the question of collisions which is of course
the well-known theorem of Polya.

Next we move on to intersections. Let In be the total number of intersections of X and Y up to
time n, i.e.

In =

n󰁛

i=0

n󰁛

j=0

1(Xi = Yj).

Taking expectations above we get

E[In] =
n󰁛

i=0

n󰁛

j=0

P0(Xi+j = 0) ≍
2n󰁛

i=0

i · pi(0, 0).

Using the LCLT, we now get that

E[In] ≍
n󰁛

i=1

1

i
d
2
−1

≍

󰀻
󰁁󰀿

󰁁󰀽

√
n if d = 3

log n if d = 4

1 if d ≥ 5.

We see thus that dimension 4 is the critical dimension when considering intersections analogously
to dimension 2 being the critical dimension when considering collisions.

In the next section we are going to calculate the probability that one random walk avoids a two
sided random walk in four dimensions. Then we will move to higher dimensions and study large
deviations events for the number of intersections, i.e. we will bound the probability that the number
of intersections is very large. From the above we see that in high dimensions, the expected number
of intersections is of constant order.

2.1 Intersections in four dimensions

As we already discussed, dimension 4 is the critical dimension for the problem of intersections. What
is usually expected at the critical dimension is logarithmic corrections to mean field behaviour. The
main result of this section is to prove Lawler’s result on the non-intersection between a random
walk and an independent two-sided random walk in Z4.

Theorem 2.1 (Lawler (1985)). Let X1, X2 and X3 be three independent simple random walks
in Z4 starting from 0. Then as n → ∞

P
󰀃
X1[1,∞) ∩ (X2[0, n] ∪X3[0, n]) = ∅, 0 /∈ X2[1, n]

󰀄
∼ π2

8
· 1

log n

The proof that we will present follows Lawler’s original argument with some simplifications due to
Bai and Wan [3] and Bruno Schapira [19], who generalised it to branching random walks that we
will discuss in the final section.

The whole proof is based on the magic equality of Lemma 2.2 which is a consequence of the last
exit decomposition formula that we will state shortly. First we need to set up some notation.

Let X be a two-sided simple random walk in Z4, i.e. (Xn)n≥0 and (X−n)n≥0 are two independent

random walks started from 0. Let 󰁨X be an independent simple random walk in Z4 also started
from 0. For every integers a < b we write R[a, b] = {Xa, . . . , Xb} and for a, b ∈ N we set 󰁨Rn =
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{ 󰁨Xa, . . . , 󰁨Xb} for the ranges of the two walks during the time interval [a, b]. Let ξℓn and ξrn be two
independent geometric random variables of parameter 1/n each (P

󰀃
ξℓn = j

󰀄
= 1/n · (1 − 1/n)j for

all j), also independent of the walks. Finally we define

An = { 󰁨R[1,∞) ∩R[−ξℓn, ξ
r
n] = ∅}

en = 1(0 /∈ R[1, ξrn])

Gn =
󰁛

−ξℓn≤k≤ξrn

g(Xk).

Lemma 2.2. With the above definitions we have

E[1(An) · en ·Gn] = 1.

In Lemma 2.4 below we will show that Gn is concentrated around its mean (which is of order log n).
Hence, if we could just pull it out of the expectation above, we would get exactly the statement
of the theorem. The proof will then proceed by showing that this is actually correct up to smaller
order terms.

Before giving the proof of the magic formula (Lemma 2.2) we state and prove the last exit decom-
position formula which is an easy consequence of the Markov property. This result will be used
repeatedly throughout these notes.

Lemma 2.3 (Last exit decomposition formula). Let d ≥ 3 and let A ⊆ Zd be a finite set. Then
for all x ∈ Zd we have

Px(HA < ∞) =
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔
.

Proof. Let LA = sup{t ≥ 0 : Xt ∈ A} be the last time X visits A with the convention that
LA = −∞ if the set is empty. Then by transience of the walk we get {HA < ∞} = {0 ≤ LA < ∞},
and hence

Px(HA < ∞) = Px(0 ≤ LA < ∞) =

∞󰁛

n=0

󰁛

y∈A
Px(LA = n,Xn = y) =

∞󰁛

n=0

󰁛

y∈A
Px(Xn = y)Py

󰀓
󰁨HA = ∞

󰀔

=
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔

where for the penultimate equality we used the Markov property.

Proof of Lemma 2.2. For every nearest neighbour path (x1, . . . , xm) we define

B(m,x1, . . . , xm) = {ξℓn + ξrn = m, X−ξℓn+k −X−ξℓn
= xk, ∀ 1 ≤ k ≤ m},

and for all 0 ≤ j ≤ m we define

B(m, j, x1, . . . , xm) = {ξℓn = j, ξrn = m− j, X−ξℓn+k −X−ξℓn
= xk, ∀ 1 ≤ k ≤ m}.

Using the independence of the increments of the walk and the geometric random variables we then
obtain

P(B(m, j, x1, . . . , xm) | B(m,x1, . . . , xm)) =
1

m+ 1
.
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Setting x0 = 0, we then have

E[1(An) · en ·Gn]

=

∞󰁛

m=0

󰁛

(x1,...,xm)

P(B(m,x1, . . . , xm))

m+ 1
·

m󰁛

k=0

m󰁛

j=0

1(xj /∈ {xj+1, . . . , xm})

× P
󰀓
(xj + 󰁨R[1,∞)) ∩ {x0, x1, . . . , xm} = ∅

󰀔
g(xj − xk).

Using the last exit decomposition formula to the set {x0, . . . , xm} and the starting point xk we get

1 =

m󰁛

j=0

1(xj /∈ {xj+1, . . . , xm})× P
󰀓
(xj + 󰁨R[1,∞)) ∩ {x0, x1, . . . , xm} = ∅

󰀔
g(xj − xk).

Substituting this above we obtain

E[1(An) · en ·Gn] =

∞󰁛

m=0

󰁛

(x1,...,xm)

P(B(m,x1, . . . , xm)) = 1,

and this concludes the proof.

Lemma 2.4. There exists a positive constant C so that the following holds. Let X be a simple
random walk on Z4 started from 0 and let ξ be an independent geometric random variable of mean n.
Then

E

󰀥
ξ󰁛

i=0

g(Xi)

󰀦
=

4

π2
· log n+O(1) and Var

󰀣
ξ󰁛

i=0

g(Xi)

󰀤
≤ C log n.

We defer the proof of this lemma to the end of the section and we now give the

Proof of Theorem 2.1. Lemma 2.2 states that

E[1(An) · en ·Gn] = 1.

We now get

E[1(An) · en] =
1

E[Gn]
+

1

E[Gn]
· E[1(An) · en · (E[Gn]−Gn)] . (2.1)

Let ε > 0 and set
B = {|Gn − E[Gn] | ≥ ε log n}.

Then we have

E[1(An) · en · |E[Gn]−Gn|] ≤ ε log n · E[1(An) · en] + E[1(An) · |E[Gn]−Gn| · 1(B)] . (2.2)

Using Cauchy-Schwartz for the second term together with Lemma 2.4, we obtain

E[1(An) · |E[Gn]−Gn| · 1(B)] ≤
󰁳

P(B)Var(Gn) ≲ 1.

Substituting this bound into (2.2) and then into (2.1), taking ε sufficiently small, using Lemma 2.4
and rearranging we deduce

E[1(An) · en] ≲
1

log n
. (2.3)
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Claim 2.5. We have

P(An) ≲
1

log n
and P

󰀓
󰁨R[1,∞) ∩R(0, ξrn] = ∅

󰀔
≲ 1√

log n
. (2.4)

We now explain that it suffices to prove that

E[1(An) · |E[Gn]−Gn| · 1(B)] ≲ 1

(log n)1/4
. (2.5)

Indeed, once this is established, then we get

󰀏󰀏󰀏󰀏E[1(An) · en]−
1

E[Gn]

󰀏󰀏󰀏󰀏 ≤ ε · E[1(An) · en] +O
󰀕

1

(log n)5/4

󰀖
,

and, since this holds for any ε > 0 and E[Gn] ∼ 8/π2 log n by Lemma 2.4, this concludes the proof
in the case where we run the two-sided walk up to two geometric times. To pass to the fixed n
case, one needs to use that P

󰀃
n/(log n)2 ≤ ξrn ≤ n(log n)2

󰀄
= 1− (log n)−2 and similarly for ξℓn. So

we now turn to prove (2.5). By the Cauchy-Schwartz inequality we obtain

E[1(An) · |E[Gn]−Gn| · 1(B)] ≤
󰁳

P(An ∩B) · E[(E[Gn]−Gn)2] ≤
󰁳

P(An ∩B) · log n,

where for the last inequality we used Lemma 2.4. It remains to bound the last probability appearing
above. To do this we define

G1
n =

0󰁛

k=−ξℓn

g(Xk) and G2
n =

ξrn󰁛

k=0

g(Xk),

and also two events for i = 1, 2

Bi = {|Gi
n − E

󰀅
Gi

n

󰀆
| ≥ ε log n/2}.

Then it is clear that B ⊆ B1 ∪B2, and hence we deduce

P(An ∩B) ≤ P
󰀓
󰁨R∞ ∩R[−ξℓn, 0] = ∅, B2

󰀔
+ P

󰀓
󰁨R∞ ∩R[0, ξrn] = ∅, B1

󰀔

= 2P
󰀓
󰁨R∞ ∩R[−ξℓn, 0] = ∅

󰀔
P(B2) ≲

1√
log n

· 1

log n
.

Note that for the equality we used the independence between the two sides of the walk X and for
the last step we used the concentration result, Lemma 2.4, together with (2.4). Altogether this
gives

E[1(An) · |E[Gn]−Gn| · 1(B)] ≲ 1

(log n)1/4
,

and this concludes the proof .

Proof of Claim 2.5. This proof follows closely [19]. Assuming E[1(An) · en] ≲ 1/ log n, we want
to show that

P(An) ≲
1

log n
.
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Let σ be the last time that (Xn)n≥0 is at 0. Then we have

P(An) ≤ P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓ√n, 0] ∪R[σ,σ + ξr√n]) = ∅

󰀔
+ P

󰀓
σ + ξr√n ≥ ξrn

󰀔
,

where we took ξr√
n
to be an independent geometric random variable of parameter 1/

√
n. The

second probability appearing on the right-hand side above can be bounded as

P
󰀓
σ + ξr√n ≥ ξrn

󰀔
≤ P

󰀓
ξrn − ξr√n <

√
n
󰀔
+ P

󰀃
σ ≥

√
n
󰀄
.

Now it is easy to see that both these terms are much smaller than 1/ log n.

To control the first probability on the right-hand side above we observe that the walk X after time
σ has the same law as a walk started from 0 and conditioned on never returning to 0. Hence we
get

P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓ√n, 0] ∪R[σ,σ + ξr√n]) = ∅

󰀔
≤ 1

P0

󰀓
󰁨H0 = ∞

󰀔E
󰁫
1(A√

n) · en
󰁬
≲ 1

log n
,

where we used the transience of the walk. This now finishes the proof of the first claim.

We now turn to proving

P
󰀓
󰁨R[1,∞) ∩R[0, ξrn]

󰀔
≲ 1√

log n
.

By conditioning on 󰁨R we get

P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓn, 0] ∪R[0, ξrn])

󰀔
= E

󰁫
P
󰀓
󰁨R[1,∞) ∩ (R[−ξℓn, 0] ∪R[0, ξrn])

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰁬

= E
󰁫
P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔
P
󰀓
R[0, ξrn] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰁬

= E
󰀗󰀓

P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀏󰀏󰀏 󰁨R[1,∞)
󰀔󰀔2

󰀘
≥

󰀓
P
󰀓
R[−ξℓn, 0] ∩ 󰁨R[1,∞) = ∅

󰀔󰀔2
.

For the second equality we used the independence of the positive and negative parts of the walk
and for the last inequality we used Jensen’s inequality. Combining this with the first statement
completes the proof.

Proof of Lemma 2.4. Using the local CLT, it is a direct calculation to check that as n → ∞

E

󰀥
n󰁛

i=0

g(Xi)

󰀦
=

4

π2
· log n+O(1).

It is straightforward to see that replacing n by a geometric random variable of parameter 1/n gives
exactly the same asymptotics. It remains to estimate the variance. Note that if instead of the walk
we were considering a Brownian motion, then we could divide this sum between the first hitting
times of balls of radii 2i for i = 0, . . . , log n/2 and we would get a sum of independent terms. With
the walk one can carry through such an argument too, but there are the lattice effects that have
to be taken care of. So as in Lawler’s proof we simply estimate the variance using the local CLT.
For this we have

Var

󰀣
n󰁛

i=0

g(Xi)

󰀤
=

n󰁛

i=0

Var(g(Xi)) +
󰁛

i ∕=j

Cov(g(Xi), g(Xj)).

It remains to estimate E[g(Xi)g(Xj)]. This can be done employing the local CLT and for the details
we refer the reader to [10].
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2.2 Capacity

Let d ≥ 3. Let A be a finite subset of Zd. The capacity of A is defined as the sum of escape
probabilities from A, i.e.

Cap(A) =
󰁛

x∈A
Px

󰀓
󰁨HA = ∞

󰀔
.

We define the equilibrium measure of A to be given by

eA(x) = Px

󰀓
󰁨HA = ∞

󰀔
· 1(x ∈ A).

Exercise 2.6. Let d ≥ 3 and let A ⊆ Zd be a finite set. For all n we let Rn = {X0, . . . , Xn} be
the range of a simple random walk X in Zd. Explain why the following limit exists

lim
n→∞

|Rn +A|
n

and identify its value. (Note that Rn +A denotes the Minkowski sum of Rn and A.)

Corollary 2.7. Let A ⊆ Zd be a finite subset of Zd. Then

Cap(A) = lim
󰀂x󰀂→∞

Px(HA < ∞)

g(x)
.

Proof. Recall the last exit decomposition formula

Px(HA < ∞) =
󰁛

y∈A
g(x, y)Py

󰀓
󰁨HA = ∞

󰀔
.

Dividing both sides of this equality by g(x) we get

Px(HA < ∞)

g(x)
=

󰁛

y∈A

g(x, y)

g(x)
Px

󰀓
󰁨HA = ∞

󰀔
.

Since A is a finite set, using Theorem 1.7 we get

g(x, y)

g(x)
→ 1 as 󰀂x󰀂 → ∞.

Therefore, we conclude

lim
󰀂x󰀂→∞

Px(HA < ∞)

g(x)
=

󰁛

y∈A
Px

󰀓
󰁨HA = ∞

󰀔
= Cap(A)

and this finishes the proof.

Exercise 2.8. Let A,B ⊆ Zd be finite sets. Show that

Cap(A ∪B) ≤ Cap(A) + Cap(B)− Cap(A ∩B).

Exercise 2.9. Let r > 0. Show that

Cap(B(0, r)) ≍ rd−2.
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Exercise 2.10. Let x, y ∈ Zd. Show that

Cap({0}) = 1

g(0)
and Cap({x, y}) = 2

g(0) + g(x− y)
.

Remark 2.11. From the definition of capacity we see that it is intimately related to the question
of intersection of a random walk with a set. If we replace the deterministic set A by a random
set, then the question of capacity reduces to the question of whether a random walk intersects that
independent random set.

Exercise 2.12. Let X be a simple random walk in Z4 and let Rn = {X0, . . . , Xn} be its range up
to time n. Using Theorem 2.1 show that

E[Cap(Rn)] ∼
π2

8
· n

log n
.

Theorem 2.13. Let d ≥ 3 and let A ⊆ Zd be a finite subset of Zd. Then

1

Cap(A)
= inf

󰀻
󰀿

󰀽
󰁛

x,y∈A
g(x, y)µ(x)µ(y) : µ probability measure on A

󰀼
󰁀

󰀾 .

Proof. First of all using the last exit decomposition formula gives that with

µ(x) =
eA(x)

Cap(A)
,

we get
󰁓

x,y∈A g(x, y)µ(x)µ(y) = Cap(A). So it suffices to show that for any other probability
measure µ supported on A we have

󰁛

x,y∈A
g(x, y)µ(x)µ(y) ≥ 1

Cap(A)
. (2.6)

To prove this we define an inner product between any two probability measures µ and ν supported
on A as follows

〈µ, ν〉 =
󰁛

x,y∈A
µ(x)g(x, y)ν(y).

Then taking ν = eA/Cap(A), the normalised equilibrium measure, and for any µ we get using again
the last exit decomposition formula

〈µ, ν〉 = 1

Cap(A)
.

Now by the Cauchy-Schwartz inequality we obtain

1

Cap(A)
= 〈µ, ν〉 ≤

󰁳
〈µ, µ〉〈ν, ν〉 =

󰁳
〈µ, µ〉 · 1󰁳

Cap(A)
.

Rearranging proves (2.6).

Exercise 2.14. The goal of this exercise is to show that there exists a universal constant c > 0 so
that for any finite subset A of Zd we have

Cap(A) ≥ c · |A|1−2/d. (2.7)
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1. Show that there exists a positive constant C so that for every x ∈ A

󰁛

y∈A
g(x, y) ≤ C|A|2/d.

2. Taking µ = 1/|A| in the variational characterisation of capacity and using the above bound
prove (2.7).

The following lemma gives yet another equivalent definition of capacity. Its usefulness will be
apparent in Lemma 2.16, where the walk is required to spend a certain amount of time at each site
of a set A.

Lemma 2.15. Let d ≥ 3 and let A be a finite subset of Zd. Then the capacity of A satisfies

Cap(A) = sup

󰀻
󰀿

󰀽
󰁛

x∈A
ϕ(x) : ϕ : A → R+ and

󰁛

y∈A
g(x, y)ϕ(y) ≤ 1, ∀ x

󰀼
󰁀

󰀾 .

Proof. First of all we see that taking ϕ(x) = eA(x) for x ∈ A satisfies

󰁛

y∈A
g(x, y)ϕ(y) = Px(HA < ∞) ≤ 1

by the last-exit decomposition formula. Moreover,

󰁛

x∈A
ϕ(x) = Cap(A).

Hence, it remains to show that for any function ϕ : A → R+ with
󰁓

y∈A g(x, y)ϕ(y) ≤ 1 for all x,
we have that 󰁛

x∈A
ϕ(x) ≤ Cap(A).

Now observe that using the assumption that
󰁓

y∈A g(x, y)ϕ(y) ≤ 1 for all x we have

󰁛

x∈A
eA(x) ·

󰁛

y∈A
g(x, y)ϕ(y) ≤

󰁛

x∈A
eA(x).

By the last exit decomposition formula we also obtain

󰁛

x∈A
eA(x) ·

󰁛

y∈A
g(x, y)ϕ(y) =

󰁛

y∈A
ϕ(y)

󰁛

x∈A
g(x, y)eA(x) =

󰁛

y∈A
ϕ(y)Py(HA < ∞) =

󰁛

y∈A
ϕ(y).

Combining this with the above shows that

󰁛

y∈A
ϕ(y) ≤ Cap(A)

and this completes the proof.

For a simple random walk X in Zd with d ≥ 3 we write ℓ(x) =
󰁓∞

i=0 1(Xi = x), for x ∈ Zd, to
denote the local time at x.
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Lemma 2.16. Let A be a finite subset of Zd and let t > 0. Then

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ 2 exp(−t · Cap(A)/2).

Remark 2.17. We write f ∗ g to denote the convolution of f and g, i.e.

f ∗ g(x) =
󰁛

y

f(x− y)g(y).

Lemma 2.18. Let ϕ be a function satisfying 󰀂g ∗ϕ󰀂∞ ≤ 1. Then for all x0 ∈ Zd and all θ ∈ (0, 1)
we have

Ex0

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
.

Proof. First of all we notice that we can write this quantity as

󰁛

x

ϕ(x)ℓ(x) =
󰁛

x

ϕ(x)

∞󰁛

k=0

1(Xk = x) =

∞󰁛

k=0

ϕ(Xk).

We now upper bounding the n-th moment of
󰁓

x ϕ(x)ℓ(x). For this we have

Ex0

󰀥󰀣 ∞󰁛

k=0

ϕ(Xk)

󰀤n󰀦
= Ex0

󰀵

󰀷
󰁛

k1,...,kn

ϕ(Xk1) · · ·ϕ(Xkn)

󰀶

󰀸 ≤ n!
󰁛

k1≤...≤kn

Ex0 [ϕ(Xk1) · · ·ϕ(Xkn)]

= n!
󰁛

k1≤...≤kn

󰁛

x1,...,xn

Px0(Xk1 = x1, . . . , Xkn = xn)

n󰁜

i=1

ϕ(xi)

≤ n!
󰁛

k1≤...≤kn

󰁛

x1,...,xn

P k1(x0, x1) · P k2−k1(x1, x2) · · ·P kn−kn−1(xn−1, xn)

n󰁜

i=1

ϕ(xi)

= n!
󰁛

x1,...,xn

g(x0, x1) · · · g(xn−1, xn)

n󰁜

i=1

ϕ(xi) ≤ n!,

where in the last step we used the assumption on the function ϕ. So we now deduce

Ex0

󰀥
exp

󰀣
θ
󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
=

∞󰁛

n=0

Ex0 [(
󰁓

x ϕ(x)ℓ(x))
n]

n!
· θn ≤ 1

1− θ

and this concludes the proof.

Proof of Lemma 2.16. Let ϕ : A → R+ be a function satisfying 󰀂g ∗ ϕ󰀂∞ ≤ 1. It follows that

{ℓ(x) ≥ t, ∀ x ∈ A} ⊆
󰀫
󰁛

x∈A
ℓ(x)ϕ(x) ≥ t ·

󰁛

x∈A
ϕ(x)

󰀬
.

By the exponential Chebyshev inequality we now deduce for any θ ∈ (0, 1)

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ P

󰀣
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t

󰁛

x∈A
ϕ(x)

󰀤
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≤ exp

󰀣
−θ · t ·

󰁛

x∈A
ϕ(x)

󰀤
· E

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
· exp

󰀣
−θ · t ·

󰁛

x∈A
ϕ(x)

󰀤
.

Taking now θ = 1/2, optimising over all functions ϕ : A → R+ with 󰀂g ∗ ϕ󰀂∞ ≤ 1 and using
Lemma 2.15 shows that

P(ℓ(x) ≥ t, ∀ x ∈ A) ≤ 2 · exp(−t · Cap(A)/2)

and this finishes the proof.

For a set A ⊆ Zd we write ℓ(A) for the total time spent in A by a simple random walk X, i.e.

ℓ(A) =
󰁛

x∈A
ℓ(x).

We also write for x ∈ Zd

g(x,A) :=
󰁛

y∈A
g(x, y).

Lemma 2.19. Let d ≥ 3 and X a simple random walk on Zd. There exist positive constants c
and C so that if A is a finite subset of Zd, then we have

P(ℓ(A) ≥ t) ≤ C exp

󰀣
−ct/ sup

x∈Zd

g(x,A)

󰀤
.

Proof. Let ϕ(x) = 1/ supx∈Zd g(x,A) for all x ∈ A. Then we have

g ∗ ϕ(x) =
󰁛

y∈A
g(x, y)ϕ(y) ≤ 1.

Thus we can apply Lemma 2.18 to obtain for θ ∈ (0, 1) that

E

󰀥
exp

󰀣
θ ·

󰁛

x

ϕ(x)ℓ(x)

󰀤󰀦
≤ 1

1− θ
.

It is immediate to see that

{ℓ(A) ≥ t} ⊆
󰀫
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t/ sup

x∈Zd

g(x,A)

󰀬
.

Applying exponential Chernoff again we deduce

P

󰀣
󰁛

x∈A
ϕ(x)ℓ(x) ≥ t/ sup

x∈Zd

g(x,A)

󰀤
≲ exp

󰀣
−ct/ sup

x∈Zd

g(x,A)

󰀤

and this completes the proof.

Remark 2.20. Recall from Exercise 2.14 that there exists a universal constant C so that for all
sets A

sup
x∈Zd

g(x,A) ≤ C|A|2/d.

Plugging this bound into the bound in Lemma 2.19 shows that

P(ℓ(A) ≥ t) ≲ exp(−ct/|A|2/d).
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2.3 Intersections in higher dimensions

The question on large deviations on intersections of two independent random walks in dimensions
d ≥ 5 was first studied in 1994 by Khanin, Mazel, Shloshman and Sinai [9]. They proved that for
all ε > 0 and all t sufficiently large

exp(−t1−2/d+ε) ≤ P
󰀓
|R∞ ∩ 󰁨R∞| > t

󰀔
≤ exp(−t1−2/d−ε). (2.8)

In 2004, van den Berg, Bolthausen and den Hollander [23] showed that there exists a non-negative
rate function I such that for all b > 0

lim
t→∞

1

t1−2/d
logP

󰀓
|R⌊bt⌋ ∩ 󰁨R⌊bt⌋| > t

󰀔
= −I(b).

(In fact, they established it for Wiener sausages, and it was later adapted to the discrete setup by
Phetdrapat [16] in his PhD thesis.)

In 2020, Asselah and Schapira [2] finally managed to settle this open question by proving a large
deviations principle for the infinite time horizon.

Theorem 2.21 (Asselah and Schapira [2]). For d ≥ 5, the following limit exists and is positive

I∞ = lim
b→∞

I(b) = lim
t→∞

− 1

t1−2/d
logP

󰀓
|R∞ ∩ 󰁨R∞| > t

󰀔
.

In these notes we are going to establish the following result of Asselah and Schapira, which removes
the power ε from (2.8).

Theorem 2.22 (Asselah and Schapira [2]). Let d ≥ 5 and let R and 󰁨R be two independent ranges.
There exist positive constants c1 and c2 so that for all t > 0

e−c2t1−2/d ≤ P
󰀓
R∞ ∩ 󰁨R∞| > t

󰀔
≤ e−c1t1−2/d

.

Moreover, Asselah and Schapira are able to identify the strategy for the two walks in order to
achieve a large intersection. In particular, they show that given that the size of the intersection is
larger than t, a fraction close to t of them happen in a ball of radius t1/d.

They first prove a weaker result, namely that there exists a finite number of balls of radius t1/d,
where most of the intersections happen. To reduce to a single box, they needed to appeal to the
large deviations result for the finite time horizon problem.

2.3.1 Lower bound

We start by proving the lower bound of Theorem 2.22. This is the easier direction of this problem
as it entails finding a specific strategy for both walks to follow in order to achieve the required
event.

The main ingredient of the proof is the following result which gives a lower bound on the probability
that a walk visits a fraction of a set.

Proposition 2.23. Let X be a simple random walk in Zd with d ≥ 3 and let R∞ = X[0,∞) denote
its range. There exist positive constants ρ,κ and C so that for all r > 0 if Λ ⊆ B(0, r) satisfies
|Λ| > C, then

P(|R∞ ∩ Λ| ≥ ρ|Λ|) ≥ exp
󰀓
−κ · rd−2

󰀔
.
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We start by giving the proof the lower bound and then we proceed with the proof.

Proof of lower bound of Theorem 2.22. Let ρ < 1 and r > 0 be such that ρ2|B(0, r)| = t. We
then have

{|R∞ ∩ 󰁨R∞| ≥ t} ⊇ {|R∞ ∩B(0, r)| ≥ ρ|B(0, r)|} ∩ {| 󰁨R∞ ∩ (R∞ ∩B(0, r))| ≥ ρ · |R∞ ∩B(0, r)|}.

Using the independence between the two walks and applying Proposition 2.23 we obtain

P
󰀓
|R∞ ∩ 󰁨R∞| ≥ t

󰀔
≳ exp(−κ · rd−2) = exp(−κ′ · t1−2/d),

where κ and κ′ are positive constants. This completes the proof.

Let us first give a high level overview of the proof of Proposition 2.23. We consider the balls B(0, 5r)
and B(0, 10r). We are going to count the number of excursions the walk makes across the annulus
B(0, 10r) \ B(0, 5r). During each excursion, the walk has a probability 1/rd−2 of hitting a given
vertex of the ball B(0, r). The excursions are approximately independent, as there is enough time
for the walk to mix before starting the next one. So during Kr = K ·ρ ·rd−2 excursions, a fraction ρ
of the vertices of Λ will be covered. The probability that starting from ∂B(0, 10r) the random
walk hits ∂B(0, 5r) is a positive constant bounded away from 1 and 0, and hence the probability
of having at least Kr excursions is of order exp(−cKr) which is of the correct order. We now need
to make this argument rigorous.

Proof of Proposition 2.23. To this end we first define the successive hitting times of ∂B(0, 5r)
and ∂B(0, 10r). Set σ0 = 0 and define recursively for i ≥ 0

τi = inf{t ≥ σi : Xt /∈ B(0, 10r)} and

σi+1 = inf{t ≥ τi : Xt ∈ ∂B(0, 5r)}.

We let N be the total number of excursions the walk performs, i.e.

N = sup{k ≥ 0 : σk < ∞}.

Using the Green’s function asymptotics we get that there exists a positive constant c such that

P(N ≥ k) ≥ exp(−c · k). (2.9)

Set Kr = K · ρ · rd−2. Let G be the σ-algebra generated by the total number of excursions N and
the entrance and exit time of these excursions, i.e.

G = σ(N , Xσi , Xτi , i ≤ N ).

We now define Λ1 = Λ and inductively for i ≥ 1

R(i) = {Xσi , . . . , Xτi} and Λi+1 = Λ \ (∪j≤iR(j)).

Finally set
Yi = |R(i) ∩ Λi|1(σi < ∞).

By conditioning on G we deduce

P

󰀣
Kr󰁛

i=1

Yi > ρ|Λ|, N ≥ Kr

󰀤
= E

󰀥
1(N ≥ Kr) · P

󰀣
Kr󰁛

i=1

Yi > ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤󰀦

. (2.10)
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Let Hi = σ(X[0,σi]) for every i. We now define

M =

N∧Kr󰁛

i=1

(Yi − E[Yi | Hi,G]).

Note that by the orthogonality of increments we get

E[M | G] = 0 and E
󰀅
M2

󰀏󰀏 G
󰀆
≤ 2

N∧Kr󰁛

i=1

E
󰀅
Y 2
i

󰀏󰀏 G
󰀆
.

Exercise 2.24. Using Harnack’s inequality show that for all i ≤ N we have for all x ∈ B(0, r)

P
󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi , Xτi

󰀔
≳ P

󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi

󰀔
.

We also have using the asymptotics of the Green’s function

P
󰀓
x ∈ R(i)

󰀏󰀏󰀏 Xσi = y
󰀔
= Py(Hx < ∞)− sup

z∈∂B(0,10r)
Pz(Hx < ∞)

=
g(x, y)

g(0)
− sup

z∈∂B(0,10r)

g(x, z)

g(0)

=
cd

󰀂x− y󰀂d−2
− sup

z∈∂B(0,10r)

cd
󰀂x− z󰀂d−2

+O(r1−d) ≍ 1

rd−2
.

Therefore, putting everything together we deduce that for a positive constant c

E[Yi | G,Hi] ≥
c

rd−2
· |Λi|,

and hence on the event {N ≥ Kr} and taking K = 4/c in the definition of Kr this gives

N∧Kr󰁛

i=1

E[Yi | G,Hi] ≥ Kr ·
c

rd−2
· |ΛKr | = 4ρ|ΛKr |.

Since |ΛKr | = |Λ|−
󰁓Kr−1

i=1 Yi we get on the event {N ≥ Kr} for ρ ≤ 1/2

P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤

= P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|, |ΛKr | ≥ |Λ|/2

󰀏󰀏󰀏󰀏󰀏 G
󰀤

≤ P(|M | ≥ ρ|Λ| | G)

≤
E
󰀅
M2

󰀏󰀏 G
󰀆

ρ2|Λ|2 ≤ 2

ρ2|Λ|2
Kr󰁛

i=1

E
󰀅
Y 2
i

󰀏󰀏 G
󰀆
.

(2.11)

Now it remains to bound this last sum of conditional expectations. For this we obtain

E
󰀅
Y 2
i

󰀏󰀏 Hi,G
󰀆
=

󰁛

(z,z′)∈Λi×Λi

P
󰀓
z ∈ R(i), z′ ∈ R(i)

󰀏󰀏󰀏 Xσi , Xτi

󰀔

≤ 2
󰁛

(z,z′)∈Λi×Λi

P
󰀓
z ∈ R(i), z′ ∈ R(i), Hz < Hz′

󰀏󰀏󰀏 Xσi , Xτi

󰀔
.

Applying the Harnack inequality again we get that up to a positive constant this last sum is equal
to

󰁛

(z,z′)∈Λi×Λi

PXσi
(Hz < Hz′ < ∞) ≤

󰁛

(z,z′)∈Λ×Λ

1

rd−2
· 1

󰀂z − z′󰀂d−2 + 1
≲ 1

rd−2
· |Λ|1+2/d.
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Plugging this bound into (2.11) we see that on the event {N ≥ Kr} we have

P

󰀣
Kr󰁛

i=1

Yi ≤ ρ|Λ|

󰀏󰀏󰀏󰀏󰀏 G
󰀤

≤ 2

ρ2|Λ|2 ·Kr ·
1

rd−2
· |Λ|1+2/d ≤ 2

cρ|Λ|1−2/d
≤ 1

2
,

by taking |Λ| > C with C a large constant so that c · ρ · C1−2/d ≥ 4. Plugging this bound back
into (2.10) and using also (2.9) with k = Kr completes the proof.

2.3.2 Upper bound

We devote this section to the proof of the upper bound of Theorem 2.22. Here we are working in
dimensions d ≥ 5.

We first start by reducing the problem to a finite time horizon, as we show that it is very unlikely
for intersections to occur at high enough times. More precisely, for every n ≥ 0 we define

An =

∞󰁛

i=n

∞󰁛

j=0

1(Xi = 󰁨Xj).

Using the local CLT we then obtain

E[An] =

∞󰁛

i=n

∞󰁛

j=0

P
󰀓
Xi = 󰁨Xj

󰀔
=

∞󰁛

k=n

(k + 1)pk(0, 0) ≍ n(4−d)/2.

By Markov’s inequality we get

P
󰀓
󰁨R∞ ∩R[n,∞) ∕= ∅

󰀔
≤ E[An] ≍ n(4−d)/2,

and hence taking n = exp(t1−2/d) gives the desired upper bound. So we can focus now on intersec-
tions between 󰁨R∞ and R[0, n] for this specific value of n.

The following proposition is the main ingredient in the proof of the upper bound.

Proposition 2.25. There exist positive constants c and C so that if n = exp(t1−2/d), then

P

󰀣
sup
x∈Zd

g(x,Rn) > Ct2/d

󰀤
≤ C exp(−ct1−2/d).

Proof of upper bound of Theorem 2.22. As we explained above it suffices to study the num-
ber of intersections between 󰁨R∞ and Rn. By Proposition 2.25 we obtain

P
󰀓
| 󰁨R∞ ∩Rn| > t

󰀔
≤ P

󰀣
| 󰁨R∞ ∩Rn| > t, sup

x∈Zd

g(x,Rn) ≤ Ct2/d

󰀤
+ C exp(−ct1−2/d).

Applying Lemma 2.19 to the first probability appearing on the right-hand side above we get

P

󰀣
| 󰁨R∞ ∩Rn| > t, sup

x∈Zd

g(x,Rn) ≤ Ct2/d

󰀤

≤ E

󰀥
exp(−ct/ sup

x∈Zd

g(x,Rn))1( sup
x∈Zd

g(x,Rn) ≤ Ct2/d)

󰀦
≤ exp(−ct1−2/d)

and this concludes the proof.
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The main idea behind the proof of the upper bound of Theorem 2.22, and more precisely the proof
of Proposition 2.25, is that intersections will happen in the high density regions of the range of
each walk, i.e. the regions that are visited a lot by the walk. We are going to perform a multiscale
analysis of the high density region and then we will bound the Green’s function separately for the
high and the low density regions. In particular, we will show that the Green’s function for the low
density regions can be bounded deterministically, while for the high density we will first prove that
with high probability the sizes of these regions are not too large, and then on that we will be able
to bound the Green’s function, thus proving Proposition 2.25.

For r > 0 and ρ ∈ (0, 1) we now let

Rn(ρ, r) = {x ∈ Rn : |Rn ∩B(x, r)| > ρ|B(x, r)|},

i.e. the set Rn(ρ, r) contains the points on the range for which a fraction ρ of the ball around them
is covered by the range.

The following proposition controls the size of the set of high density regions.

Proposition 2.26. There exist positive constants C,C0 and κ such that the following holds. For
any r ≥ 1, n ∈ N and any ρ > 0 satisfying

ρ · rd−2 ≥ C0 · log n, (2.12)

then for any L ≥ 1 we have

P(|Rn(ρ, r)| > L) ≤ C exp
󰀓
−κ · ρ2/d · L1−2/d

󰀔
.

Claim 2.27. There exists a positive constant C so that the following holds. Let A be any finite set
and r ≥ 1 such that

|A ∩B(x, r)| ≤ ρ|B(x, r)|, ∀ x ∈ A.

Then for all R ≥ r we have for all x ∈ Zd

|A ∩B(x,R)| ≤ C · ρ · |B(x,R)|

Proof. To see this, we start by choosing x1 ∈ A ∩ B(x,R) and then inductively for any k ≥ 0
choose xk+1 ∈ A∩B(x,R)\(∪j≤kB(xj , r)) until this set becomes empty. Let n be the total number
of xi’s picked this way. Then the balls B(xi, r/2) for i ≤ n are disjoint, and hence

Rd ≍ |B(x,R)| ≥
n󰁛

i=1

|B(xi, r/2)| = n|B(0, r/2)| ≍ n · rd,

and hence this gives that n ≍ Rd/rd. Therefore, we obtain

|A ∩B(x,R)| ≤
n󰁛

i=1

|A ∩B(xi, r)| ≤ n · ρ · |B(0, r)| ≤ C · ρ · |B(0, R)|,

thus establishing the claim.

Lemma 2.28. There exists a positive constant C so that the following holds. Let A be any finite
set and r ≥ 1 such that

|A ∩B(x, r)| ≤ ρ|B(x, r)|, ∀ x ∈ A.

Then for any x ∈ Zd we have

g(x,A ∩B(x, r)c) ≤ C · ρ1−2/d · |A|2/d.
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Proof. Let Sk = B(x, r(k+ 1)) \B(x, rk) for k ≥ 1. Then we have using integration by parts and
Claim 2.27

g(x,A ∩B(x, r)c) =
󰁛

k≥1

g(x,Sk ∩A) ≤
󰁛

k≥1

|A ∩ Sk|
(kr)d−2

=
󰁛

k≥1

|A ∩B(x, r(k + 1))|− |A ∩B(x, rk)|
(kr)d−2

≍ 1

rd−2
·
󰁛

k≥1

|A ∩B(x, rk)|
kd−1

≤ 1

rd−2
·
󰁛

k≥1

min(ρ(rk)d, |A|)
kd−1

≍ ρ1−2/d · |A|2/d

and this completes the proof.

We now give the proof of Proposition 2.25 and then proceed with the proof of Proposition 2.26.

Proof of Proposition 2.25. We define a sequence of densities ρi = 2−i and radii ri for every i ≥ 0
by setting

ρi · rd−2
i = C0 log n, (2.13)

where C0 is the constant of Proposition 2.26. We now define the sets Λi as the regions where the
density in the balls of radius ri is at least ρi for the first time at level i. First recall for all i ≥ 0

Rn(ρi, ri) = {x ∈ Rn : |Rn ∩B(x, ri)| > ρi · |B(x, ri)|}

and note that Rn(ρ0, r0) = ∅. We now set

Λi = Rn(ρi, ri) \ (∪j≤i−1Rn(ρj , rj)) and Λ∗
i = Rn \ (∪0≤j≤i−1Rn(ρj , rj)).

Let Sk = B(x, rk) \B(x, rk−1) for every k ≥ 1. We decompose g(x,Rn) as follows

g(x,Rn) = g(x,B(x, r0) ∩Rn) +

∞󰁛

k=1

g(x,Rn ∩ Sk).

For the first term on the right-hand side above we have

g(x,B(x, r0) ∩Rn) ≤ g(x,B(x, r0)) ≲ r20 ≲ (log n)2/(d−2) ≲ t2/d.

Now for every k ≥ 1 we have

g(x,Rn ∩ Sk) =

k󰁛

i=1

g(x,Sk ∩ Λi) + g(x,Sk ∩ Λ∗
k+1).

We control the Green’s function of the low density region as follows

g(x,Sk ∩ Λ∗
k+1) ≲

|Sk ∩ Λ∗
k+1|

rd−2
k−1

≲ ρkr
d
k

rd−2
k−1

≲ log n

rd−4
k

,

where for the second inequality we used Claim 2.27 and for the final one we used (2.13). Thus
taking the sum over all k ≥ 1 we get

󰁛

k≥1

g(x,Sk ∩ Λ∗
k+1) ≲

log n

rd−4
0

≍ log n

(log n)(d−4)/(d−2)
= (log n)2/(d−2) ≲ t2/d.

20



Therefore, it remains to treat the high density region. First of all we see that since Rn ≤ n+ 1 we
get that Λi = ∅ for all i such that ρir

d
i > n+ 1, which using (2.13) gives that i ≳ log n.

We have

∞󰁛

k=1

k󰁛

i=1

g(x,Sk ∩ Λi) =

∞󰁛

i=1

󰁛

k≥i

g(x,Sk ∩ Λi) =

∞󰁛

i=1

g(x,Λi ∩B(x, ri−1)
c).

We define the good event to be

E = {|Λi| ≤ ρ
−2/(d−2)
i · t, ∀ i ≥ 1}.

Applying Proposition 2.26 together with the fact that for i ≳ log n we have |Λi| = ∅, it follows that

P(Ec) ≤
C logn󰁛

i=1

exp
󰀓
−κ · ρ2/di · (ρ−2/(d−2)

i t)1−2/d
󰀔
≲ exp

󰀓
−κ · t1−2/d

󰀔
. (2.14)

By definition, the set Λi contains all the points of the range that are not of density ρj for all j < i.
Therefore, we see that on the event E using also Lemma 2.28 we have for all i ≥ 1

g(x,Λi ∩B(x, ri−1)
c) ≲ ρ

1−2/d
i−1 · |Λi|2/d ≤ Cρ

1−2/d
i−1 · ρ−4/(d(d−2))

i · t2/d = ρ
(d−4)/(d−2)
i · t2/d.

Taking the sum over all i completes the proof.

For a set A we write B(A, r) = ∪x∈AB(x, r).

Lemma 2.29. There exists a positive constant c so that the following holds. Let C be a set of points
in Zd at distance at least 2r from each other. Then for all t > 0 we have

P(ℓ(B(x, r)) ≥ t, ∀ x ∈ C) ≤ exp
󰀓
−c · t · Cap(∪x∈CB(x, r))/rd

󰀔
.

Proof. Let ϕ be the equilibrium measure of ∪x∈CB(x, r). Define 󰁨ϕ as follows

󰁨ϕ(y) = c1
rd

󰁛

z∈B(x,r)

ϕ(z), ∀ y ∈ B(x, r),

where c1 is a positive constant to be determined in order to make g ∗ 󰁨ϕ ≤ 1. Let x0 ∈ Zd. We set
A(x0) = {x ∈ C : 󰀂x− x0󰀂 ≥ 2r}. We then have

󰁛

x∈C

󰁛

y∈B(x,r)

g(x0, y)󰁨ϕ(y) =
c1
rd

·
󰁛

x∈C

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z).

We split the sum over x ∈ A(x0) and the complement. For x /∈ A(x0), we then get that g(x0, y) ≲
g(x0, z) for any other z ∈ ∂B(x, r). So we obtain

󰁛

x∈A(x0)

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z) ≲ rd ·
󰁛

x∈A(x0)

󰁛

z∈B(x,r)

g(x0, z)ϕ(z) ≲ rd

by the last exit decomposition formula (recall g ∗ ϕ ≤ 1). For the sum over A(x0)
c we get

󰁛

x∈A(x0)c

󰁛

y∈B(x,r)

g(x0, y)
󰁛

z∈B(x,r)

ϕ(z) ≤ Cap(B(0, r)) ·
󰁛

z∈B(x0,3r)

g(x0, z) ≲ rd−2 · r2 = rd.
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So there exists c1 > 0 so that g ∗ 󰁨ϕ ≤ 1. Notice that
󰁛

x∈C
󰁨ϕ(x) =

󰁛

x∈C

󰁛

y∈B(x,r)

c1
rd

· ϕ(y) = c1
rd

·
󰁛

z∈∪x∈CB(x,r)

ϕ(z) =
c1
rd

· Cap(∪x∈CB(x, r)).

Applying Lemma 2.18 and exponential Chernoff we finally deduce

P(ℓ(B(x, r)) ≥ t, ∀ x ∈ C) ≤ P

󰀣
󰁛

x∈C
󰁨ϕ(x)ℓ(B(x, r)) ≥ t

󰁛

x∈C
󰁨ϕ(x)

󰀤
≲ exp(−c · t · Cap(∪x∈CB(x, r))/rd)

and this concludes the proof.

A final step towards proving Proposition 2.26 is the following bound on the sizes of regions with
controlled density from above and below.

For r > 0 and ρ ∈ (0, 1) we define

R∗
n(ρ, r) = {x ∈ Rn : ρ|B(x, r)| < |Rn ∩B(x, r)| ≤ 2ρ|B(x, r)|}.

These are the points of the range that the balls of radius r around them are visited a lot by the
walk. The important step in the proof of the theorem is the following lemma on large deviations
of the size of this set.

Lemma 2.30. There exist positive constants C,C0 and κ so that for all r ≥ 1, n ∈ N and ρ > 0
satisfying

ρ · rd−2 ≥ C0 · log n,
we have for all L ≥ 1

P(|R∗
n(ρ, r)| > L) ≤ C exp

󰀓
−κρ2/d · L1−2/d

󰀔
.

Proof. Let N be the number of points in R∗
n(ρ, r) that are at distance at least 2r from each other.

We start by showing that on the event {|R∗
n(ρ, r)| > L}, we must have N ≥ ⌊L/(2Cρ|B(0, 2r)|)⌋ =:

n0, where C is a positive constant to be determined. Indeed, first pick x1 ∈ R∗
n(ρ, r). Once we have

picked x1, . . . , xn we pick xn+1 from the set R∗
n(ρ, r) \ (∪j≤nB(xj , 2r)). Then using Claim 2.27 we

get

|R∗
n(ρ, r) ∩ (∪N

i=1B(xi, 2r))| ≤
N󰁛

i=1

|Rn ∩B(xi, 2r)| ≤ C · 2ρ · |B(0, 2r)| ·N,

where C is a positive constant. So we see that taking N as above this upper bound is smaller
than L/2. This shows that

{|R∗
n(ρ, r)| > L} ⊆ {∃ C 2r-separated with |C| ≥ n0 and |Rn ∩B(x, r)| ≥ ρ|B(x, r)|, ∀ x ∈ C}

The total number of possible sets C with |C| = ℓ is upper bounded by (2n)d·ℓ. Using this, Lemma 2.29
and (2.7) we get

P(|R∗
n(ρ, r)| > L) ≤

󰁛

ℓ≥n0

(2n)d·ℓ · exp(−κ · ρ · (rdℓ)1−2/d) =
󰁛

ℓ≥n0

exp(d · ℓ · log(2n)− κρ · (rdℓ)1−2/d).

We see that the entropic term that comes from counting all possible subsets dominates in the
exponential above. So we would like to reduce the total number of sets C that we are considering
in order to match the two terms appearing in the exponential above. To do this, we will use the
following result that shows that every set has a subset of the same capacity up to constants and
which is of the same order as its volume.
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Theorem 2.31. ([1, Theorem 1.1]) Suppose d ≥ 3. There exists a positive constant c so that the
following holds. Let A be a finite subset of Zd which is 2r separated for r ≥ 1, i.e. any two distinct
points of A are at distance at least 2r apart. Then there exists a subset U of A with the property
that

Cap(∪x∈UB(x, r)) ≥ c · rd−2 · |U | ≥ c2 · Cap(∪x∈AB(x, r)).

We defer the proof of this to end of the proof of the proposition.

Let C = {x1, . . . , xn0}. Applying the above theorem we get that there exists a subset U of C such
that

|U | · rd−2 ≍ Cap(B(U, r)) ≍ Cap(B(C, r)).

Using that Cap(A) ≥ |A|1−2/d we get

|U | ≳ |B(C, r)|1−2/d · r2−d ≳
󰀕
L

ρ

󰀖1−2/d

· r2−d.

For every ℓ > 0 there exist at most (2n)d·ℓ possible subsets of [−n, n]d of size ℓ. So by a union
bound we have

P(|Rn(ρ, r)| > L)

≤
∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

P
󰀓
∃ U : |U | = ℓ, |U |rd−2 ≍ Cap(B(U, r)), |Rn ∩B(x, r)| ≥ ρ|B(x, r)|, ∀ x ∈ U

󰀔

≤
∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

exp(c · ℓ · log n) · exp(−κ · ρ · ℓ · rd−2),

where for the final inequality we used Lemma 2.29. By taking the constant C0 sufficiently large so
that ρ · rd−2 ≥ C0 · log n, we see that there exists a positive constant κ such that the sum above is
upper bounded by

∞󰁛

ℓ=(L/ρ)1−2/d·r2−d

exp(−κ · ρ · ℓ · rd−2) ≲ exp(−κ · ρ2/d · L1−2/d)

and this completes the proof.

We are now ready to give the

Proof of Proposition 2.26. Clearly we have that

Rn(ρ, r) =
󰁞

i≥0

R∗
n(2

iρ, r).

Let α =
󰁓∞

i=0 2
−i/(d−2). By a union bound we get

P(|Rn(ρ, r)| > L) ≤
∞󰁛

i=0

P
󰀕
|R∗

n(2
iρ, r)| > α · L

2i/(d−2)

󰀖

≤
󰁛

i≥0

exp

󰀣
−κ · (2iρ)2/d ·

󰀕
L

2i/(d−2)

󰀖1−2/d
󰀤

≲ exp
󰀓
−κ′ · ρ2/d · L1−2/d

󰀔

and this completes the proof.
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Proof of Theorem 2.31. We first give the proof in the case where r = 1. We show that every C
has a subset U satisfying

Cap(U) ≥ c · |U | ≥ c2Cap(C).

For every x ∈ A, let (Xx
n) be a collection of independent simple random walks in Zd with Xx

0 = x

for every x ∈ A. For every x ∈ A we write 󰁨Hx
A for the first return time to A of the walk Xx. We

now define
U = {x ∈ A : 󰁨Hx

A = ∞}.

We then immediately get that E[|U|] = Cap(A) and Var(|U|) ≤ Cap(A) as |U| is the sum of
independent Bernoulli random variables. By Chebyshev’s inequality we then obtain

P
󰀕
|U| ≤ E[|U|]

2

󰀖
≤ 4

Cap(A)
and P(|U| ≥ 2E[|U|]) ≤ 1

Cap(A)
.

Assuming that Cap(A) > 16, since otherwise the statement holds true, we get that

P
󰀕
2Cap(A) ≥ |U| ≥ 1

2
Cap(A)

󰀖
≥ 2

3
.

It remains to show that the capacity of U is of the same order as the size of U with high enough
probability. To do this we are going to use the variational characterisation of capacity. Let µ be
the uniform measure on U . We then deduce

Cap(U) ≥ |U|2󰁓
x,y∈U g(x, y)

. (2.15)

We next upper bound the expectation of the denominator above. By the last exit decomposition
formula we have

E

󰀵

󰀷
󰁛

x,y∈U
g(x, y)

󰀶

󰀸 ≤
󰁛

x∈A
P
󰀓
󰁨Hx
A = ∞

󰀔
g(0) +

󰁛

x,y∈A
P
󰀓
󰁨Hx
A = ∞

󰀔
P
󰀓
󰁨Hy
A = ∞

󰀔
g(x, y)

= g(0)Cap(A) + Cap(A) = (g(0) + 1)Cap(A).

Using Markov’s inequality we get

P

󰀳

󰁃
󰁛

x,y∈U
g(x, y) ≤ 4(g(0) + 1)Cap(A)

󰀴

󰁄 ≥ 3

4
.

Therefore, combining all of the above we deduce

P

󰀳

󰁃2Cap(A) ≥ |U| ≥ 1

2
Cap(A),

󰁛

x,y∈U
g(x, y) ≤ 4(g(0) + 1)Cap(A)

󰀴

󰁄 ≥ 5

12
.

By (2.15) we see that on the event appearing in the probability above we get that

Cap(U) ≥ |U|2
4(g(0) + 1)Cap(A)

≥ c · |U| ≥ c2 · Cap(A),

where c is a positive constant, and hence, this proves that

P
󰀃
Cap(U) ≥ c · |U| ≥ c2 · Cap(A)

󰀄
≥ 5

12
.
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This concludes the proof in the case when r = 1.

For r ≥ 1 we proceed by defining for every x ∈ A an independent Bernoulli random variable Yx
with parameter

c

rd−2
·

󰁛

y∈∂B(x,r)

Py

󰀓
󰁨HB(A,r) = ∞

󰀔
,

where c is a constant to ensure that the quantity above is smaller than 1 and we write B(A, r) =
∪x∈AB(x, r). We next define the set U as

U = {x : Yx = 1}.

We have for the expectation and the variance

E[|B(U , r)|] = |B(0, r)| ·
󰁛

x∈A

c

rd−2

󰁛

y∈∂B(A,r)

Py

󰀓
󰁨HB(A,r) = ∞

󰀔
≍ r2 · Cap(B(A, r)).

For the variance as above we get

Var(|B(U , r)|) ≤ |B(0, r)| · E[|B(U , r)|] .

So with Chebyshev as above we get

P
󰀃
|B(U , r)| ≍ r2 · Cap(B(A, r))

󰀄
≥ 3

4
.

We finally need to control the sum of the Green’s function as before. By taking the uniform measure
on ∂B(U , r) we need to control

1

(|U| · |∂B(0, r)|)2
󰁛

x,x′∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x′,r)

g(y − y′).

For x = x′ we get 󰁛

x∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x,r)

g(y − y′) ≲ rd · |U|.

For x ∕= x′ we take expectation of the sum involving the Green’s function and obtain

E

󰀵

󰀷
󰁛

x ∕=x′∈U

󰁛

y∈∂B(x,r)

󰁛

y′∈∂B(x′,r)

g(y − y′)

󰀶

󰀸 ≤ r2(d−1) ·
󰁛

x ∕=x′∈A
P(Yx = 1)P(Yx′ = 1) g(x− x′)

= rd ·
󰁛

x ∕=x′∈A

󰁛

z∈∂B(x,r)

Pz

󰀓
󰁨HB(A,r) = ∞

󰀔
P(Yx′ = 1) g(x′ − z)

≲ rd ·
󰁛

x′∈A
P(Yx′ = 1) = rd · E[|U|] ,

where in the last inequality we used the last exit decomposition formula. The proof can be com-
pleted in the same way as before using Chebyshev’s inequality.
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3 Random interlacements

3.1 Definition

The goal of this section is to define random interlacements on Zd with d ≥ 3. First we will use them
in order to prove a very strong coupling result with simple random walk. In the next section we
will use them in order to sample uniform spanning forests using the interlacements Aldous Broder
algorithm introduced by Tom Hutchcroft.

We will write everything in the case of Zd but one can generalise to any transient graph as well.
For n ≤ m we define W(n,m) to be the set of graph homomorphisms from {n, n+ 1, . . . ,m} to G
that are transient, i.e. they have the property that every vertex is visited a finite number of times.
We also define

W =
󰁞

(W(n,m) : −∞ ≤ n ≤ m ≤ ∞).

For every path w ∈ W(n,m) and a finite set K ⊆ Zd we write

HK(w) = inf{n ≤ i ≤ m : w(i) ∈ K}

for the first time that w hits K and

LK(w) = sup{n ≤ i ≤ m : w(i) ∈ K}

for the last time w is in K. We write wK = w|[HK(w),LK(w)]. We write WK(n,m) (resp. WK) for
the paths in W(n,m) (resp. W) that visit K.

We equip W with the topology generated by open sets of the form

{w ∈ W : wK = w′
K},

for K a finite subset of Zd and w′ ∈ WK . We also endow W with the Borel σ-algebra B(W)
generated by this topology.

Finally we define the time shift θk : W → W by assigning to every w ∈ W the path θk(w)(i) =
w(i + k) for all i and with this we can now also define an equivalence relation ∼ by saying that
w1 ∼ w2 if there exists k such that θk(w1) = w2. Lastly, define W∗ = W/ ∼ to be the quotient

space and π : W → W∗ for the projection mapping. We define the quotient σ-algebra 󰁩W∗ on W∗

by including every set A if and only if π−1(A) ∈ B(W).

For every finite set K ⊆ Zd we define a measure QK as follows

QK({w ∈ W : w|(−∞,0] ∈ A,w(0) = x and w|[0,∞) ∈ B}) = Px

󰀓
X ∈ A, 󰁨HK = ∞

󰀔
Px(X ∈ B) ,

where A and B are Borel subsets of ∪m≥n≥0W(n,m) and X is a simple random walk. Note that
we defined QK only on a π-system, but since the σ-algebra is generated by such sets, this uniquely
determines QK .

From the definition of QK we see that QK/Cap(K) is a probability measure on bi-infinite trajec-
tories that hit K at time 0 and (Xn)n≥0 and (X−n)n≥0 are independent conditionally on X0 which
is distributed according to the normalised equilibrium measure. Moreover, the backward path has
the distribution of a simple random walk conditioned on avoiding K and the forward path is an
unconditioned simple random walk.
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Theorem 3.1 (Sznitman and Teixeira). There exists a unique σ-finite measure ν on W∗ such that
for every set A ⊆ W∗ in the quotient σ-algebra of W∗ and every finite K ⊆ V we have

ν(A ∩W∗
K) = QK(π−1(A)).

Sketch of proof. To prove this result, we first show that such a measure is unique if it exists. To
prove existence, we show that the measures QK are consistent, in the sense that if K ⊆ K ′ ⊆ Zd

are both finite subsets, then for any A ⊆ W∗
K ⊆ W∗

K′ we have

QK′(π−1(A)) = QK(π−1(A)).

Once this is established, then we can define ν by writing

ν(A) =

∞󰁛

n=1

QEn(π
−1(A ∩ (W∗

En
\W∗

En−1
))),

where (En) is an increasing sequence of finite subsets of Zd with ∪En = Zd.

For a full proof we refer the reader to [5, Theorem 6.2].

Definition 3.2. The interlacement process I is a Poisson process on W∗ × R and intensity mea-
sure ν ⊗ Leb. We will take the canonical probability space for this Poisson process to be

Ω =

󰀫
ω =

󰁛

n

δ(wn,un), with (wn, un) ∈ W∗ × R and ω(W∗
K × [s, t]) < ∞ ∀ s ≤ t and K finite

󰀬
.

For a bi-infinite path w we write R(w) for the range of w, i.e.

R(w) = {w(k) : k ∈ Z}.

For ω ∈ Ω given by ω =
󰁓

n δ(wn,un), we write

Iu(ω) =
󰁞

n: 0≤un≤u

R(wn).

Sometimes it will also be convenient to think of Iu as

Iu(ω) =
󰁛

n:0≤un≤u

δwn

In words, Iu is defined to be the set of trajectories that arrived between times 0 and u.

Lemma 3.3. For every u > 0 and finite set K ⊆ Zd we have

P(Iu ∩K = ∅) = e−uCap(K).

Proof. By definition of the interlacement process we see that

{Iu ∩K = ∅} = {I(W∗
K × [0, u]) = 0}.

Since I is a Poisson process with intensity measure ν ⊗ Leb, it follows that

P(I(W∗
K × [0, u]) = 0) = exp(−ν ⊗ Leb(W∗

K × [0, u])).
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By definition of ν we obtain

ν ⊗ Leb(W∗
K × [0, u]) = u · ν(W∗

K) = u ·QK(WK).

From the definition of QK we write

QK(WK) =
󰁛

x∈K
Px

󰀓
󰁨HK = ∞

󰀔
= Cap(K)

and this together with the above concludes the proof.

We now describe an equivalent way to characterise the range of interlacements inside a finite set
K ⊆ Zd.

For every w ∈ W, we write w+ for the forward part of w, i.e. w+ = (w(n))n≥0.

For u > 0 and K a finite subset of Zd, let Nu ∼ Poisson(uCap(K)). We start Nu independent
random walks on ∂K and we sample their starting points independently according to the normalised
equilibrium measure ofK, i.e. the measure eK(·)/Cap(K). Let (Xi)i≤N be this collection of random
walks. Then

Iu ∩K
d
=

󰁞

i≤Nu

(Xi[0,∞) ∩K).

Indeed, this follows from the definition of the measure QK and standard properties of Poisson
processes. More precisely, we define a mapping ϕ that takes every path in W∗

K to the path that
hits K for the first time at time 0 and then only keeps the positive part of the path after hitting K.
When we map every point of a Poisson process, we get a new Poisson process and the intensity is
the push forward of the intensity measure by this mapping.

3.2 Coupling with random walk

Sznitman introduced the model of random interlacements in order to describe the range of the
simple random walk on the discrete torus Zd

n and disconnection problems. In this section we state
and present a coupling result between random interlacements and random walk on the discrete
torus Zd

n. The Poissonian structure of random interlacements as well as the exact expression for
the probability of avoiding a set up to a given time make them very handy for calculations. Using
the coupling, one can then transfer these estimates to random walks.

Let X be a simple random walk on Zd
n. For every t > 0 and x ∈ Zd

n we write ℓx(t) for the local
time at x up to time t, i.e.

ℓx(t) =

t󰁛

i=0

1(Xi = x).

We write Lx(t) for the local time of random interlacements at x up to time t, i.e.

Lx(t) =
󰁛

w∈It

󰁛

n∈Z
1(w(n) = x).

We write Qr(0) = [−⌊(r − 1)/2⌋, ⌊(r − 1)/2⌋]d for the box of side length r around 0.

Theorem 3.4 (Cerny-Teixeira). Let X be a simple random walk on Zd
n with d ≥ 3 started according

to the uniform distribution. For all δ > 0, there exist positive constants c, C such that the following
holds. For every t > 0, ε ∈ (0, 1) and n ∈ N there exists a coupling between (ℓx(t))x and (Lx(t(1±
ε)))x so that

P
󰀃
Lx(t(1− ε)) ≤ ℓx(t) ≤ Lx(t(1 + ε)) ∀ x ∈ Qn(1−δ)(0)

󰀄
≥ 1− Cn2d⌈tnd−2⌉ exp

󰀓
−cε

√
tnd−2

󰀔
.
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I will present a different proof obtained in collaboration with Prévost and Rodriguez.

There are many applications of this coupling. One can transfer results about interlacements to
results about the walk up to this extra ε sprinkling. Here we state an application to the study of
the giant component of the vacant set of random walk on the torus Zd

n.

Consider running the random walk on Zd
n up to time u · nd for u > 0. Consider the set of points

that the walk has not visited up to this point and denote it by

U(und) = {x ∈ Zd
n : Hx > und}.

When u = 0, it is equal to Zd
n and as u increases the size decreases and tends to 0. The question is

whether there exists a phase transition in u for the size of |U(und)| analogous to the phase transition
in the Erdös-Rényi random graph?

We will show that this is indeed the case when instead of the size of U we study its diameter. To
this end, we write

ηn(u) = P
󰀓
diam(U(und)) > n/4

󰀔
.

It turns out that there exists a phase transition of this quantity and the turning point is the critical
density u󰂏(d) for random interlacements in Zd that we define now.

We denote by Vu the vacant set of random interlacements at level u, i.e.

Vu = Zd \ Iu.

It was proved by Sznitman [21] and Sidoravicius and Sznitman [20], but we will not do it here, that
for all d ≥ 3 there exists a threshold u󰂏(d) ∈ (0,∞) so that for all u < u󰂏(d) the vacant set Vu

almost surely contains a unique infinite connected component, while for u > u󰂏(d), all connected
components are finite almost surely.

Theorem 3.5 (Černý-Teixeira [24]). For all d ≥ 3, there exists a threshold u󰂏(d) such that for all
u > u󰂏(d)

lim
n→∞

ηn(u) = 0

and for u < u󰂏(d)
lim
n→∞

ηn(u) = η(u),

where η(u) is the probability that 0 ∈ Zd is in the infinite component of Vu.

Proof. Using the coupling of RW with RI we have for u > u󰂏(d) and ε > 0 so that u(1−ε) > u󰂏(d)

ηn(u) ≤ P
󰀓
U(und) ∩Qn(1− δ)(0) ⊈ Vu(1−ε) ∩Qn(1− δ)(0)

󰀔
+ P

󰀓
diam(Vu(1−ε)) > n/4

󰀔
→ 0

as n → ∞ using Theorem 3.4 and the definition of u󰂏(d). Now let u < u󰂏(d). Using the continuity
of η proved by Teixeira in [22], the fact that as n → ∞ we have

P(diam(Vu) > n/4) → η(u)

and the coupling again completes the proof.

Structure of the proof of coupling There are three steps for the proof.
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• First using the soft local time technique we couple together the excursions of random walk
and random interlacements across the annulus B(0, 3n/4) \B(0, n/2).

• We prove a concentration result for the number of excursions of both random walk and random
interlacements.

• Once we have the above two, we can couple the two ranges if we only consider numbers of
excursions.

3.3 Soft local times

In this section we present the soft local times technique due to Popov and Teixeira from [17].

Let (Σ, µ) be a locally compact Polish metric space endowed with its Borel σ-algebra. In our
applications later, the set Σ will be the set of nearest neighbour paths starting at the boundary of
a smaller ball and run until they exit a bigger concentric ball.

Let (Xn)n be a Markov chain with values in the space Σ. The goal of soft local times is to give
conditions in order to be able to find a coupling between X and another Markov process 󰁨X so that
under the coupling for every ε > 0

P
󰀓
{ 󰁨Xs : s ≤ n(1− ε)} ⊆ {Xs : s ≤ n} ⊆ { 󰁨Xs : s ≤ n(1 + ε)}

󰀔
→ 1 as n → ∞.

In other words, the ranges of 󰁨X and X are close up to this sprinkling parameter ε.

This method was introduced by Popov and Teixeira as a way to decouple the random interlacements
range in disjoint separated sets.

The idea of the soft local time technique is to sample the two Markov chains using a Poisson point
process and then compare certain quantities (so-called soft local times) of the Markov chains in
order to get a comparison between their ranges.

We are going to sample the Markov chain X using a Poisson point process on Σ×R+ with intensity
measure µ⊗Leb. First we state and prove a proposition about Poisson processes that follows using
standard properties of Poisson processes. Then we will use it to construct our coupling.

Proposition 3.6 (Popov-Teixeira [17]). Let η =
󰁓

λ∈Λ δ(zλ,vλ) be a Poisson process on Σ×R+ with
intensity measure µ⊗Leb, where Λ is a countable set and µ is a Radon measure, i.e. every compact
set has finite µ-measure. Let g : Σ → [0,∞) be a density with respect to µ, i.e.

󰁕
g(z)µ(dz) = 1.

Let ξ = infλ∈Λ
vλ

g(zλ)
. Then there exists a unique 󰁨λ ∈ Λ such that

• ξ =
v󰁨λ

g(z󰁨λ)
and ξ has the exponential distribution of parameter 1,

• z󰁨λ has distribution g · µ and is independent of ξ and

• η′ =
󰁓

λ ∕=󰁨λ δ(zλ,vλ−ξg(zλ)) has the same law as η and is independent of ξ and z󰁨λ.

Proof. Consider the point process

󰁨η =
󰁛

λ∈Λ
δ vλ

g(zλ)
.

Then by standard properties of Poisson processes we see that 󰁨η is a Poisson process with intensity
measure with no atoms. Hence, there exists a unique 󰁨λ such that ξ =

v󰁨λ
g(z󰁨λ)

.
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Let A be a Borel subset of Σ. Then we have

P
󰀃
z󰁨λ ∈ A

󰀄
= P

󰀕
inf
λ
{vλ/g(zλ) : zλ ∈ A} ≤ inf

λ
{vλ/g(zλ) : zλ ∈ Ac}

󰀖
.

Now notice, that by standard properties of Poisson processes, the set of points {(zλ, vλ) : zλ ∈ A}
is independent of the set of point {(zλ, vλ) : zλ ∈ Ac}, since they are two disjoint sets. We now first
find the distribution of each of the two infima appearing above. For this we have for any t ≥ 0

P
󰀕
inf
λ
{vλ/g(zλ) : zλ ∈ A} ≥ t

󰀖
= P(η({(z, v) : z ∈ A and v < tg(z)}) = 0)

= exp

󰀕
−
󰁝

A

󰁝

R+

µ(dz)1(v < tg(z)) dv

󰀖
= exp

󰀕
−t

󰁝

A
g(z)µ(dz)

󰀖
.

This shows that infλ{vλ/g(zλ) : zλ ∈ A} has the exponential distribution with parameter
󰁕
A g(z)µ(dz).

Taking A = Σ, we get that ξ has the exponential distribution of parameter 1. So we can now obtain

P
󰀃
z󰁨λ ∈ A

󰀄
=

󰁕
A g(z)µ(dz)󰁕

A g(z)µ(dz) +
󰁕
Ac g(z)µ(dz)

=

󰁝

A
g(z)µ(dz),

as g is a density with respect to µ.

Moreover, we have

P
󰀃
z󰁨λ ∈ A, ξ ≥ t

󰀄
= P

󰀕
t ≤ inf

λ
{vλ/g(zλ) : zλ ∈ A} ≤ inf

λ
{vλ/g(zλ) : zλ ∈ Ac}

󰀖
= e−t ·

󰁝

A
g(z)µ(dz),

which shows the required independence between ξ and z󰁨λ.

For the last claim, we first define a new point process

η′′ =
󰁛

λ ∕=󰁨λ

δ(zλ,vλ).

Given ξ and z󰁨λ, we see that η′′ contains all points of η with the property that vλ > ξg(zλ).
Therefore, conditional on ξ we get that η′′ is a thinned version of η and thus given ξ it has intensity
measure 1(v > ξg(z))µ ⊗ Leb. Finally we see that η′ is a transformation of η′′, and hence we
can conclude that given ξ and z󰁨λ, the process η′ is a Poisson process of intensity µ ⊗ Leb. Since
the distribution of η′ conditionally on ξ and z󰁨λ does not depend on them, it follows that η′ is
independent of ξ and z󰁨λ and this completes the proof.

How do we sample a Markov chain using the Poisson process η? Suppose that X is a (possibly
time-inhomogeneous) Markov chain with values in Σ, X0 = x0 and for every n ≥ 0

P(Xn+1 ∈ dz | Xn) = gn+1(Xn, z)µ(dz) a.s.,

where gi(x, ·) for any i > 0 is a density with respect to µ for every x ∈ Σ, i.e.
󰁕
gi(x, z) dµ(z) = 1

for all x ∈ Σ.

Proposition 3.7. Let G0(z) = 0, zλ0 = x0 and for all n ≥ 0 we define

ξn+1 = inf
λ∈Λ\{λ1,...,λn}

vλ −Gn(zλ)

gn+1(zλn , zλ)
and Gn+1(z) = Gn(z) + ξn+1gn+1(zλn , z) ∀ z ∈ Σ.

Suppose the infimum above is reached at (zλn+1 , vλn+1). Then the ξi’s are i.i.d. Exponential random
variables of parameter 1 and (Xi)i∈N has the same law as (zλi

)i∈N. Moreover, we have

λ ∈ {λ1, . . . ,λn} ⇔ vλ ≤ Gn(zλ) =

n󰁛

k=1

ξkgk(zλk−1
, zλ).
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Proof. Using Proposition 3.6 we see that for all n

ηn =
󰁛

λ∈Λ\{λ1,...,λn}
δ(zλ,vλ−Gn(zλ))

is a Poisson process independent of {zλ1 , . . . , zλn} and zλn+1 has density gn+1(zλn , ·) with respect
to µ conditionally on {zλ1 , . . . , zλn}. This proves that (zλi

) has the same law as X.

For the second part of the proposition, first note that if λ = λ1, then the claim trivially holds. We
proceed by induction. If λ ∈ {λ1, . . . ,λn+1}, then either λ ∈ {λ1, . . . ,λn} or

vλ = ξn+1gn+1(zλn , zλ) +Gn(zλ).

In the first case, we get by the induction hypothesis that vλ ≤ Gn(zλ) and in the second case we
get vλ = Gn+1(zλ). So in both cases we get vλ ≤ Gn+1(zλ). And, all these implications work in
the opposite direction too, so the proof is complete.

Definition 3.8. The process

Gn(z) =

n󰁛

k=1

ξkgk(zλk−1
, z), ∀ n ≥ 0 and z ∈ Σ

is called the soft local times process associated to the Markov chain X. Note that by the above
construction we get that the ξk’s are i.i.d. exponential random variables of parameter 1.

Now we can explain the usefulness of soft local times. We already saw how we can sample a Markov
chain using a Poisson process η. Now we show how we can couple two Markov chains and compare
their ranges by instead comparing their soft local times.

For every i > 0 let us fix some other densities hi : Σ × Σ → [0,∞) with respect to µ, i.e.󰁕
hi(x, z)µ(dz) = 1 for every x ∈ Σ. Using the previous procedure we can now sample from η

the following

• (xi)i = (zλi
)i with the same law as (Xi) and

• (󰁥xi)i with the same law as a Markov chain with transition densities hi.

LetG and 󰁥G be the corresponding soft local times. Then by Proposition 3.7 we deduce the following:

If 󰁥Gn(1−ε)(z) ≤ Gn(z) ≤ 󰁥Gn(1+ε)(z) ∀ z ∈ Σ, then

{󰁥x1, . . . , 󰁥xn(1−ε)} ⊆ {x1, . . . , xn} ⊆ {󰁥x1, . . . , 󰁥xn(1+ε)}.

Indeed, by Proposition 3.7 we get

{x1, . . . , xn} = {z ∈ Σ : ∃ (z, v) ∈ η s.t. v ≤ Gn(z)} and

{󰁥x1, . . . , 󰁥xn} = {z ∈ Σ : ∃ (z, v) ∈ η s.t. v ≤ 󰁥Gn(z)},

and hence the above claim follows immediately.

Corollary 3.9. Let ε > 0 and suppose that for all y, z we have

1− ε

4
≤ g(y, z)

f(z)
≤ 1 +

ε

4
and 1− ε

4
≤ h(y, z)

f(z)
≤ 1 +

ε

4
.

Then with exponentially large probability

{󰁥x1, . . . , 󰁥xn(1−ε)} ⊆ {x1, . . . , xn} ⊆ {󰁥x1, . . . , 󰁥xn(1+ε)}.
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Proof. Now, using concentration of the sum of exponential random variables, we get that with
exponentially large probability

󰁥Gn(1−ε)(z) = f(z) ·
n(1−ε)󰁛

i=1

󰁥ξi ≤ n
󰀓
1− ε

2

󰀔
f(z) and

󰁥Gn(1+ε)(z) = f(z) ·
n(1+ε)󰁛

i=1

󰁥ξi ≥ n
󰀓
1 +

ε

2

󰀔
f(z).

So if one could compare the density g to the density h, in the sense that g(y, z) is close to h(z) for
all y and z, then we would be done using the concentration of the sum of the exponential random
variables (ξi).

3.3.1 RW/RI excursions

In this section we show how we can couple the excursions of the SRW with those of RI across an
annulus. We start by giving some definitions and fixing some notation.

Let B1 = B(0, n/4), B2 = B(0, n/2) and B3 = B(0, 3n/4). We are going to be interested in the
range of the walk inside of B1. We will suppose that the walk starts outside of B2.

We first define everything for a simple random walk on the torus and then we will explain the
interlacements case. For a set A and a time t we write

LA(t) = sup{s ≤ t : Xs ∈ A}

for the last time before time t that the walk is in the set A.

We set ρ0 = 0 and for k ≥ 0 we define inductively

󰁨ρk = inf{t ≥ ρk : Xt ∈ ∂B2} and

ρk+1 = inf{t ≥ 󰁨ρk : Xt ∈ ∂B3}.

For every k ≥ 0 we let
ρk = inf{t ∈ [󰁨ρk, ρk+1] : Xt ∈ ∂B1},

i.e. this is the first time during the time interval [󰁨ρk, ρk+1] that the random walk visits B1. As usual
the infimum of the empty set is taken to be +∞.

We define the clothesline process to be the sequence (ζi)i≥1 given by

ζi = (X󰁨ρi−1
, Xρi), for i ≥ 1.

We see that for every i ≥ 1 we have ζi ∈ ∂B2 × ∂B3.

We now define NRW(t) to be the total number of excursions the walk performs before time t, i.e.

NRW(t) = sup{k ≥ 0 : ρk < t}.

For each excursion we are now going to consider the part of the excursion that intersects the set B1.
To this end for every i ≥ 1 we define

Zi =

󰀫
X[ρi−1, LB2(ρi)] if ρi−1 < ∞
Θ otherwise

,
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where Θ is a cemetery state for the case where X does not hit B1 during [󰁨ρi−1, ρi].

In the case of random interlacements at level u as we have already seen we can express the random
interlacements inside of B3 as the union of the ranges of a Poisson number of parameter uCap(B3)
of independent random walk trajectories started independently according to the normalised equi-
librium measure of B3. We let Nu be the Poisson random variable of trajectories started in B3

according to the normalised equilibrium measure.

Let (Xj)j≤Nu be these independent random walks in Zd. For each walk we define the sequence of
times (󰁨ρk)k and (ρk)k as above. Since the walks now are in Zd and not on the torus Zd

n anymore,
each walk is going to perform a finite number of excursions. We thus set for each j

T j = sup{k ≥ 0 : ρk(X
j) < ∞}

to be the total number of excursions that the walk Xj performs. We also define the clothesline
process for the interlacements by taking first the clothesline process of the walk X1, then that of
X2 and so on. We also define the parts of each excursion intersecting B1 as before separately for
each walk. We write

NRI(u) =

Nu󰁛

j=1

T j

for the total number of excursions of the walks of interlacements of level u intersecting B3.

We now let K be the set of paths in B3 that start from B1 and end in ∂B2. More precisely,

K = {σ = (σ0, . . . ,σℓ) : σ0 ∈ B1,σj ∈ B3 ∀ j ≤ ℓ, σℓ ∈ ∂B2}.

Recall that Θ is the cemetery state corresponding to excursions that do not hit B1. We set
Σ = K ∪ {Θ} and for every S ⊆ Σ we define

µ(S) =
󰁛

x∈B1,y∈∂B2

Px

󰀓
X[0, LB2(H∂B3)] ∈ S

󰀏󰀏󰀏 XLB2
(H∂B3

) = y
󰀔
+ 1(Θ ∈ S).

For (u,w) ∈ ∂B2 × ∂B3 and z = (z0, . . . , zℓ) ∈ K we set

g(u,w)(z) = Pu

󰀓
XHB1

∧H∂B3
= z0, XLB2

(H∂B3
) = zℓ

󰀏󰀏󰀏 XH∂B3
= w

󰀔
and

g(u,w)(Θ) = Pu

󰀓
H∂B3 < HB1

󰀏󰀏󰀏 XH∂B3
= w

󰀔
.

With these definitions we have for all z ∈ Σ

Pu

󰀓
X[HB1 ∧H∂B3 , LB2(H∂B3)] = z

󰀏󰀏󰀏 XH∂B3
= w

󰀔
= g(u,w)(z)µ({z}).

Conditionally on the clothesline process (ζi)i≥0 the sequence (Zi)i≥0 is a time inhomogeneous
Markov chain with transition densities gζi with respect to µ. Also conditionally on (ζi), the variables
(Zi) are independent. The transition density at the i-th step is of the form

(z′, z) 󰀁→ gζi(z),

which shows that it is a function only of the second variable.
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3.3.2 Clothesline process

Let (ζi)i≥1 and (󰁨ζi)i≥1 be the clothesline processes for the random walk and the random interlace-
ments respectively.

Let A and B be two subsets of Zd or Zd
n. We write

eA,B(x) = Px

󰀓
󰁨HA > HB

󰀔
1(x ∈ A).

Let B1 ⊆ B2 be two concentric balls and consider the clothesline processes corresponding to these
two balls. For the random walk, this corresponds to the successive entrance and exit times, while
for interlacements it corresponds to successive entrance and exit times for each walk up until it
escapes to infinity. Then we start another walk according to the normalised equilibrium measure
on ∂B2 and so on.

Lemma 3.10. Let B1 ⊆ B2 be two concentric balls in Zd (or Zd
n). Then both clothesline processes

are Markov chains with invariant measure given by

ν(x1, x2) = eB1,B2(x1)Px1

󰀓
XH∂B2

= x2

󰀔
for (x1, x2) ∈ ∂B1 × ∂B2.

Lemma 3.11. Let A,B be two disjoint sets. Then for all y ∈ B

PeA,B (XHB
= y) = Py

󰀓
HA < 󰁨HB < ∞

󰀔
.

Proof. The proof is the same for both random walk and random interlacements. All that changes
is that in the finite case all the hitting times are always finite almost surely. For y ∈ B we have

PeA,B (XHB
= y) =

󰁛

x∈A
Px

󰀓
󰁨HA > HB

󰀔
Px(XHB

= y)

=
󰁛

x∈A

∞󰁛

n=0

󰁛

z∈A
Px

󰀓
󰁨HA > HB

󰀔
Px(XHB

= y, LA(HB) = n,Xn = z)

=
󰁛

x,z∈A

∞󰁛

n=0

Px

󰀓
󰁨HA > HB

󰀔
Pz

󰀓
XHB

= y, 󰁨HA > HB

󰀔
Px(Xn = z,HB > n)

=
󰁛

x,z∈A

∞󰁛

n=0

Px

󰀓
󰁨HA > HB

󰀔
Py

󰀓
XHA

= z, 󰁨HB > HA

󰀔
Pz(Xn = x,HB > n)

=
󰁛

x,z∈A

∞󰁛

n=0

Pz(Xn = x, LA(HB) = n,HB < ∞)Py

󰀓
XHA

= z, 󰁨HB > HA

󰀔

=
󰁛

z∈A
Pz(HB < ∞)Py

󰀓
XHA

= z, 󰁨HB > HA

󰀔
= Py

󰀓
HA < 󰁨HB < ∞

󰀔
,

where we used reversibility in the third equality twice. This completes the proof in both cases of
Zd
n and Zd.

Proof of Lemma 3.10. We first prove the claim for the clothesline of the random walk. For this
we need to show that

Pν(ζ1 = (y1, y2)) = eB1,B2(y1)Py1

󰀓
XH∂B2

= y2

󰀔
.
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Abusing notation, here we write eB1,B2 for eB1,∂B2 . We have

Pν(ζ1 = (y1, y2)) =
󰁛

(x1,x2)∈∂B1×∂B2

eB1,B2(x1)Px1

󰀓
XH∂B2

= x2

󰀔
Px2(ζ1 = (y1, y2))

=
󰁛

x2∈∂B2

PeB1,B2

󰀓
XH∂B2

= x2

󰀔
Px2(ζ1 = (y1, y2)) =

󰁛

x2∈∂B2

Px2

󰀓
HB1 < 󰁨H∂B2

󰀔
Px2(ζ1 = (y1, y2))

=
󰁛

x2∈∂B2

Px2

󰀓
HB1 < 󰁨H∂B2

󰀔
Px2

󰀓
XHB1

= y1

󰀔
Py1

󰀓
XH∂B2

= y2

󰀔

= PeB2,B1

󰀓
XHB1

= y1

󰀔
Py1

󰀓
XH∂B2

= y2

󰀔
= Py1

󰀓
HB2 < 󰁨HB1

󰀔
Py1

󰀓
XH∂B2

= y2

󰀔

= eB1,B2(y1)Py1

󰀓
XH∂B2

= y2

󰀔
= ν(y1, y2).

This completes the proof in the case of a random walk.

The distribution of the clothesline for the RI case is given by for (x1, x2) ∈ ∂B1×∂B2 and y ∈ ∂B1

P(x1,x2)

󰀃
ζ11 = y

󰀄
= Px2

󰀃
X󰁨ρ0 = y

󰀄
+ Px(󰁨ρ0 = ∞) eB1(y),

i.e. if the trajectory escapes after hitting ∂B2, then we sample the next clothesline point according
to the normalised equilibrium measure. If the previous trajectory does not escape, then the next
point is the hitting point of ∂B2. Note that we write ζ1 for the first coordinate of ζ.

In order to show that ν is an invariant measure, it suffices to show that for all y ∈ ∂B1

Pν

󰀃
ζ11 = y

󰀄
= eB1,B2(y).

We have

Pν

󰀃
X󰁨ρ0 = y

󰀄
=

󰁛

x∈∂B2

PeB1,B2

󰀓
XH∂B2

= x
󰀔
Px

󰀓
XHB1

= y
󰀔

=
󰁛

x∈∂B2

Px

󰀓
HB1 < 󰁨H∂B2 < ∞

󰀔
Px

󰀓
XHB1

= y
󰀔
=

󰁛

x∈∂B2

eB1,B2(x)Px

󰀓
XHB1

= y
󰀔

= PeB1,B2

󰀓
XHB1

= y
󰀔
= Py

󰀓
H∂B2 < 󰁨HB1 < ∞

󰀔
,

since HB1 < 󰁨H∂B2 implies that 󰁨H∂B2 < ∞ as well. We also have

Pν(󰁨ρ0 = ∞) =
󰁛

x∈∂B2

PeB1,B2

󰀓
XH∂B2

= x
󰀔
Px(HB1 = ∞)

=
󰁛

x∈∂B2

Px

󰀓
HB1 < 󰁨H∂B2 < ∞

󰀔
Px(HB1 = ∞) =

󰁛

x∈∂B2

eB2,B1(x)Px(HB1 = ∞)

=
󰁛

x∈∂B2

eB2,B1(x)−
󰁛

x∈∂B2

󰁛

y∈∂B1

eB2,B1(x)Px

󰀓
XH∂B1

= y
󰀔

We now explain that 󰁛

x∈∂B2

eB2,B1(x) =
󰁛

x∈B1

eB1,B2(x).

Using that HB1 < 󰁨HB2 implies that 󰁨HB2 < ∞, we have

󰁛

x∈∂B2

eB2,B1(x) =
󰁛

x∈∂B2

Px

󰀓
󰁨HB2 > HB1

󰀔
=

󰁛

x∈∂B2

Px

󰀓
HB1 < 󰁨HB2 < ∞

󰀔
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=
󰁛

x∈∂B2

PeB1,B2

󰀓
XH∂B2

= x
󰀔
=

󰁛

x∈∂B2

󰁛

y∈B1

eB1,B2(y)Py

󰀓
XH∂B2

= x
󰀔
=

󰁛

y∈B1

eB1,B2(y),

where the final equality follows from the fact that starting from B1, the walk will exit B2 in finite
time almost surely. Plugging this above we deduce

Pν(󰁨ρ0 = ∞) =
󰁛

x∈∂B2

eB2,B1(x)−
󰁛

y∈∂B1

PeB2,B1

󰀓
XH∂B1

= y
󰀔

=
󰁛

x∈∂B2

eB2,B1(x)−
󰁛

y∈∂B1

Py

󰀓
H∂B2 < 󰁨HB1 < ∞

󰀔

=
󰁛

y∈∂B1

eB1,B2(y)−
󰁛

y∈∂B1

Py

󰀓
H∂B2 < 󰁨HB1 < ∞

󰀔
=

󰁛

y∈∂B1

Py

󰀓
󰁨HB1 = ∞

󰀔
= Cap(B1).

Combining all of the above we obtain for y ∈ B1

Pν

󰀃
ζ11 = y

󰀄
= Py

󰀓
H∂B2 < 󰁨HB1 < ∞

󰀔
+ eB1(y) · Cap(B1)

= Py

󰀓
H∂B2 < 󰁨HB1 < ∞

󰀔
+ Py

󰀓
󰁨HB1 = ∞

󰀔
= Py

󰀓
H∂B2 < 󰁨HB1

󰀔
= eB1,B2(y)

and this concludes the proof.

Exercise 3.12. The goal of this exercise is to prove that the mixing time of the clothesline process
is of constant order.

For x ∈ ∂B3 we write νx for the law of the first hitting point in ∂B2. Then by Harnack we get that
there exists a positive constant c so that for all x, z ∈ ∂B3

c · νz ≤ νx ≤ 1

c
· νz.

Using this describe a coupling when the two chains start from different points. Show that the
probability that they don’t couple by time k is of order e−c1k for some positive constant c1.

Exercise 3.13. Let K ⊆ K ′ ⊆ Zd be finite subsets. Prove the sweeping identity, i.e.

eK(y) = PeK′ (HK < ∞, XHK
= y) ∀ y ∈ K.

Deduce that

P󰁨eK′ (HK < ∞) =
Cap(K)

Cap(K ′)
.

3.3.3 Concentration of soft local times

Let (ξi)i≥1 and (󰁨ξi)i≥1 be i.i.d. families of exponential random variables of parameter 1. Let (ζi)

and (󰁨ζi)i be the clothesline processes of SRW on Zd
n and random interlacements on Zd respectively.

We write for n ≥ 1

Gn(z) =

n󰁛

i=1

gζi(z) and 󰁨Gn(z) =

n󰁛

i=1

g󰁨ζi(z),

where Nu is a Poisson random variable of parameter uCap(B3).

Let ζ ∼ eB2,B3 . For every z ∈ Σ we write

g(z) = E[gζ(z)] .
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Exercise 3.14. Using Harnack’s inequality show that gu,w(z) is independent of u and w up to
constants, i.e. that there exist c1 and c2 positive constants so that for all (u,w), (u′, w′) ∈ ∂B2×∂B3

and all z ∈ Σ we have
c1g(u,w)(z) ≤ g(u′,w′)(z) ≤ c2g(u,w)(z).

Lemma 3.15. For every ε > 0 and n ∈ N we have for all z ∈ Σ

P(|Gn(z)− n · g(z)| ≥ εng(z)) ≤ Cn exp(−c
√
ε2n) and

P
󰀓
| 󰁨Gn(z)− n · g(z)| ≥ εng(z)

󰀔
≤ C exp(−c

√
ε2n).

Proof. We present a sketch of the proof for the random walk case.

Let N to be determined later. Then ζi is completely mixed by this time and so is 󰁨ζ. We then have

P(Gn(z) ≥ (1 + ε)n · g(z)) ≤ P

󰀣
N󰁛

i=1

ξigζi(z) ≥ nεg(z)/2

󰀤

+N max
j≤N

P

󰀳

󰁃
n/N−1󰁛

i=1

gζiN+j
(z) ≥ (1 + ε/2)ng(z)/N

󰀴

󰁄 .

For every j, we can couple (ζiN+j)i≤n/N−1 with i.i.d. points distributed according to eB2,B3 . The

probability that the coupling fails can be bounded by ne−N . We now want to apply Chernoff.
For every λ < c for some positive constant c coming from Harnack’s inequality using the moment
generating function of the exponential distribution we get

E
󰁫
eλξgζ(z)

󰁬
= E

󰀗
1

1− λgζ(z)

󰀘
≤ 1 + λg(z) + 2λ2E

󰀅
(gζ(z))

2
󰀆
.

By Chernoff we get

P

󰀳

󰁃
n/N−1󰁛

i=1

ξiN+j · gζiN+j
(z) ≥ (1 + ε)ng(z)/N

󰀴

󰁄 ≤ exp
󰀃
θg(z) + 2θ2E

󰀅
(gζ(z))

2
󰀆󰀄

exp(−(1 + ε)θng(z)/N).

Optimising over θ we get

P

󰀳

󰁃
n/N−1󰁛

i=1

ξiN+j · gζiN+j
(z) ≥ (1 + ε)ng(z)/N

󰀴

󰁄 ≤ exp
󰀃
−c · ε2n/N

󰀄
+ e−N

Taking N so that ε2n = N2, we get the upper bound of order exp(−c
√
ε2n) and concludes the

proof.

The lower bound follows in the same way this time using for any λ > 0

E
󰁫
e−λξgζ(z)

󰁬
= E

󰀗
1

1 + λgζ(z)

󰀘
≤ 1− λg(z) + 2λ2E

󰀅
(gζ(z))

2
󰀆
.

We leave the details to the reader.

38



3.3.4 Excursions of RW and RI

We define the capacity of A with respect to B and write CapB(A) as

CapB(A) =
󰁛

x∈A
Px

󰀓
󰁨HA > HB

󰀔
.

Lemma 3.16. The expected length of each excursion across B3 \B2 in Zd
n in stationarity (for the

clothesline) is given by

EeB2,B3
[T1] =

nd

Cap∂B3
(B2)

.

Proof. We follow the proof of Cerny and Teixeira [24]. Let (Xi)i∈Z be a stationary two-sided
random walk on Zd

n, i.e. X0 is uniformly distributed and (Xn)n≥0 and (X−n)n≥0 are conditionally
independent simple random walks on Zd

n given X0. We now define

R = {n ∈ Z : Xn ∈ B2 and ∃ m < n : Xm ∈ ∂B3, {Xm+1, . . . , Xn} ⊆ B3 \B2},

i.e. R is the set of return times to ∂B2 for the two sided random walk. By reversibility and
stationarity we then get for n ∈ N and x ∈ ∂B2

P(n ∈ R, Xn = x) = P(Xn = x, ∃ m < n,Xm ∈ ∂B3, {Xm+1, . . . , Xn} ⊆ B3 \B2})

=
1

nd
· Px

󰀓
󰁨HB2 > H∂B3

󰀔
.

Taking the sum over all x ∈ B2 we get

P(n ∈ R) =
Cap∂B3

(B2)

nd
.

We now see that by taking the sum over all n ∈ [0, t]∩N we get that the total number of excursions
satisfies as t → ∞

E[NRW(t)]

t
→

Cap∂B3
(B2)

nd
.

Note that this limit is independent of the starting distribution of the walk and notice that the
actual number of excursions up to time t can differ from the number above by at most 1 for every
t, when considering only the one-sided walk.

Using now the ergodic theorem and the fact that the stationary distribution of the clothesline
process is given by eB2,B3 concludes the proof.

Lemma 3.17. Let V be the total length of an excursion across B3 \ B2. There for all k ≥ 1 we
have

E
󰁫
V k

󰁬
≤ k! · sup

x∈Zd
n

Ex[V ] .

Proof. Following [18] we write

E
󰁫
V k

󰁬
= E

󰀗󰁝 ∞

0
. . .

󰁝 ∞

0
1(V > t1) · · ·1(V > tk) dt1 . . . dtk

󰀘
(3.1)

≤ k! ·
󰁝

t1≤...≤tk

P(V > tk, V > tk−1) dt1 . . . dtk. (3.2)
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Using the strong Markov property, we now bound

󰁝

tk≥tk−1

P(V > tk, V > tk−1) dtk ≤ sup
x∈Zd

n

Ex[V ] · P(V > tk−1) .

Iterating this and substituting in (3.1) establishes the desired bound.

Lemma 3.18. There exist positive constants c and C so that the following holds. For all u > 0 we
have

P
󰀓
|NRW(und)− uCapB3

(B2)| ≥ εuCapB3
(B2)

󰀔
≤ C · exp

󰀓
−c

󰁴
ε2 · u · CapB3

(B2)
󰀔

P
󰀃
|NRI(u)− uCapB3

(B2)| ≥ εuCapB3
(B2)

󰀄
≤ C · exp

󰀃
−c · ε2 · u · CapB3

(B2)
󰀄

4 Uniform spanning trees

4.1 Electrical networks

In this section we are going to give a short introduction to electrical network theory and how we
can apply it to the study of random walks and uniform spanning trees.

Let G = (V,E) be a finite connected graph with V the set of vertices and E the set of edges.
We assign nonnegative weights (w(e))e∈E to the edge set E. We let a, b be two distinct vertices
of V . We can view G as an electrical network by assigning resistances to the edges of the graph
with r(e) = w(e)−1. Talking from the electrical network point of view, we can imagine attaching a
battery between a and b that applies a voltage difference which then induces a current that flows
from a to b. To make it all mathematically rigorous, we define the voltage W to be a discrete
harmonic function on V \ {a, b}, i.e. a function which satisfies for all x ∈ V \ {a, b} that

W (x) =
1

w(x)
·
󰁛

y∼x

w(x, y)W (y),

where w(x) =
󰁓

y∼xw(x, y). The voltage W induces a current that is defined by

I(x, y) =
W (x)−W (y)

r(x, y)
.

Then clearly I is an anti-symmetric function and satisfies for all x ∈ V \ {a, b}
󰁛

y∼x

I(x, y) = 0.

This is called Kirchoff’s node law. It also satisfies the cycle law, that is if −→e 1, . . . ,
−→e k is an oriented

cycle, then
k󰁛

i=1

r(ei) · I(−→e i) = 0.

Let W0 be a voltage with W0(a) = 1 and W0(b) = 0. By the uniqueness property of harmonic
functions, any other harmonic function can be expressed as an affine function of W0. More precisely,
we can write

W (x) = (W (a)−W (b))W0(x) +W (b).
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Let I0 and I be the currents associated with W0 and W respectively. We set

󰀂I0󰀂 =
󰁛

x∼a

I0(a, x) and 󰀂I󰀂 =
󰁛

x∼a

I(a, x).

We then see that

󰀂I󰀂 =
󰁛

x∼a

I(a, x) =
󰁛

x∼a

W (a)−W (x)

r(a, x)
=

󰁛

x∼a

1

r(a, x)
· (W (a)−W (b)− (W (a)−W (b))W0(x))

=
󰁛

x∼a

(W (a)−W (b)) · W0(a)−W0(x)

r(a, x)
= (W (a)−W (b))󰀂I0󰀂,

which shows that the ratio
W (a)−W (b)

󰀂I󰀂 =
1

󰀂I0󰀂
is independent of the voltage. We then define the effective resistance between a and b to be

Reff(a, b) =
W (a)−W (b)

󰀂I󰀂 .

Lemma 4.1. Let X be a simple random walk on G. Then

Pa

󰀓
Hb < 󰁨Ha

󰀔
=

1

deg(a)Reff(a, b)
.

Proof. The statement follows as a consequence of the uniqueness of harmonic functions on finite
graphs with given boundary values.

Definition 4.2. A flow θ :
−→
E → R from a to b is an antisymmetric function defined on oriented

edges satisfying for all x /∈ {a, b}
󰁛

y∼x

θ(x, y) = 0 and 󰀂θ󰀂 =
󰁛

z∼a

θ(a, z) ≥ 0.

We call θ a unit flow from a to b if 󰀂θ󰀂 = 1.

Exercise 4.3. Let θ be a unit flow from a to b satisfying Kirchoff’s node and cycle laws. Show
that θ is the unit current flow from a to b.

Theorem 4.4 (Thomson’s principle). The effective resistance satisfies

Reff(a, b) = inf

󰀫
󰁛

e∈E
r(e)|θ(e)|2 : θ unit flow from a to b

󰀬
.

This infimum is attained by the unit current flow from a to b.

Proof. We follow [7].

We write E(θ) =
󰁓

e∈E r(e)|θ(e)|2. Let i be the unit current flow from a to b associated to the
potential ϕ.

We start by showing that
Reff(a, z) = E(i).
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Using that i is a flow from a to z and Ohm’s law we have

E(i) = 1

2

󰁛

u,v
u∼v

i(u, v)2r(u, v) =
1

2

󰁛

u,v
u∼v

i(u, v)(ϕ(u)− ϕ(v)) = ϕ(a)− ϕ(z) = Reff(a, z).

Let j be another flow from a to z of unit strength. The goal is to show that E(j) ≥ E(i).

We define k = j − i. Then this is a flow of 0 strength. So we now get

E(j) =
󰁛

e

(j(e))2r(e) =
󰁛

e

(i(e) + k(e))2r(e)

=
󰁛

e

(i(e))2r(e) +
󰁛

e

(k(e))2r(e) + 2
󰁛

e

k(e)i(e)r(e)

= E(i) + E(k) + 2
󰁛

e

k(e)i(e)r(e).

We now show that 󰁛

e

k(e)i(e)r(e) = 0.

Since i is the unit current flow associated with ϕ, for e = (x, y) it satisfies

i(x, y) =
ϕ(x)− ϕ(y)

r(x, y)
.

Substituting this above we obtain

󰁛

e

k(e)i(e)r(e) =
1

2
·
󰁛

x

󰁛

y∼x

(ϕ(x)− ϕ(y))k(x, y) =
1

2
·
󰁛

x

󰁛

y∼x

ϕ(x)k(x, y) +
1

2
·
󰁛

x

󰁛

y∼x

ϕ(x)k(x, y),

where for the last equality we used the antisymmetric property of k. Since k is a flow of 0 strength,
we get that both these sums are equal to 0. Therefore this proves that

E(j) ≥ E(i)

with equality if and only if E(k) = 0 which is equivalent to k = 0.

Corollary 4.5 (Rayleigh’s monotonicity principle). The effective resistance is a monotone function
of the component resistances.

4.2 Uniform spanning trees on finite graphs

Let G = (V,E) be a finite connected graph with V being the set of vertices and E the set of edges.

Definition 4.6. A spanning tree of G is a connected subgraph of G which is a tree (i.e. it contains
no cycles) and contains all vertices of G. Since G is finite, the total number of spanning trees of
G is finite. Let this collection be T . An element T ∈ T picked uniformly at random is called a
uniform spanning tree (UST).

Let N (s, a, b, t) be the set of spanning trees of G with the property that the unique path from s
to t passes along the edge (a, b) in the direction from a to b. We write N(s, a, b, t) = |N (s, a, b, t)|.

Let N be the total number of spanning trees of G. We then have the following theorem:
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Theorem 4.7. The function

i(a, b) =
N(s, a, b, t)−N(s, b, a, t)

N

for all (a, b) ∈ E defines a unit flow from s to t satisfying Kirchoff ’s laws (node and cycle laws).

Proof. It is obvious from definition that i is an antisymmetric function. We next check that it
satisfies Kirchoff’s node law, i.e. for all a /∈ {s, t} we have

󰁛

x∼a

i(a, x) = 0.

We now count the contribution of each spanning tree T to the sum above. We now consider the
unique path from s to t in this spanning tree. If a is a vertex on this path, then there are two
edges on the path with endpoint a that contribute to the sum. The edge going into a and the one
going out of a. The first one will contribute −1/N and the second one 1/N . Now if a is not on
the path, then there is no contribution to the sum from T . Hence the overall contribution of T is
−1/N + 1/N = 0 and this proves Kirchoff’s node law.

We now check that it satisfies the cycle law. Let v1, . . . , vn, vn+1 = v1 constitute a cycle C. We will
show that

n󰁛

i=1

i(vi, vi+1) = 0. (4.1)

To do this we will work with bushes instead of trees. We define an s/t bush to be a forest consisting
of exactly two trees Ts and Tt such that s ∈ Ts and t ∈ Tt. Let e = (a, b) be an edge. We
define B(s, a, b, t) as the set of s/t bushes with a ∈ Ts and b ∈ Tt.

We now claim that |B(s, a, b, t)| = N(s, a, b, t). Indeed, for every bush in B(s, a, b, t) by adding the
edge e we obtain a spanning tree of N (s, a, b, t). Also for every spanning tree T ∈ N (s, a, b, t) by
removing the edge e we obtain a bush in B(s, a, b, t).

So instead of counting the contribution of each spanning tree to the sum in (4.1) we look at bushes.
Let B be an s/t bush. Then B makes a contribution to i(a, b) of 1/N if B ∈ B(s, a, b, t), −1/N
if B ∈ B(s, b, a, t) and 0 otherwise.

So in total an s/t bush B contributes (F+ − F−)/N , where F+ is the number of pairs (vj , vj+1) so
that B ∈ B(s, vj , vj+1, t) and similarly for F−.

But since C is a cycle, if there is a pair (vj , vj+1) in F+, then there must be a pair (vi, vi+1) in F−.
(If not, this would violate the no cycle property of the tree.) Therefore we get F+ = F− and hence
the total contribution of B is 0.

Finally we need to check that i is a unit flow, i.e.

󰁛

x∼s

i(s, x) = 1.

First we note that N(s, x, s, t) = 0 for all x ∼ s. Every spanning tree must contain a path from s
to t, and hence this gives that 󰁛

x∼s

N(s, s, x, t) = N

and concludes the proof.
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Corollary 4.8. Let e = (s, t) be an edge of G and let T be a UST. Then

Reff(e) = P(e ∈ T ) .

Proof. Combining Theorem 4.7 and Exercise 4.3 we get that i from Theorem 4.7 is a unit current
flow from s to t and

i(s, t) =
N(s, s, t, t)

N
,

where N(s, s, t, t) is the number of spanning trees that use the edge (s, t). Hence

N(s, s, t, t)

N
= P(e ∈ T ) .

Since the network has unit conductances, we get that

i(s, t) = ϕ(s)− ϕ(t),

where ϕ is the voltage associated to the unit current i. Therefore the effective resistance between s
and t is given by

Reff(s, t) = i(s, t) = P(e ∈ T )

and this completes the proof.

Theorem 4.9. Let G = (V,E) be a finite graph. Let f, g ∈ E with f ∕= g. Let T be a UST. Then

P(f ∈ T | g ∈ T ) ≤ P(f ∈ T ) .

Proof. We consider G as a network with every edge having conductance 1. From Corollary 4.8 we
get that

Reff(f ;G) = P(f ∈ T ) ,

where we write Reff(f ;G) to specify that the effective resistance is considered in the graph G. Let
e and g be distinct edges of G. We write G.g for the graph obtained by gluing both endpoints of g
to a single vertex. In this way we obtain a one to one correspondence between spanning trees of G
containing g and spanning trees of G.g. Therefore, P(e ∈ T | g ∈ T ) is the proportion of spanning
trees of G.g containing e. So from the above

P(f ∈ T | g ∈ T ) = Reff(f ;G.g).

Gluing the two endpoints of g decreases the effective resistance by Rayleigh’s principle, and hence

Reff(f ;G.g) ≤ Reff(f ;G),

which is exactly the statement of the theorem.

Definition 4.10. Let G be a finite connected graph. We write F for the set of forests of G (subsets
of G that do not contain cycles). Let F be a forest picked uniformly at random among all forests
in F . We refer to it as USF.

Conjecture 4.11. For f, g ∈ E with f ∕= g the USF satisfies

P(f ∈ F | g ∈ F ) ≤ P(f ∈ F ) .

There is a computer aided proof (Grimmett and Winkler) which shows that for graphs on 8 or
fewer vertices this conjecture is true.
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4.3 Wilson’s algorithm

In order to understand the geometry of UST’s, it turns out it is useful to study sampling algorithms.

In this section we describe a beautiful algorithm due to David Wilson.

We start by first describing the loop erasure of a finite path. Let G = (V,E) be a finite graph and
let γ = (γ0, . . . , γn) be a finite path of vertices in G. The loop erasure of γ is the path obtained
when we remove loops from γ in the chronological order in which they were created. More precisely,
we define

i0 = sup{j : γj = γ0}

and for k ≥ 1 we define inductively

ik = sup{j : γj = γik−1+1}.

Let m = inf{j : ij = n}. Then the path The path (γik)k≤m obtained in this way is called the
loop-erasure of γ.

We can now describe Wilson’s algorithm. Fix an ordering of the vertex set V = {v0, v1, . . . , vn}
and set r = v0 to be the root and set T0 = {r}. Next start a simple random walk from v1 and run
it until it hits r. Then erase the loops and add the loop erased path to T0 to obtain T1. Inductively,
once Ti has been defined, start an independent simple random walk from the next vertex in the
ordering and run it until it hits Ti. Then erase the loops and append the new path to Ti in order
to obtain Ti+1. We continue like this until we exhaust the vertices of V .

Theorem 4.12 (Wilson’s algorithm). Wilson’s algorithm produces a uniform spanning tree.

In order to prove that Wilson’s algorithm works, we will first describe an equivalent way of running
the algorithm.

Under every vertex of the graph except for the root we place an infinite collection of cards with
i.i.d. instructions on them. Each card points to a neighbour of the vertex chosen uniformly at
random. Different cards contain independent instructions. At time 1 we reveal all the top cards
under every vertex. These give rise to a directed graph. If there is no directed cycle, then we have
obtained a spanning tree. If there is a directed cycle, then we remove the top cards under every
vertex on the cycle and we reveal the second cards. Every time a directed cycle appears we remove
the corresponding cards and reveal the next ones. Discarding the top cards under a cycle is called
cycle popping. We continue in this way until there are no cycles. We will show that this procedure
will stop with probability 1 and the resulting tree will have the distribution of a uniform spanning
tree.

Lemma 4.13. Given any instructions under the vertices of the graph, either any order of popping
cycles will pop an infinite number of cycles or if not, it will always result in the same spanning tree.

Proof. First of all we introduce colours to the directed edges that come from the instructions. The
edges that appear from the top cards get colour 1, while the edges that appear from the i-th cards
get colour i.

Suppose that C is a cycle that can be popped in the order C1, C2, . . . , Cn = C and suppose that
a different coloured cycle C ′ ∕= C1 is popped first. We want to show that either C ′ = C or else
C will still be popped after C ′ is popped. This will suffice as it will prove that either an infinite
number of cycles will be popped or every cycle will be popped. If C ′ has no vertices in common
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with any of C1, . . . , Cn, then C can still be popped. If on the other hand C ′ has vertices in
common with C1, . . . , Cn, then let k be the first index so that C ′ ∩ Ck ∕= ∅ and let x ∈ C ′ ∩ Ck.
Since x /∈ C1, . . . , Ck−1, it follows that the edge that comes out of x is of colour 1, as it has not
been discarded yet. Also all the edges of C ′ are of colour 1, as it is the first cycle that we are
popping. The edge coming out of x will thus lead to the same point in both C ′ and Ck. Continuing
in this way, we get that all the colours of the new edges will also be 1, and hence we arrive at
the conclusion that C ′ = Ck. This shows that if C ′ ∕= C, then we can still pop C in the order
C ′, C1, . . . , Ck−1, Ck+1, . . . , Cn = C.

Proof of Wilson’s algorithm. First of all we observe that if we erase loops in the order in which
they are created, this is one way of popping cycles. Since Wilson’s algorithm stops with probability
1, it follows that any other method of popping cycles will also stop with probability 1 and will
produce a spanning tree. We now explain why the distribution of the tree is the uniform one.

We are going to consider pairs of sets of cycles and spanning trees lying underneath them. Let
X = {(O, T ) : O set of cycles lying over T (a spanning tree)}. Then for any finite set of cycles O,
any spanning tree T could be lying underneath, since the instructions under the vertices in O could
be anything. Therefore, we see that the space X can be written as X = X1 ×X2, where X1 is the
set of coloured cycles and X2 is the set of all spanning trees of G. Now the probability of seeing a
spanning tree T and a set of cycles O on top of it is given by

󰁜

e∈∪(O∪T )

1

deg(e−)
=

󰁜

e∈∪O

1

deg(e−)
·
󰁜

e∈T

1

deg(e−)
.

This shows that the marginal distribution of the tree component is the uniform distribution on the
space of spanning trees, as 󰁜

e∈T

1

deg(e−)
=

󰁜

x ∕=r

1

deg(x)
.

This completes the proof.

Theorem 4.14. Let G be an finite connected graph and let T be a UST. Let x, y be two distinct
vertices of G. Then the unique path joining x and y in T has the distribution of a loop-erased
random walk started from x run until it hits y. Moreover, a loop-erased random walk from x to y
has the same distribution as a loop-erased random walk from y to x in the graph G.

Proof. This follows immediately from Wilson’s algorithm, as we can take x to be the root and
start a random walk first from y and run it until it hits x.

4.4 Uniform spanning forests

In this section we define the uniform spanning forest measure in infinite graphs.

First of all we see that if a graph is recurrent, then we can run Wilson’s algorithm as in the finite
case and this will produce a spanning tree. It turns out that if we restrict this tree to large finite
balls, then the distribution will be close to the UST distribution in the finite graph. What happens
if we have an infinite transient graph though? We will show that one can always define a USF
measure on infinite graphs irrespectively of whether they are recurrent or transient. Then we will
present sampling algorithms for the transient case as well.
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Theorem 4.15. There exists a measure µ supported on spanning forests of Zd for all d ≥ 1. We
call µ the (wired) USF measure on Zd.

Sketch of proof. Let (Bn)n be an exhaustion of Zd by finite graphs, i.e. Bn ⊆ Bn+1 for all n ≥ 0
and ∪nBn = Zd. We obtain a sequence of graphs Gn by gluing Bc

n into a single point ∂n and
keeping all the existing connections in Bn and between ∂n and Bn. Let µn be the UST measure on
Gn. Let e1, . . . , ek be a finite collection of edges such that for all n sufficiently large ei ∈ Bn for all
i ≤ k. For T ∼ µn we have

µn(e1, . . . , ek ∈ T ) = P(e1, . . . , ek ∈ T ) = P(ek ∈ T | e1, . . . , ek−1 ∈ T )P(e1, . . . , ek−1 ∈ T ) .

From the proof of Theorem 4.9 we get

µn(e1, . . . , ek ∈ T ) = P(ek ∈ T | e1, . . . , ek−1 ∈ T ) = Reff(ek;Gn/{e1, . . . , ek−1}),

where we write Gn/{e1, . . . , ek−1} for the graph Gn with all the endpoints of the edges e1, . . . , ek−1

glued to single points. By Rayleigh’s monotonicity principle, we now see that

Reff(ek;Gn/{e1, . . . , ek−1}) ≤ Reff(ek;Gn+1/{e1, . . . , ek−1}).

Therefore, we see that the sequence µn(e1, . . . , ek ∈ T ) is an increasing sequence, and hence has
a limit µ(e1, . . . , ek ∈ F), where F denotes a random forest. From this it also follows that the
limiting measure µ is supported on acyclic graphs. Using this and the inclusion-exclusion formula,
we can define µ on elementary cylinder sets, i.e. sets of the form

{F ⊆ Zd : F forest , B1 ⊆ F and B2 ∩ F = ∅},

where B1 and B2 are finite sets of edges. Using next Kolmogorov’s extension theorem we get that
there is a uniquely defined measure µ supported on acyclic subgraphs of Zd that is the weak-limit
of the sequence (µn). We leave it to the reader to check using Rayleigh’s principle that the limit
measure µ is independent of the choice of exhaustion.

Wilson’s method rooted at infinity [4] Let G be a transient graph. We set F0 = ∅ and assign
an ordering to the vertices of G. We then start a simple random walk from the first vertex of the
ordering and run it forever and erase loops (which is well defined as it is almost surely a transient
trajectory). We then define F1 to be this loop-erased path. Inductively, once we have defined Fi we
define Fi+1 by running an independent simple random walk from the next vertex in the ordering
and wait until it hits Fi. If it never hits Fi, then we run it indefinitely. In both cases we erase loops
from the obtained path and we enlarge Fi by appending this path to it to get Fi+1. We continue
until we exhaust the vertex set of G.

Theorem 4.16 ([4]). Wilson’s method rooted at infinity yields a USF in Zd.

Sketch of proof. Let Bn be an exhaustion of Zd by finite graphs and let Gn be the graph obtained
by gluing Bc

n to a single point and keeping all connections. We run Wilson’s algorithm on the
graph Gn by taking as the root the vertex ∂n. Every time the walks used in Wilson’s algorithm hit
∂n we stop them. This way we can couple all the walks on the different graphs. The loop erasure
of each such walk will converge to the infinite loop erasure of a random walk. Using that Wilson’s
algorithm yields a UST in the finite setting together with the above shows that Wilson’s method
rooted at infinity will also produce a USF.
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4.4.1 Connectivity of USF

Theorem 4.17 (Pemantle 1991). The uniform spanning forest of an infinite graph is a tree if
and only if a simple random walk and an independent loop erased random walk started from any
two distinct vertices intersect with probability 1. Moreover, the probability that x and y are in the
same tree of the USF is equal to the probability that a random walk started from x intersects an
independent loop-erased random walk started from y.

Proof. This is immediate using Wilson’s method rooted at infinity.

Theorem 4.18 (Lyons, Peres and Schramm [15]). Fix k ≥ 0 and let (xj)j=−k,...,−1 be a path in Zd.
Let X and Y be two independent simple random walks in Zd started from x0 and y0 respectively.
Let I =

󰁓∞
i,j=0 1(Xi = Yj). If E(x,y)[I] = ∞ for all x, y, then setting Xj = xj for j = −k, . . . ,−1

we have

P(|LE(Xj)j≥−k ∩ {Yn : n ≥ 0}| = ∞) ≥ 1

16
.

Let X and Y be two independent simple random walks. For every N we write

IN =

N󰁛

i,j=0

1(Xi = Yj)

for the total number of intersections up to time N .

Lemma 4.19. For all x, y ∈ Zd we have

lim inf
N→∞

(Ex,y[IN ])2

E(x,y)

󰀅
I2N

󰀆 ≥ 1

4
.

Proof. We first prove this lemma for x = y = 0. Writing gN for the Green kernel up to time N
we have

E(0,0)

󰀅
I2N

󰀆
=

N󰁛

i,j,k,l=0

󰁛

x,y

P(0,0)(Xi = Yk = x,Xj = Yℓ = y)

≤
󰁛

x,y

󰀳

󰁃
󰁛

i≤j≤N

P0(Xi = x)Px(Xj−i = y) +
󰁛

N≥i>j

P0(Xj = y)Py(Xi−j = x)

󰀴

󰁄

×

󰀳

󰁃
󰁛

k≤ℓ≤N

P0(Yk = x)Px(Yℓ−k = y) +
󰁛

N≥k>ℓ

P0(Yℓ = y)Py(Yk−ℓ = x)

󰀴

󰁄

≤
󰁛

x,y

(gN (x)gN (x− y) + gN (y)gN (x− y))2

≤ 2
󰁛

x,y

(gN (x)2gN (x− y)2 + gN (y)2gN (x− y)2) = 4(E(0,0)[IN ])2,

where for the last inequality we used that (a+ b)2 ≤ 2(a2 + b2).

For x ∕= y, the same argument as above shows that

E(x,y)

󰀅
I2N

󰀆
≤ 4(E(0,0)[IN ])2.

We only need to show that lim inf E(x,y)[IN ] /E(0,0)[IN ] ≥ 1/4. For this we refer the reader to [14,
Corollary 10.32].
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Proof of Theorem 4.18. For every m we set (Lm
j )

J(m)
j=0 = LE(X0, . . . , Xm), where J(m) is the

length of the loop erasure. On the event {Xm = Yn}, we define

i(m,n) = min{i ≥ 0 : Lm
i ∈ {Yn, Yn+1, . . .}} and

j(m,n) = min{j ≥ 0 : Lm
j ∈ {Xm, Xm+1, . . .}}.

Then J(m) belongs to both sets of which we are taking the minimum. When Xm ∕= Yn, we set
i(m,n) = j(m,n) = 0. We now notice that on the event {Xm = Yn} we have

(Xm, Xm+1, . . .)
d
= (Yn, Yn+1, . . .).

This then gives that

P(i(m,n) ≤ j(m,n) | Xm = Yn) ≥
1

2
. (4.2)

Next we define

󰁨IN =

N󰁛

m=0

N󰁛

n=0

1(Xm = Yn) · 1(i(m,n) ≤ j(m,n)) ≤ IN .

Therefore, we get E
󰁫
󰁨I2N

󰁬
≤ E

󰀅
I2N

󰀆
. For the first moment of 󰁨IN we have using (4.2)

E
󰁫
󰁨IN

󰁬
=

N󰁛

m=0

N󰁛

n=0

P(i(m,n) ≤ j(m,n) | Xm = Yn) · P(Xm = Yn) ≥
1

2
E[IN ] .

By the Payley-Zygmund inequality we then deduce for all ε > 0

P
󰀓
󰁨IN ≥ εE

󰁫
󰁨IN

󰁬󰀔
≥ (1− ε)2 ·

󰀓
E
󰁫
󰁨IN

󰁬󰀔2

E
󰁫
󰁨I2N

󰁬 ≥ (1− ε)2 · 1
4
· (E[IN ])2

E
󰀅
I2N

󰀆 ≥ 1

16
· (1− ε)2 − ε.

Since E[IN ] → ∞, it also follows that E
󰁫
󰁨IN

󰁬
→ ∞ as N → ∞ as well. Therefore, we deduce

P
󰀓
󰁨IN → ∞

󰀔
≥ 1

16
.

We make the observation that if Xm = Yn and i(m,n) ≤ j(m,n), then Lm
i(m,n) ∈ LE(X) ∩ Y . This

together with the above imply

P(|LE(X) ∩ Y | = ∞) ≥ 1

16

and concludes the proof.

Theorem 4.20. The USF in Zd is a single tree almost surely if and only if d ≤ 4.

Proof. We start with d ≥ 5. Let X and Y be two independent simple random walks started from
x and y respectively. Then the expected number of intersections is upper bounded by

E(x,y)[I] ≲
∞󰁛

t=󰀂x−y󰀂

1

td/2−1
.
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We see that for every ε > 0, taking 󰀂x − y󰀂 sufficiently large and d ≥ 5 we get that E(x,y)[I] ≤ ε.
Thus,

P(USF is connected) ≤ P(x,y)(I > 0) ≤ E(x,y)[I] ≤ ε.

Since this is true for any ε > 0, it follows that for d ≥ 5 we have

P(USF is connected) = 0.

We now focus on d ≤ 4. In this case we know that for all x, y we have

E(x,y)[I] = ∞.

Let Λ = {|LE(X)∩Y | = ∞}. To show that the USF is connected almost surely, it suffices to prove
that P(x,y)(Λ) = 1 for all x, y. By the martingale convergence theorem we get

P(x,y)(Λ | X1, . . . , Xn, Y1, . . . , Yn) → 1(Λ) as n → ∞ a.s.

By the Markov property of Y we also get

P(x,y)(Λ | X1, . . . , Xn, Y1, . . . , Yn) = P(x,Yn)(Λ | X1, . . . , Xn) .

But applying Theorem 4.18 we get that this last probability is lower bounded by 1/16. Therefore,
combining this with the convergence above, we get

1(Λ) ≥ 1

16
,

and hence this implies that P(x,y)(Λ) = 1 and concludes the proof.

4.5 Aldous Broder algorithm

Definition 4.21. A rooted tree is a tree together with a distinguished vertex that we call the
root.

An oriented rooted tree is a rooted tree where every edge has an orientation with the property
that for every vertex except for the root there is exactly one edge emanating from it pointing away
from it.

Remark 4.22. We note that in an oriented rooted tree every edge is directed towards the root.
Also for every rooted tree, there is a unique way of assigning orientations to the edges so that every
edge points towards the root. In particular, for every edge e = (x, y), we orient it from x to y if
d(r, x) > d(r, y), where r is the root of the tree and d is the graph distance on the tree. We orient
it from y to x if d(r, x) < d(r, y).

Aldous-Broder (with ideas from Diaconis) algorithm. Let G = (V,E) be a finite connected
graph and let X be a simple random walk on G started from some vertex x0. We run the walk X
up until the cover time, which is the first time that the walk has visited every vertex of the graph
at least once, i.e. τcov = maxxHx, where we recall that we write Hx = min{t ≥ 0 : Xt = x} is
the first hitting time of x. To construct an oriented spanning tree, for every vertex x ∕= x0, we
include in the collection the edge that was crossed the first time that the walk visited x but with
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the reversed orientation. More precisely, for a directed edge e we write e← for the edge with the
opposite orientation. Then the Aldous Broder procedure applied to X is given by

AB(X) = {(XHv−1, XHv)
← : v ∕= x0}.

In this way, all the edges that we keep are oriented towards the root x0 of the tree.

It follows immediately by the construction that AB(X) is an oriented spanning tree. Indeed, every
vertex has exactly one directed edge emanating from it which points away from it. Moreover, the
definition in terms of the first hitting time of every vertex forces it to be acyclic.

To prove that this algorithm produces a UST, we are going to show that the resulting tree has the
same distribution as the invariant distribution of a certain Markov chain on the space of rooted
oriented trees.

Markov chain on rooted oriented trees. Let T0 be a rooted oriented tree rooted at X0. To
describe one step of the Markov chain, we choose a neighbour X1 of X0 uniformly at random. We
then add the edge (X0, X1) with direction from X0 to X1. This now created a cycle, and hence to
break it we delete the unique edge coming out of X1 pointing away from it. This new tree T1 is an
oriented tree rooted at X1.

Let Q be the transition matrix of this Markov chain. Then for two trees S, T such that Q(S, T ) > 0
we have

Q(S, T ) =
1

deg(ρ(S))
,

where ρ(S) stands for the root of the tree S.

Exercise 4.23. Show that the Markov chain defined by Q is irreducible. Check that if π(v) =
deg(v)/(2|E|), then 1/|T | · π is an invariant distribution for Q (considered as as Markov chain on
the space T × V (trees with their roots)).

Theorem 4.24 (Aldous-Broder (and Diaconis)). For every x0, if X is a simple random walk on
G started from x0, then AB(X) has the distribution of an oriented rooted UST of G.

Proof. Let (Xj : −∞ < j < ∞) be a stationary two-sided random walk on G, i.e. X0 ∼ π and
(Xn)n≥0 and (X−n)n≥0 are independent conditionally on X0. Define for all j ≥ 0

Sj = AB(Xj , Xj+1, . . .).

Then (Sj)j is a stationary sequence of rooted oriented trees, because (Xj)j is stationary. We next
show that

S0 ∼
1

|T | · π,

where |T | is the total number of spanning trees and π is the degree biased distribution.

To prove this, we consider the reversed chain, i.e. the Markov chain with transition matrix

P (T, T ′) = P
󰀃
S−1 = T ′ 󰀏󰀏 S0 = T

󰀄
,

for T, T ′ rooted oriented trees. Now for any rooted oriented tree T , there are deg(ρ(T )) possible
trees T ′ which differ in exactly two edges such that P (T, T ′) > 0. Since X−1 is a uniform neighbour
of X0, it follows that for any such compatible tree T ′ we have

P (T, T ′) =
1

deg(ρ(T ))
.
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This now implies that the matrix P has the same invariant distribution asQ, which is 1/|T |·π. Since
this Markov chain is also irreducible, it follows that 1/|T | · π is the unique invariant distribution.

To finish the proof we note that by construction the sequence of trees (Sj) is a stationary sequence,
and hence, S0 must be distributed according to the invariant distribution. If we now condition on
X0 = x0, then we get

P(S0 = T | X0 = x0) =
1

|T | · π(x0) ·
1

π(x0)
=

1

|T |

and this concludes the proof.

4.5.1 Ends in trees

Definition 4.25. An infinite path in a tree that never backtracks is called a ray. Two rays are
equivalent if they have infinitely many vertices in common. An equivalence class of rays is called
an end.

We already know that the USF is almost surely connected in Zd when d ≤ 4 and consists of infinitely
many trees when d ≥ 5. We would like to understand the geometry of each tree in the USF in all
dimensions. In particular, how many ends does each tree have?

Theorem 4.26 (Pemantle (d ≤ 4) and [4] (d ≥ 5)). All trees in the USF are almost surely one-
ended for all d ≥ 2.

Remark 4.27. In the case of d = 1, the USF is the whole line, which is clearly two-ended.

Remark 4.28. A tree is one-ended if and only if it does not contain a bi-infinite path.

Remark 4.29. Theorem 4.26 for d = 2 is proved in [14] using a duality argument, which works
more generally for plane recurrent graphs G whose dual graph is also recurrent and locally finite.

It turns out to be easier to talk about one-endedness when we assign orientations to the USF.
We have already described Wilson’s method rooted at infinity. We now also add orientations to
the edges by assigning the direction that agrees with the direction in which the LERW crossed
that edge. In this way every vertex has exactly one oriented edge emanating from it in the forest.
Therefore, every vertex u will have a unique infinite oriented path emanating from it. We call this
path the future of u. The set of vertices with an oriented path pointing towards u is called the
past of u. The important observation is the following

v ∈ future of u ⇔ u ∈ past of v.

With this observation the following becomes immediate

Lemma 4.30. A tree in the USF is one-ended if and only if every vertex has finite past.

4.5.2 Aldous-Broder Interlacements

We have already seen how to extend Wilson’s algorithm to infinite graphs. How can we extend
the Aldous-Broder algorithm? In the case of an infinite recurrent graph, it is clear how to do it.
Namely, we run a random walk forever and for every vertex we include in the spanning tree the
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first entry edge to that vertex. The recurrence of the graph implies that this algorithm will visit all
vertices of the graph, and hence it will produce a spanning tree. How can we extend the algorithm
though to an infinite transient graph?

Hutchcroft’s idea was to replace the single walk by random interlacements and use the same algo-
rithm. We explain this generalisation.

Let I be the random interlacements process, i.e. it is a Poisson process on the space W∗ × R,
where W∗ is the space of bi-infinite trajectories modulo time-shift. For every t ∈ R and v ∈ Zd we
define

τt(v) = inf
󰁱
s ≥ t : ∃ W ∈ W∗

{v} s.t. (W, s) ∈ I
󰁲
,

where we recall that W∗
{v} stands for the set of trajectories in W∗ that hit v. It is clear by the

construction of random interlacements that there exists a unique trajectory hitting v at time τt(v)
and we denote it Wτt(v). Let et(v) be the entry edge to v by Wτt(v) the first time that v was hit.
Finally for every t we set

ABt(I) =
󰁱
et(v)

← : v ∈ Zd
󰁲
.

Theorem 4.31 (Hutchcroft [8]). For all t > 0, the forest ABt(I) has the law of an oriented USF
of Zd.

Proof. Let (Bn) be an exhaustion of Zd by finite sets. Consider the graphs (Gn) obtained by
gluing Bc

n to a single point ∂n. Now for every n we let Pn be a Poisson process on R with intensity
the Lebesgue measure. For every t ∈ Pn we let Wt be a random walk excursion in Gn that starts
and ends at ∂n. We now claim that the process

{(t,Wt) : t ∈ Pn}

is a Poisson process that converges weakly to the random interlacements process on Zd. Indeed, if
we define a measure for every finite set K ⊆ Bn

Qn
K({w ∈ W[−k,m] : w |[−k,0]∈ A,w(0) = u,w |[0,m]∈ B})

= Pu

󰀓
(Xi)i∈[0,k] ∈ A, 󰁨HK > H∂n = k

󰀔
Pu

󰀃
(Xi)i∈[0,m] ∈ B,H∂n = m

󰀄
,

then by reversibility of the walk we see that the above is equal to

deg(∂n)

deg(u)
· P∂n

󰀓
(Xi)i∈[0,k] ∈ A←, XHK

= u,HK = k < 󰁨H∂n

󰀔
· Pu

󰀃
(Xi)i∈[0,m] ∈ B,H∂n = m

󰀄
.

This shows that the measure Qn
K/Qn

K(W) is the law of a random walk excursion that starts from ∂n,
it is conditioned to hit K and reparameterised so that it hits K for the first time at time 0. As
before, one can then construct a measure νn so that for all A we have

νn(A ∩W∗
K) = Qn

K(π−1(A)).

By definition we see that the measures Qn
K converge weakly to QK , and hence so do the Poisson

processes and this concludes the proof of the claim.

It remains to show that the Aldous Broder interlacements algorithm yields a USF. To see this, note
that for the finite graphs Gn, we have already proved that Aldous Broder produces an oriented UST.
Using excursions from ∂n to run Aldous Broder, we see that the correctness of this algorithm in
the finite setting together with the claim that we proved implies the statement of the theorem.
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Remark 4.32. This dynamic way of sampling the USF has many advantages, especially when it
comes to calculating tail probabilities for certain events as we show below.

As an application, we present the proof of Theorem 4.26 due to Hutchcroft.

Proof of Theorem 4.26. As we have already noted in Lemma 4.30, one-endedness is equivalent
to every vertex having a finite past. For every u ∈ Zd, every t ∈ R and n ∈ N, we let pastt(u, n) be
the set of vertices in the past of u that have a path of length n to u and they have been generated
by ABt(I).

Let ε > 0 to be determined. We then have

P(past0(0, n) ∕= ∅) ≤ P(τ0(0) ≤ ε) + P(τ0(0) > ε, past0(0, n) ∕= ∅) .

We now notice that the event {τ0(0) > ε, past0(0, n) ∕= ∅} implies that there exists u ∈ pastε(0, n)
such that the path from 0 to u is not hit by I in [0, ε]. Indeed, notice that if u ∈ past0(0, n), it
means that τ0(u) ≥ τ0(0), and since τ0(0) > ε, it follows that τ0(u) > ε, i.e. the first trajectory that
hits u arrived after time ε. Therefore, u ∈ pastε(0, n) and the path from 0 to u was not hit by I
during [0, ε]. Indeed, if it were hit, then that would disconnect u from 0. We thus have

P(τ0(0) > ε, past0(0, n) ∕= ∅) ≤ P(∃ u ∈ pastε(0, n) : path from 0 to u is not hit by I in [0, ε])

≤ E

󰀵

󰀷
󰁛

u∈pastε(0,n)
exp(−ε · Cap(path[0, u]))

󰀶

󰀸 .

When u ∈ pastε(0, n), the path from 0 to u in the past has length n. To lower bound the capacity
of this path, we use the bound

Cap(A) ≳ |A|(d−2)/d,

and hence this gives

P(τ0(0) > ε, past0(0, n) ∕= ∅) ≤ exp(−εn(d−2)/d).

By symmetry we get

E[|pastε(0, n)|] =
󰁛

u∈Zd

P(u ∈ past0(0, n)) =
󰁛

u∈Zd

P(0 ∈ past0(u, n)) =
󰁛

u∈Zd

P(u ∈ future(0, n)) = 1,

since there is exactly one vertex in the future at distance n from 0. The probability that 0 is hit in
[0, ε] by a trajectory of random interlacements is given by

1− exp(−εCap(0)) ≍ ε.

Taking ε = log n/n(d−2)/d shows that

P(past0(0, n) ∕= ∅) ≲ log n

n(d−2)/d
,

and hence taking the limit as n → ∞ concludes the proof.

Theorem 4.33 (Hutchcroft). For all d ≥ 5 we have

P(radint(past(0)) ≥ n) ≍ 1

n
.
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Theorem 4.34 (Hutchcroft and Sousi). For d = 4 we have

P(radint(past(0)) ≥ n) ≍ (log n)1/3

n
.

Sketch of proof of lower bound. To prove the lower bound we need to find a strategy to create
a big past.

Let ε > 0 to be determined. Let A be the event that 0 is hit by a unique trajectory W of RI in the
time interval [0, ε]. Let X = AB(W |[0,∞)). Let η be the infinite path in X. Then it is not hard to
check that η has the law of a loop erased random walk in Z4.

We also define B as follows

B = {W |(−∞,0) ∩ η[0, n] = ∅, η[0, n] is not hit by any other traj. of RI in [0, ε]}.

With these definitions it follows that A ∩ B implies that the past has intrinsic radius at least n.
We then have

P(A ∩B) = P(A)P(B | A) .

By the Poisson property of RI, we get that

P(A) = ε · Cap({0}) · e−εCap({0})

By the splitting property of Poisson processes we also get

P(B | A) = E
󰀅
1(W |(−∞,0) ∩ η[0, n] = ∅) · exp (−εCap(η[0, n]))

󰀆
.

We now replace Cap(η[0, n]) by its typical value which is n/(log n)2/3 and we take ε = (log n)2/3/n
to get

P(B | A) ≳ P
󰀃
W |(−∞,0) ∩ η[0, n] = ∅

󰀄
.

Using Lawler’s non-intersection exponent between a SRW and the first n steps of a LERW in Z4

we get

P(B | A) ≳ 1

(log n)1/3
.

Putting everything together we obtain

P(A ∩B) ≳ (log n)1/3

n

and this concludes the proof.

Lawler showed that the first n steps of a LERW in Z4 are produced by loop-erasing the first n(log n)1/3

steps of a SRW. Using the result by Lyons, Peres and Schramm that intersection probabilities be-
tween two SRW’s are equivalent to intersection probabilities between one walk and the LE of the
other one, we see that

E[Cap(η[0, n])] ≍ E
󰁫
Cap(LE(X[0, n(log n)1/3))

󰁬
≍ E

󰁫
Cap(X[0, n(log n)1/3)

󰁬

≍ n(log n)1/3

log n
=

n

(log n)2/3
.
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5 Branching random walks

5.1 Critical trees conditioned to survive

Let µ = (µk)k≥0 be a probability distribution on N with mean 1 and finite variance σ2. Let Tc be
a Galton Watson tree with offspring distribution µ. We denote its root by ∅. For every d ≥ 1 we
attach i.i.d. increments of a Zd simple random walks to the edges of the tree. For each x ∈ Zd we
now define a branching random walk on Zd started from x, by assigning to each vertex u ∈ Tc the
sum of the increments along the edges on the shortest path joining u to ∅ and translating everything
by x. We write (Sx

v )v∈Tc for the branching random walk started from x.

The local time at y ∈ Zd is defined to be

ℓTc(y) =
󰁛

u∈Tc

1(Sx
u = y).

Writing Zn for the number of individuals in generation n and using the independence between the
tree and the increments we get that the first moment of the local time is given by

E[ℓTc(y)] =
∞󰁛

n=0

E[Zn]Px(Xn = y) =

∞󰁛

n=0

Px(Xn = y) = g(x, y),

where X denotes a simple random walk on Zd and g stands for the Green’s function. Thus we see
the critical branching random walk has the same Green’s function as a simple random walk.

Suppose we condition the tree to reach generation n. Each particle performs a simple random walk
run for n steps and hence covers of the order n points of the ball of radius

√
n in Zd. As we will

show below, under this conditioning, there will be order n particles that walk in the ball of radius√
n, and hence in total n2 points of the ball of radius

√
n will be covered. The volume of the ball of

this radius is of order nd/2. We thus see that if d = 4, then this ball is filled by a BRW conditioned
to be large. Hence we see that dimension 4 is the critical dimension for recurrence in this setup.

We now start with a result of Kolmogorov and Yaglom and a later version by Kesten, Ney and
Spitzer (only assuming second moments). Here we present a proof due to Geiger [6].

Theorem 5.1 (Kolmogorov, Yaglom, Kesten, Ney, Spitzer). Let (µ(k))k≥0 be an offspring distri-
bution with mean 1 and finite variance σ2. If Zn denotes the size of the n-th generation, we then
have

n · P(Zn > 0) → 2

σ2
as n → ∞.

We let Rn+1 be the index of the leftmost child of the root who has a descendant in generation n+1.
Formally, let (T (i))i≤Z1 be the subtrees rooted at the Z1 children of the root. We write Zn(T ) to
denote the size of the n-th generation of the tree T . We then define for n ≥ 0

Rn+1 = min{1 ≤ j ≤ Z1 : Zn(T
(j)) > 0}

with the usual convention that min ∅ = ∞.

Lemma 5.2. For all i ∈ {1, . . . , Z1} we have

L(T (i) | Rn+1 = j, Z1 = k) =

󰀻
󰁁󰀿

󰁁󰀽

L(T | Zn = 0) if 1 ≤ i ≤ j − 1,

L(T | Zn > 0) if i = j,

L(T ) if j + 1 ≤ i ≤ k,
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where T stands for a Galton Watson tree with offspring distribution (µ(k)). Moreover, for the joint
distribution of (Rn+1, Z1) conditional on Zn+1 > 0 we have

P(Rn+1 = j, Z1 = k | Zn+1 > 0) =
P(Zn > 0)

P(Zn+1 > 0)
· µ(k) · P(Zn = 0)j−1 .

Proof. To prove the first claim we let (Ai) be measurable sets in the space of rooted planar trees
such that for i ≤ j− 1 the sets Ai contain trees that do not survive to generation n, while for i = j
they do. We then have

P
󰀓
Rn+1 = j, Z1 = k, T (i) ∈ Ai, ∀ i ≤ k

󰀔
= µ(k) ·

k󰁜

i=1

P(T ∈ Ai) .

Therefore, we immediately get from this

P(Rn+1 = j, Z1 = k, Zn+1 > 0) = µ(k) · P(Zn > 0) · P(Zn = 0)j−1 ,

and hence, this proves the second claim.

Remark 5.3. Taking the sum over all k ≥ 1, j ≤ k in the above equation we obtain

P(Zn+1 > 0) = P(Zn > 0) ·
∞󰁛

j=1

P(Zn = 0)j−1
󰁛

k≥j

µ(k). (5.1)

From this and the fact that
󰁓

kµ(k) = 1 it follows that

P(Zn+1 > 0)

P(Zn > 0)
→ 1 as n → ∞. (5.2)

From the above we also get that as n → ∞ the distribution of Z1 conditional on Zn > 0 converges
to the size-biased distribution of µ, i.e. the distribution µsb(k) = kµ(k) for all k ≥ 0. Also given
Z1 we have that Rn+1 has the uniform distribution on [0, Z1].

We can now describe a construction of a critical tree conditioned on survival up to generation n.

Let (Vn+1, Yn+1)n≥0 be independent random variables with distribution

P(Vn+1 = j, Yn+1 = k) = µ(k) · P(Zn > 0)

P(Zn+1 > 0)
· P(Zn = 0)j−1 . (5.3)

Let 󰁨T0 be a GW tree with offspring distribution (pk)k≥0 independent of the sequence (Vn+1, Yn+1)n≥0.

We now inductively construct 󰁨Tn+1 for n ≥ 0 as follows:

1. The first generation of 󰁨Tn+1 is taken to be Yn+1.

2. To the Vn+1 individual of the first generation we attach the tree 󰁨Tn.

3. We attach critical GW trees conditioned on extinction at generation n to the Vn+1−1 children
to the left of the Vn+1 individual of the first generation.

4. We attach critical GW trees to the Yn+1−Vn+1 individuals of the first generation to the right
of the Vn+1 individual.
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By induction on n we obtain the following

Proposition 5.4. For all n ≥ 0 we have

L( 󰁨Tn) = L(T | Zn > 0).

We now want to find a recursion for the number of individuals 󰁨Zn in the n-th generation of 󰁨Tn.
By construction we see that 󰁨Z0 = 1. We now let (Zk,i)k,i be independent random variables with
Zk,i having the law of the k-th generation size of a critical GW tree for all i. Writing Xm+1 =
Ym+1 − Vm+1 we have

󰁨Zn+1 = 󰁨Zn +

Xn+1󰁛

i=1

Zn,i. (5.4)

Then it follows immediately from Proposition 5.4 and the construction of 󰁨Tn

Corollary 5.5. For all n ≥ 0 we have

L( 󰁨Zn) = L(Zn | Zn > 0).

From (5.3) we get for all k ≥ 0

P(Xn+1 = k) =
P(Zn > 0)

P(Zn+1 > 0)
·

∞󰁛

j=k+1

µ(j) · P(Zn = 0)j−(k+1) .

Using (5.2) and that by criticality of the tree P(Zn = 0) → 1 as n → ∞ we obtain

P(Xn = k) →
󰁛

j≥k+1

µ(j) as n → ∞. (5.5)

Proof of Theorem 5.1. First of all we have

E[Zn | Zn > 0] =
1

P(Zn > 0)
,

since E[Zn] = 1 for all n by criticality. By Corollary 5.5 we have

E[Zn | Zn > 0] = E
󰁫
󰁨Zn

󰁬
= 1 +

n󰁛

k=1

E
󰁫
󰁨Zk − 󰁨Zk−1

󰁬
.

For every k ≥ 1 we have by (5.4)

E
󰁫
󰁨Zk − 󰁨Zk−1

󰁬
= E

󰀥
Xk󰁛

i=1

Zk−1,i

󰀦
= E[Xk] ,

where we used that E[Zk,i] = 1 for all k, i. Using that E[Xn] →
󰁓

k k
󰁓

j≥k+1 µ(j) as n → ∞ we
deduce

n󰁛

i=1

E[Xi]

n
→

󰁛

k

k
󰁛

j≥k+1

µ(j) as n → ∞.

This last sum is equal to

󰁛

k

k
󰁛

j≥k+1

µ(j) =

∞󰁛

j=1

󰁛

k≤j−1

kµ(j) =

∞󰁛

j=1

j(j − 1)

2
· µ(j) = σ2

2

and this concludes the proof.
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Corollary 5.6. Let Zn be the n-th generation size of a critical GW tree. Then we have as n → ∞

E[Zn | Zn > 0] ≍ n2.

As n → ∞ the tree conditioned on Zn > 0 we saw that it converges to a tree where the first
individual produces offspring according to the size-biased distribution and then a uniformly chosen
one is the special vertex that is going to produce offspring according to the size-biased distribution,
while the rest will produce offspring according to µ. Every other vertex except for the special ones
produce offspring according to µ. This is called Kesten’s tree and it consists of a semi-infinite line
that we call the spine and finite trees to the right and the left of the spine.

We now consider Kesten’s tree. Let Ln be the number of children to the left of the distinguished
vertex of generation n and Rn the number of vertices to its right. Then we get

P(Ln = i, Rn = j) =
(i+ j + 1)µ(i+ j + 1)

i+ j + 1
= µ(i+ j + 1),

and hence taking the sum over all j of the above we obtain

P(Ln = i) =
󰁛

j≥0

µ(i+ j + 1)

and similarly for the right one.

Example 5.7. Let T be Kesten’s tree. Let t be an infinite tree and let v0 be a spine vertex of v0
which is not the root. Then

P(T is equal to t up to v0) = deg(∅) · µ(deg(∅)) · 1

deg(∅)

×
󰁜

v∈ spine of t
before v0

(deg(v)− 1) · µ(deg(v)− 1) · 1

deg(v)− 1
·

󰁜

v/∈ spine of t
up to v0

µ(deg(v)− 1)

= µ(deg(∅))
󰁜

v∈t up to v0

µ(deg(v)− 1).

(5.6)

We thus see that the distribution of T depends on the particular choice of root.

To get a tree which is invariant with respect to the choice of the root we simply need to change the
root offspring distribution and how we choose the special vertex among its offspring.

Definition 5.8. The infinite invariant tree is defined as follows: the spine is a semi-infinite line of
nodes (∅, u1, . . .). Each spine node ui for i > 0 produces a random number of offspring Zi according
to the size-biased distribution µsb(k) = kµ(k) for each k ≥ 0. A uniformly chosen offspring of
ui is identified with ui+1 and in this way it partitions the Zi − 1 remaining offspring to left and
right children. To each of these in turn we attach a critical Galton Watson tree with offspring
distribution µ. The root produces Z0 offspring distributed according to µ′(i) = µ(i− 1) for i ≥ 1.
The first of its offspring is identified with u1 and the remaining Z0 − 1 produce critical GW trees
with offspring distribution µ. We denote this infinite tree by T . We define the past T− to be the
set of vertices to the left of the spine and the future T+ the ones to the right. We label the vertices
in the future using depth first search from the root. We label the vertices in the past in order with
negative labels using depth first search from infinity.

59



0

�7

�6

�5
�4

�3
�2

�1

8

7

6

1 2

3
4

5

�10
�8

�9

�13

0

�2�1

�5

1

8 9

10

11

12

13

2
7

6

3 5

4

1415
16

Figure 1: In both trees the future is the green part, while the past consists of the red and the blue
parts. To obtain the second tree we shifted all labels of the first tree by 8 and rooted it at the
vertex with label 0.

Remark 5.9. From (5.6) we see that the infinite invariant tree is invariant with respect to the
choice of the root. In particular, if we shift the labels of all vertices by 1, then it will have exactly
the same distribution. See also [12] and [13].

Finally we add the superscript x to a tree, i.e. we write T x
c (resp. T x, T x

− , T x
+ ) to denote the range

of the branching random walk when the root vertex starts from x ∈ Zd.

We now calculate the local time for the past of the infinite invariant tree. For y ∈ Zd we define the
local time at y in the past as follows

ℓT x
−
(y) =

󰁛

u∈T−

1(Sx
u = y).

Check that

E
󰁫
ℓT x

−
(y)

󰁬
=

σ2

2
·
󰁛

z∈Zd

g(x− z)g(z − y) +O(g(x, y)) =
σ2

2
· g ∗ g(x− y) +O(g(x, y)).

Exercise 5.10. Show that for all x ∈ Zd we have

g ∗ g(x) ≍ 1

󰀂x󰀂d−4 + 1
.

5.2 Hitting probabilities

In this section we follow closely [25].

Let T x
c be a critical BRW started from x. Let K ⊆ Zd be a finite set. We want to calculate the

probability that the range of the tree intersects the set K. To define the first hitting vertex of K
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we use depth first search from the root. Suppose that (v0, . . . , vk) be the unique simple path in Tc
from the root ∅ to the first hitting vertex in K. Let Γ = (Sx

v0 , . . . , S
x
vk
) be the path that visits K

for the first time. For every i = 0, . . . , k − 1 we let 󰁨ai be the number of children to the left of vi
(i.e. older than vi) and 󰁨bi the number of children to the right of vi (i.e. younger than vi).

Let γ = (γ(0), . . . , γ(k)) be a nearest neighbour path in Zd with γ(0) = x, γ(k) ∈ K and γ(j) /∈ K
for all j ≤ k− 1. For a path γ we write s(γ) for the probability that a SRW followed this path, i.e.
s(γ) = (2d)−|γ|. We then have for all mi, ℓi ∈ N for i ≤ k − 1

P
󰀓
Γ = γ,󰁨ai = ℓi,󰁨bi = mi, ∀ i = 0, . . . , k − 1

󰀔
= s(γ)

k−1󰁜

i=0

µ(ℓi +mi + 1) P
󰀓
󰁥T γ(i)
c ∩K = ∅

󰀔ℓi
, (5.7)

where we denote by 󰁥Tc a GW tree with offspring distribution µ conditioned on the root having
exactly one child, i.e. for all x ∈ Zd we have

P
󰀓
󰁥T x
c ∩K = ∅

󰀔
= P(T x

c ∩K = ∅ | Z1 = 1) .

If we sum up (5.7) over all mi and ℓi, for i ≤ k − 1, we then get

P(Γ = γ) =
󰁛

ℓ1,...,ℓk
m1,...,mk

P
󰀓
Γ = γ,󰁨ai = ℓi,󰁨bi = mi, ∀ i = 1, . . . , k

󰀔

= s(γ)

k−1󰁜

i=0

󰁛

ℓi,mi∈N
µ(ℓi +mi + 1)P

󰀓
󰁥T γ(i)
c ∩K = ∅

󰀔ℓi
.

(5.8)

We now introduce another probability measure 󰁨µ which is called the adjoint measure of µ defined
as follows

󰁨µ(i) =
󰁛

j≥0

µ(i+ j + 1).

Indeed, this is a probability measure, because µ has mean 1. Using this definition in (5.8) we get

P(Γ = γ) = s(γ)

k−1󰁜

i=0

󰁛

ℓi∈N
󰁨µ(ℓi)P

󰀓
󰁥T γ(i)
c ∩K = ∅

󰀔ℓi
.

Definition 5.11. We define an adjoint tree, by simply changing the offspring distribution of the
root to be 󰁨µ and the rest according to µ. The measure 󰁨µ is defined by

󰁨µ(i) =
󰁛

j≥i+1

µ(j)

and is called the adjoint measure of µ. We write 󰁨Tc for the adjoint tree.

With the above definition, we immediately see that

󰁛

ℓi∈N
󰁨µ(ℓi)P

󰀓
󰁥T γ(i)
c ∩K = ∅

󰀔ℓi
= P

󰀓
󰁨T γ(i)
c ∩K = ∅

󰀔
.

For every z ∈ Zd we define

r(z) = P
󰀓
󰁨T z
c ∩K ∕= ∅

󰀔
.
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With this notation we then obtain

P(Γ = γ) = s(γ) ·
k−1󰁜

i=0

(1− r(γ(i))) =: bK(γ). (5.9)

What we see from the above formula is that the distribution of Γ is this of a simple random walk
which is killed at location x with probability r(x).

Lemma 5.12. Let d ≥ 5. We show that for R > 0 and 󰀂x󰀂 large we have

P(T x
c ∩B(0, R) ∕= ∅) ≍ g(x) ·Rd−4.

Proof. Recall that we take the first hitting time of a set by a BRW to be the first vertex in the
depth first search order whose location hits the set. Using (5.9) we get

P(T x
c ∩B(0, R) ∕= ∅) =

󰁛

γ:x→∂B(0,R)

bB(0,R)(γ)

=
󰁛

b∈∂B(0,2R)

󰁛

γ1:x→b
γ1⊆B(0,2R)c

bB(0,R)(γ1)
󰁛

γ2:b→∂B(0,2R)

bB(0,R)(γ2)

≤ Px(X hits B(0, 2R)) · sup
b∈∂B(0,2R)

P
󰀓
T b
c ∩B(0, R) ∕= ∅

󰀔
,

where we simply bounded from above b(γ) by s(γ) and X denotes a simple random walk in Zd. We
now get

Px(X hits B(0, 2R)) ≍ g(x) ·Rd−2.

Writing Zk for the size of the k-th generation of the tree Tc we have for all b ∈ ∂B(0, 2R)

P
󰀓
T b
c ∩B(0, R) ∕= ∅

󰀔
≤

⌊R2⌋󰁛

k=1

P
󰀓
Zk ∕= 0, Zk+1 = 0, T b

c ∩B(0, r) ∕= ∅
󰀔
+ P

󰀃
Z⌊R2⌋ ∕= 0

󰀄
.

The second term is upper bounded by 1/R2 by Kolmogorov’s result. So we now turn to the sum
appearing above. By a union bound over all individuals of the k-th generation together with the
fact that every particle performs a simple random walk we get

P
󰀓
Zk ∕= 0, Zk+1 = 0, T b

c ∩B(0, r) ∕= ∅
󰀔
≤ E

󰀅
Zk(µ(0))

Zk
󰀆
Px

󰀃
HB(0,R) ≤ k

󰀄

≤ E
󰀅
Zk(µ(0))

Zk
󰀆
exp(−cR2/k),

where HA stands for the first hitting time of the set A by a simple random walk and c is a positive
constant. Since µ has mean 1, we get that µ(0) < 1, and hence using again Kolmogorov’s result we
get

E
󰀅
Zk(µ(0))

Zk
󰀆
≤ P(Zk > 0) ≲ 1

k
.

Putting everything together shows that

P
󰀓
T b
c ∩B(0, R) ∕= ∅

󰀔
≲ 1

R2
,
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and hence this concludes the proof of the upper bound, i.e. that

P(T x
c ∩B(0, R) ∕= ∅) ≲ g(x) ·Rd−4.

We turn to the lower bound. We denote by ηxR the vertices of the tree that are the first ones to
reach ∂B(0, R) and none of their ancestors ever touched ∂B(0, R). To prove the lower bound we
will use the Payley-Zygmund inequality

P(|ηxR| > 0) ≥ E[|ηxR|]
2

E
󰀅
|ηxR|2

󰀆 .

We have

E[|ηxR|] =
∞󰁛

n=0

E[Zn]Px

󰀃
HB(0,R) = n

󰀄
= Px

󰀃
HB(0,R) < ∞

󰀄
≍ g(x) ·Rd−2.

For a vertex w of the tree we write ξw for its offspring. For the second moment we have

E
󰀅
|ηxR|2

󰀆
= E[|ηxR|] + E

󰀵

󰀹󰀹󰀷
󰁛

u,v∈Tc
u ∕=v

󰁛

w∈Tc

1(w is the MRCA of u, v)1(u ∈ ηR)1(v ∈ ηR)

󰀶

󰀺󰀺󰀸 .

Since u and v do not have any ancestors in ηxR, it follows that w must have at least two children and
u and v must belong to two distinct trees of its offspring. There are ξw(ξw − 1) ways of choosing
which trees u and v will belong to. Summing over all possible generations of w we get

E

󰀵

󰀹󰀹󰀷
󰁛

u,v∈Tc
u ∕=v

󰁛

w∈Tc

1(w is the MRCA of u, v)1(u ∈ ηR)1(v ∈ ηR)

󰀶

󰀺󰀺󰀸

=

∞󰁛

k=0

E

󰀥
󰁛

w∈Tc

1(|w| = k)1(Sx
w /∈ B(0, R))ξw(ξw − 1)(PSx

w

󰀃
HB(0,R) < ∞

󰀄
)2

󰀦

= σ2
∞󰁛

k=0

E[Zk]Ex

󰀅
1(Xk /∈ B(0, R))(PXk

󰀃
HB(0,R) < ∞

󰀄
)2
󰀆

≲ R2(d−2) ·
∞󰁛

k=0

Ex

󰀗
1(Xk /∈ B(0, R))

󰀂Xk󰀂2(d−2)

󰀘
= R2(d−2) ·

󰁛

z /∈B(0,R)

g(x− z) · 1

󰀂z󰀂2(d−2)
.

We now see that this last expression is equal to

R2(d−2) ·
󰁛

z /∈B(0,R)

g(x− z) · 1

󰀂z󰀂2(d−2)
≲

󰀫
Rd

󰀂x󰀂d−2 if d ≥ 5
R4

󰀂x󰀂2 · log(1 + 󰀂x󰀂/R) if d = 4.

This now completes the proof.
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