Example Sheet 2

1. Let $R(r)$ be the effective resistance between two given vertices of a finite network with edge-resistances $r=(r(e): e \in E)$. Show that R is concave in that

$$
\frac{1}{2} \cdot\left(R\left(r_{1}\right)+R\left(r_{2}\right)\right) \leq R\left(\frac{1}{2}\left(r_{1}+r_{2}\right)\right) .
$$

2. Without using the commute time identity show that the effective resistance forms a metric on any network with conductances $(c(e))$.
3. Show that if, in a network with source a and $\operatorname{sink} z$, vertices with different voltages are glued together, then the effective resistance from a to z will strictly decrease.
4. Consider simple random walk on the binary tree of depth k with $n=2^{k+1}-1$ vertices (the root has degree two and all other nodes except for the leaves have degree 3).
(a) Let a and b be two vertices at level m whose most recent common ancestor c is at level $h<m$. Show that $\mathbb{E}_{a}\left[\tau_{b}\right]=\mathbb{E}_{a}\left[\tau_{c}\right]+\mathbb{E}_{c}\left[\tau_{a}\right]$ and find its value.
(b) Show that the maximal value of $\mathbb{E}_{a}\left[\tau_{b}\right]$ is achieved when a and b are leaves whose most recent common ancestor is the root of the tree.
5. If τ_{y} denotes the first hitting time of y, show that

$$
\mathbb{E}_{x}\left[\tau_{y}\right]=\frac{1}{2} \sum_{z} \operatorname{deg}(z)\left(R_{\mathrm{eff}}(x, y)+R_{\mathrm{eff}}(y, z)-R_{\mathrm{eff}}(x, z)\right)
$$

6. Suppose that Z is a set of states in a Markov chain and that x_{0} is a state not in Z. Assume that when the Markov chain is started in x_{0}, then it visits Z with probability 1. Define the random path Y_{0}, Y_{1}, \ldots by $Y_{0}:=x_{0}$ and then recursively by letting Y_{n+1} have the distribution of one step of the Markov chain starting from Y_{n} given that the chain will visit Z before visiting any of $Y_{0}, Y_{1}, \ldots, Y_{n}$ again. However, if $Y_{n} \in Z$, then the path is stopped and Y_{n+1} is not defined. Show that $\left(Y_{n}\right)$ has the same distribution as loop-erasing a sample of the Markov chain started from x_{0} and stopped when it reaches Z. In the case of a random walk, the conditioned path $\left(Y_{n}\right)$ is called the Laplacian random walk from x_{0} to Z.
7. Suppose that the graph G has a Hamiltonian path, i.e. there exists a path ($x_{k}: 1 \leq k \leq n$) that is a spanning tree. Let X be a simple random walk on G and let $T(A)=\min \{t \geq 0$: $\left.X_{t} \in A\right\}$ and $T^{+}(A)=\min \left\{t \geq 1: X_{t} \in A\right\}$ be the first hitting time and the first return time respectively to the set A. Define

$$
q_{k}=\mathbb{P}_{x_{k}}\left(T^{+}\left(\left\{x_{k}\right\}\right)>T\left(\left\{x_{k+1}, \ldots, x_{n}\right\}\right)\right)
$$

and show that the number of spanning trees of G equals $\prod_{k<n} q_{k} \operatorname{deg}\left(x_{k}\right)$.
8. How efficient is Wilsons method? What takes time is to generate a random successor state of a given state. Call this a step of the algorithm. Show that the expected number of steps to generate a random spanning tree rooted at r is

$$
\sum_{x} \frac{\operatorname{deg}(x)}{2|E|}\left(\mathbb{E}_{x}\left[\tau_{r}\right]+\mathbb{E}_{r}\left[\tau_{x}\right]\right),
$$

where $|E|$ is the set of edges and $\operatorname{deg}(x)$ is the degree of the vertex x.
9. Let $G=(V, E)$ be a connected subgraph of the finite connected graph G^{\prime}. Let T and T^{\prime} be uniform spanning trees of G and G^{\prime} respectively. Show that for any edge e of G,

$$
\mathbb{P}(e \in T) \geq \mathbb{P}\left(e \in T^{\prime}\right)
$$

More generally, let B be a subset of E, and show that $\mathbb{P}(B \subseteq T) \geq \mathbb{P}\left(B \subseteq T^{\prime}\right)$.
10. Let G be a finite network and $a \neq z$ be two of its vertices. Let i be the unit current flow from a to z. Show that for every edge e, the probability that loop-erased random walk from a to z crosses e minus the probability that it crosses $-e$ is equal to $i(e)$.
11. Let $G=\left(\mathbb{Z}_{n}^{d}, E\left(\mathbb{Z}_{n}^{d}\right)\right)$ be the d-dimensional torus of side length n, i.e. $\mathbb{Z}_{n}^{d}=\{0, \ldots, n-1\}^{d}$ and $E\left(\mathbb{Z}_{n}^{d}\right)=\left\{(x, y) \in \mathbb{Z}_{n}^{d} \times \mathbb{Z}_{n}^{d}:\|x-y\|=1\right\}$. Let $e \in E\left(\mathbb{Z}_{n}^{d}\right)$. Show that

$$
R_{\mathrm{eff}}\left(e ; \mathbb{Z}_{n}^{d}\right) \rightarrow \frac{1}{2} \quad \text { as } n \rightarrow \infty
$$

12. Let T be the uniform spanning tree in \mathbb{Z}^{2} and let L be the length of the path in T joining $(0,0)$ to $(1,0)$. Show that for all n

$$
\mathbb{P}(L \geq n) \geq \frac{1}{8 n}
$$

Hint: Consider the event that all the edges on the boundary of the box $[-n, n]^{2}$ have paths in T joining them with length less than n.
13. Let G be an infinite graph. Let G_{n} be an exhaustion of G by finite graphs and let μ_{n} be the UST measure on G_{n}. The limit of μ_{n} as $n \rightarrow \infty$ exists (same proof as for the wired case) and the limit law is called the free uniform spanning forest. Show that if G is recurrent, then the free uniform spanning forest is the same as the wired uniform spanning forest.
14. Let G be a locally finite graph. Show that all trees of the free and the wired uniform spanning forest are almost surely infinite.
15. Let T be an infinite tree and let $e \in T$. Let \mathcal{F} be the wired uniform spanning forest on T. Show that $\mathbb{P}(e \notin \mathcal{F})<1$ if and only if both components of $T \backslash e$ are transient.

