## Example Sheet 1

1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers satisfying $a_{n+m} \leq a_{n}+a_{m}$ for all $n, m \geq 1$. Prove that the limit as $n \rightarrow \infty$ of $a_{n} / n$ exists and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\inf \left\{\frac{a_{k}}{k}: k \geq 1\right\} \in[-\infty, \infty) .
$$

2. Let $\sigma_{n}$ be the number of self-avoiding paths of length $n$ starting from 0 . Show that the limit

$$
\kappa=\lim _{n \rightarrow \infty}\left(\sigma_{n}\right)^{1 / n}
$$

exists and satisfies $d \leq \kappa \leq 2 d-1$.
3. A self-avoiding walk $\omega$ in $\mathbb{Z}^{d}$ is a self-avoiding bridge if the $d$-th coordinate of $\omega$ is uniquely minimised by its starting point and is maximised (not necessarily uniquely) by its endpoint.
Let $b_{n}$ be the number of SAB of length $n$ starting from the origin and $\sigma_{n}$ the number of self-avoiding paths of length $n$. Let $\Omega$ be the set of all self-avoiding paths. Define

$$
\chi(z)=\sum_{n \geq 0} z^{n} \sigma_{n} \quad \text { and } \quad B(z)=\sum_{n \geq 0} z^{n} b_{n} .
$$

1. Show that $\chi(z) \leq z^{-1} \exp (2 B(z)-2)$ for all $z \geq 0$.
2. Let $a(z, n)=\sum_{\omega \mathrm{SAB}} z^{|\omega|} 1\left(\omega_{d}=n\right)$. Show that the following limit exists

$$
a(z)=\lim _{n \rightarrow \infty}-\frac{1}{n} \log a(z, n)
$$

and that $a(z, n) \leq e^{-a(z) n}$ for all $n \geq 0$.
3. Recall $\kappa$ is the connective constant of $\mathbb{Z}^{d}$. Show that $a(1 / \kappa) \geq 0$.
4. Show that $B((1-\epsilon) / \kappa) \leq \epsilon^{-1}$.
5. Conclude that there exists a positive constant $c$ so that $\sigma_{n} \leq \exp (c \sqrt{n}) \kappa^{n}$ for all $n \geq 0$.
[This theorem was originally proved by Hammersley and Welsh. The proof given above was found by Hutchcroft.]
4. Let $\sigma_{n}$ denote the number of circuits of the dual lattice of $\mathbb{Z}^{2}$ that surround the origin and have length $n \geq 4$. Show that $\sigma_{n} \leq n \cdot 4^{n}$.
5. Let $\Omega=\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}$ be endowed with the product $\sigma$-algebra $\mathcal{F}$ generated by the cylinder sets and equipped with the product probability measure $\mathbb{P}_{p}$ for $p \in[0,1]$. Let $\tau$ be a translation (other than the identity) given by $\tau(\omega)(e)=\omega\left(\tau^{-1}(e)\right)$. Let $A$ be an event that is invariant under $\tau$. Show that $\mathbb{P}_{p}(A) \in\{0,1\}$.
(Hint: As a first step show that for all $A \in \mathcal{F}$ and for all $\epsilon>0$, there exists a cylinder set $B$ for which $\mathbb{P}_{p}(A \triangle B) \leq \epsilon$.)
6. Let $G$ be an infinite connected graph of maximal vertex degree $\Delta$. Show that the critical probabilities for bond and site percolation on $G$ satisfy

$$
p_{c}^{\text {bond }} \leq p_{c}^{\text {site }} \leq 1-\left(1-p_{c}^{\text {bond }}\right)^{\Delta} .
$$

7. Consider bond percolation on the $d$-regular tree $\mathcal{T}_{d}$ with $d \geq 3$. Let $N$ be the number of infinite clusters. Show that for all $p<1$ either $\mathbb{P}_{p}(N=\infty)=1$ or $\mathbb{P}_{p}(N=0)=1$.
8. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be two functions with the same type of monotonicity, i.e. either they are both increasing or both decreasing. Show that

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \cdot \int_{0}^{1} g(x) d x .
$$

9. (a) Let $X$ be a nonnegative random variable. Prove that

$$
\mathbb{P}(X>0) \geq \frac{(\mathbb{E}[X])^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

(b) A spherically symmetric tree $T$ is a tree which has a root $\rho$ with $a_{0}$ children, each of which has $a_{1}$ children, etc. So, all vertices in generation $k$ have $a_{k}$ children. Let $A_{n}$ be the number of vertices in generation $n$, which is of course equal to $\prod_{i=0}^{n-1} a_{i}$. Show that the critical probability $p_{c}$ of $T$ satisfies

$$
p_{c}=\frac{1}{\liminf _{n} A_{n}^{1 / n}} .
$$

10. Using the BK inequality prove that

$$
\mathbb{P}_{\frac{1}{2}}\left(0 \leftrightarrow \partial[-n, n]^{2}\right) \geq \frac{1}{2 \sqrt{n}} .
$$

11. Show that the function $\theta(p)$ is continuous on $\left(p_{c}, 1\right]$.
12. Let $x$ and $y$ be two vertices of any graph $G$ and define $f_{p}(x, y):=\mathbb{P}_{p}(x \leftrightarrow y)$. Show that $f_{p}$ is continuous from the left as a function of $p$.
13. Let $D_{n}$ denote the largest diameter (in the sense of graph theory) of the open clusters of bond percolation on $\mathbb{Z}^{d}$ that intersect the box $[-n, n]^{d}$. Show that when $p<p_{c}$, then $D_{n} / \log n \rightarrow \alpha(p)$ almost surely, for some $\alpha(p) \in(0, \infty)$.
14. Dynamical percolation on $\mathbb{Z}^{d}$ is defined as follows: at time 0 start with bond percolation on $\mathbb{Z}^{d}$ with parameter $p$ and assign i.i.d. clocks to the edges of $\mathbb{Z}^{d}$ following the exponential distribution with parameter 1 . When a clock rings, the edge refreshes its state to open with probability $p$ and closed with probability $1-p$ independently of everything else. Call $I(t)$
the event that there exists an infinite connected component at time $t$. Let $p<p_{c}\left(\mathbb{Z}^{d}\right)$. Prove that for all times $t$

$$
\mathbb{P}_{p}(I(t))=0
$$

Now show that

$$
\mathbb{P}_{p}(\exists t: I(t))=0 .
$$

Next show that when $p>p_{c}\left(\mathbb{Z}^{d}\right)$, then for all $t \geq 0$

$$
\mathbb{P}_{p}(I(t))=1
$$

Finally show that

$$
\mathbb{P}_{p}(\forall t: I(t))=1
$$

15 ( $n$-th root trick). Let $A_{1}, \ldots, A_{n}$ be increasing events all having the same probability. Then

$$
\mathbb{P}_{p}\left(A_{1}\right) \geq 1-\left(1-\mathbb{P}_{p}\left(\cup_{i=1}^{n} A_{i}\right)\right)^{\frac{1}{n}}
$$

16. Show that if $T$ is any tree and $p<1$, then bond percolation with parameter $p$ on $T$ has either no infinite clusters a.s. or infinitely many clusters a.s.
