Percolation and Random Walks on Graphs, Michaelmas 2018.

P.Sousi@statslab.cam.ac.uk

Example Sheet 1

1. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers satisfying $a_{n+m} \leq a_n + a_m$ for all $n, m \geq 1$. Prove that the limit as $n \to \infty$ of a_n/n exists and

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf \left\{ \frac{a_k}{k} : k \ge 1 \right\} \in [-\infty, \infty).$$

2. Let σ_n be the number of self-avoiding paths of length *n* starting from 0. Show that the limit

$$\kappa = \lim_{n \to \infty} (\sigma_n)^{1/n}$$

exists and satisfies $d \leq \kappa \leq 2d - 1$.

3. A self-avoiding walk ω in \mathbb{Z}^d is a **self-avoiding bridge** if the *d*-th coordinate of ω is uniquely minimised by its starting point and is maximised (not necessarily uniquely) by its endpoint.

Let b_n be the number of SAB of length n starting from the origin and σ_n the number of self-avoiding paths of length n. Let Ω be the set of all self-avoiding paths. Define

$$\chi(z) = \sum_{n \ge 0} z^n \sigma_n$$
 and $B(z) = \sum_{n \ge 0} z^n b_n$.

- 1. Show that $\chi(z) \leq z^{-1} \exp(2B(z) 2)$ for all $z \geq 0$.
- 2. Let $a(z,n) = \sum_{\omega \text{ SAB}} z^{|\omega|} 1(\omega_d = n)$. Show that the following limit exists

$$a(z) = \lim_{n \to \infty} -\frac{1}{n} \log a(z, n)$$

and that $a(z, n) \leq e^{-a(z)n}$ for all $n \geq 0$.

- 3. Recall κ is the connective constant of \mathbb{Z}^d . Show that $a(1/\kappa) \geq 0$.
- 4. Show that $B((1-\epsilon)/\kappa) \leq \epsilon^{-1}$.
- 5. Conclude that there exists a positive constant c so that $\sigma_n \leq \exp(c\sqrt{n}) \kappa^n$ for all $n \geq 0$.

[This theorem was originally proved by Hammersley and Welsh. The proof given above was found by Hutchcroft.]

4. Let σ_n denote the number of circuits of the dual lattice of \mathbb{Z}^2 that surround the origin and have length $n \ge 4$. Show that $\sigma_n \le n \cdot 4^n$.

5. Let $\Omega = \{0,1\}^{E(\mathbb{Z}^d)}$ be endowed with the product σ -algebra \mathcal{F} generated by the cylinder sets and equipped with the product probability measure \mathbb{P}_p for $p \in [0,1]$. Let τ be a translation (other than the identity) given by $\tau(\omega)(e) = \omega(\tau^{-1}(e))$. Let A be an event that is invariant under τ . Show that $\mathbb{P}_p(A) \in \{0,1\}$. (*Hint:* As a first step show that for all $A \in \mathcal{F}$ and for all $\epsilon > 0$, there exists a cylinder set B for which $\mathbb{P}_p(A \triangle B) \leq \epsilon$.)

6. Let G be an infinite connected graph of maximal vertex degree Δ . Show that the critical probabilities for bond and site percolation on G satisfy

$$p_c^{\text{bond}} \le p_c^{\text{site}} \le 1 - (1 - p_c^{\text{bond}})^{\Delta}.$$

7. Consider bond percolation on the *d*-regular tree \mathcal{T}_d with $d \geq 3$. Let N be the number of infinite clusters. Show that for all p < 1 either $\mathbb{P}_p(N = \infty) = 1$ or $\mathbb{P}_p(N = 0) = 1$.

8. Let $f, g: [0,1] \to \mathbb{R}$ be two functions with the same type of monotonicity, i.e. either they are both increasing or both decreasing. Show that

$$\int_0^1 f(x)g(x) \, dx \ge \int_0^1 f(x) \, dx \cdot \int_0^1 g(x) \, dx.$$

9. (a) Let X be a nonnegative random variable. Prove that

$$\mathbb{P}(X > 0) \ge \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}.$$

(b) A spherically symmetric tree T is a tree which has a root ρ with a_0 children, each of which has a_1 children, etc. So, all vertices in generation k have a_k children. Let A_n be the number of vertices in generation n, which is of course equal to $\prod_{i=0}^{n-1} a_i$. Show that the critical probability p_c of T satisfies

$$p_c = \frac{1}{\liminf_n A_n^{1/n}}.$$

10. Using the BK inequality prove that

$$\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial [-n,n]^2) \ge \frac{1}{2\sqrt{n}}.$$

11. Show that the function $\theta(p)$ is continuous on $(p_c, 1]$.

12. Let x and y be two vertices of any graph G and define $f_p(x, y) := \mathbb{P}_p(x \leftrightarrow y)$. Show that f_p is continuous from the left as a function of p.

13. Let D_n denote the largest diameter (in the sense of graph theory) of the open clusters of bond percolation on \mathbb{Z}^d that intersect the box $[-n, n]^d$. Show that when $p < p_c$, then $D_n/\log n \to \alpha(p)$ almost surely, for some $\alpha(p) \in (0, \infty)$.

14. Dynamical percolation on \mathbb{Z}^d is defined as follows: at time 0 start with bond percolation on \mathbb{Z}^d with parameter p and assign i.i.d. clocks to the edges of \mathbb{Z}^d following the exponential distribution with parameter 1. When a clock rings, the edge refreshes its state to open with probability p and closed with probability 1 - p independently of everything else. Call I(t) the event that there exists an infinite connected component at time t. Let $p < p_c(\mathbb{Z}^d)$. Prove that for all times t

$$\mathbb{P}_p(I(t)) = 0.$$

Now show that

$$\mathbb{P}_p(\exists t : I(t)) = 0.$$

Next show that when $p > p_c(\mathbb{Z}^d)$, then for all $t \ge 0$

$$\mathbb{P}_p(I(t)) = 1.$$

Finally show that

$$\mathbb{P}_p(\forall t: I(t)) = 1.$$

15 (*n*-th root trick). Let A_1, \ldots, A_n be increasing events all having the same probability. Then

$$\mathbb{P}_p(A_1) \ge 1 - (1 - \mathbb{P}_p(\bigcup_{i=1}^n A_i))^{\frac{1}{n}}.$$

16. Show that if T is any tree and p < 1, then bond percolation with parameter p on T has either no infinite clusters a.s. or infinitely many clusters a.s.