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1. Let X be a reversible Markov chain on the finite state space S with invariant distribution π.
Let A ⊆ S and set τ+A = min{t ≥ 1 : Xt ∈ A} to be the first return time to A. Consider now the
induced chain on A, i.e. the chain with transition matrix

PA(x, y) = Px

!
Xτ+A

= y
"

for x, y ∈ A.

(i) Find the invariant distribution of the chain with matrix PA and show that it is reversible.

(ii) Let ϕ : A → R be a function and define #ϕ(x) = Ex

$
ϕ(Xτ+A

)
%
. Show that

P #ϕ = PAϕ.

(iii) Let γA be the spectral gap of the chain with matrix PA and γ the spectral gap of P . Prove
that

γA ≥ γ.

2. Let A ⊆ [0, n]2 ∩ Z2 obtained by removing the vertices of [0, n]2 ∩ Z2 with both coordinates
even. Consider simple random walk on A and let γA be its spectral gap. Using comparison results
or otherwise, prove that there exists a positive constant c so that

γA ≥ c

n2
.

3. Let π be a distribution on the finite set S. Consider the transition matrix P (x, y) = π(y) for
all x, y ∈ S.

(i) Show that the spectral gap of the matrix P is equal to 1.

(ii) Consider the Markov chain on Sn which at every step chooses one coordinate at random and
moves it according to the matrix P . Let γ be its spectral gap. Show that

γ =
1

n
.

(iii) Deduce the Effron-Stein inequality: let (X1, . . . , Xn) and (X ′
1, . . . , X

′
n) be i.i.d. vectors dis-

tributed according to π × . . .× π. Let f : Sn → R be a function. Show that

Var (f(X)) ≤ 1

2

n&

i=1

E
$'
f(X1, . . . , Xn)− f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn)

(2%
.

4. Show that there exists δ ∈ (0, 1) sufficiently small such that

n/2&

k=1

)
n

δk

*'(1+δ)k
k

(2
'
n
k

( → 0 as n → ∞,

thus completing the proof of Theorem 4.15.
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5. Consider the exclusion process on the complete graph K2n on 2n vertices: there are n indis-
tinguishable black particles and n indistinguishable white particles. Each vertex is occupied by
exactly one particle. At each time step, an edge is chosen at random and the particles at its end-
points are swapped. Using path coupling or otherwise, prove an upper bound on the mixing time
of order n log n.

6. Let G be a graph of maximum degree ∆. Let q ≥ ∆+ 2. Show that Glauber dynamics on the
space of proper q-colourings is an irreducible Markov chain.

7. Consider the lazy simple random walk on the hypercube {0, 1}n. Let

tsep(ε) = min

+
t ≥ 0 : max

x,y∈{0,1}n

)
1− P t(x, y)

π(y)

*
≤ ε

,
.

Show that for all ε ∈ (0, 1) we have as n → ∞

tsep(ε) = n log n(1 + o(1)),

which shows that lazy simple random walk on {0, 1}n also exhibits separation cutoff.

8. Let X be a lazy biased walk on {0, . . . , n} with P (i, i + 1) = 1/3 = 1/2 − P (i, i − 1) for
i ∈ {1, . . . , n− 1} and P (i, i) = 1/2 and P (n, n− 1) = P (0, 1) = 1/2. Show that X exhibits cutoff
at 6n, i.e. that for all ε ∈ (0, 1) we have as n → ∞

tmix(ε) = 6n(1 + o(1)).

9. Let G be a finite graph and consider Glauber dynamics for the Ising model on G. Show that
for all values of the inverse temperature β we have

trel ≥
n

2
.

(Hint: Use the test function which is the spin at a single vertex.)
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