## Example Sheet 2

1. Let $X$ be a reversible Markov chain on a finite state space $E$ with transition matrix $P$ and invariant distribution $\pi$. Prove a generalisation of the Poincaré inequality, i.e. for all $f: E \rightarrow \mathbb{R}$ show that

$$
\operatorname{Var}_{\pi}\left(P^{t} f\right) \leq e^{-2 t / t_{\mathrm{rel}}} \operatorname{Var}_{\pi}(f)
$$

2. Let $P$ be a reversible transition matrix on a finite state space with invariant distribution $\pi$. Define the total variation distance from stationarity from a typical point, i.e. for all $t$

$$
d_{\mathrm{ave}}(t)=\sum_{x} \pi(x)\left\|P^{t}(x, \cdot)-\pi\right\|_{\mathrm{TV}} .
$$

Suppose that $1=\lambda_{1} \geq \ldots \geq \lambda_{n} \geq-1$ are the eigenvalues, then show that

$$
4 d_{\mathrm{ave}}(t)^{2} \leq \sum_{j=2}^{n} \lambda_{j}^{2 t} .
$$

3. Consider a lazy simple random walk on $\mathbb{Z}_{n}$. Show that for all $\alpha>0$ we have as $n \rightarrow \infty$

$$
d\left(\alpha n^{2}\right) \rightarrow \int_{0}^{1}\left|\sum_{k=1}^{\infty} e^{-\alpha \pi^{2} k^{2}} \cos (2 \pi k u)\right| d u
$$

(Hint: First write

$$
d\left(\alpha n^{2}\right)=\frac{1}{2} \int_{0}^{1}\left|1-n P^{\left\lceil\alpha n^{2}\right\rceil}(0,\lfloor u n\rfloor)\right| d u
$$

and then use the spectral theorem.)
4. Let $X$ be an irreducible Markov chain on the finite state space $E$ with transition matrix $P$ and invariant distribution $\pi$.
(i) Define the separation distance $s(t)=\max _{x, y}\left(1-P^{t}(x, y) / \pi(y)\right)$. Show that $s(t)$ is decreasing as a function of $t$.
(ii) Define $t_{\operatorname{sep}}(\varepsilon)=\min \{t \geq 0: s(t) \leq \varepsilon\}$. Show that for all $\varepsilon \in(0,1]$ and all $k \in \mathbb{N}$ we have that

$$
t_{\mathrm{sep}}\left(\varepsilon^{k}\right) \leq k t_{\mathrm{sep}}(\varepsilon) .
$$

5. Consider two copies $K_{n}$ and $K_{n}^{\prime}$ of the complete graph joined by a single edge. Find the order of the mixing time for a lazy simple random walk on the resulting graph.
6. Let $X$ be an irreducible, lazy and reversible Markov chain on a finite state space with transition matrix $P$ and stationary distribution $\pi$. Let $1=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of $P$.
(i) Show that

$$
\mathbb{E}_{\pi}\left[\tau_{\pi}\right]:=\sum_{x, y} \pi(x) \pi(y) \mathbb{E}_{x}\left[\tau_{y}\right]=\sum_{i \geq 2} \frac{1}{1-\lambda_{i}}
$$

(Hint: Use question 12(b) from the first example sheet.)
(ii) Show that

$$
\sum_{t=k}^{\infty}\left(P^{t}(x, x)-\pi(x)\right) \leq e^{-k / t_{\text {rel }}} \mathbb{E}_{\pi}\left[\tau_{x}\right]
$$

7. Let $X$ be a reversible Markov chain on the finite state space $E$ with transition matrix $P$ and invariant distribution $\pi$.
(i) Prove that for all $x, y$

$$
\frac{P^{2 t}(x, y)}{\pi(y)} \geq\left(1-\max _{z, w}\left\|P^{t}(z, \cdot)-P^{t}(w, \cdot)\right\|_{\mathrm{TV}}\right)^{2}
$$

Deduce that

$$
P^{2 t_{\operatorname{mix}}}(x, y) \geq \frac{1}{4} \pi(y)
$$

and that there exists a transition matrix $\widetilde{P}$ such that

$$
P^{2 t_{\mathrm{mix}}}(x, y)=\frac{1}{4} \pi(y)+\frac{3}{4} \widetilde{P}(x, y)
$$

(ii) Define

$$
t_{\text {stop }}=\max _{x} \min \left\{\mathbb{E}_{x}\left[\Lambda_{x}\right]: \Lambda_{x} \text { is a randomised stopping time s.t. } \mathbb{P}_{x}\left(X_{\Lambda_{x}} \in \cdot\right)=\pi(\cdot)\right\}
$$

(It is not clear by the definition that a stationary time achieving the minimum exists. One such example is the filling rule introduced by Baxter and Chacon.) By defining an appropriate stationary time, prove that

$$
t_{\text {stop }} \leq 8 t_{\text {mix }}
$$

We say that a randomised stopping time $T$ starting from $x$ has a halting state if there exists $z \in E$ such that $T \leq \tau_{z}$, where $\tau_{z}=\min \left\{t \geq 0: X_{t}=z\right\}$.
(Harder) Show that if $T$ has a halting state, then it is mean optimal, in the sense that

$$
\mathbb{E}_{x}[T]=\min \left\{\mathbb{E}_{x}\left[\Lambda_{x}\right]: \Lambda_{x} \text { is a randomised stopping time s.t. } \mathbb{P}_{x}\left(X_{\Lambda_{x}} \in \cdot\right)=\pi(\cdot)\right\}
$$

(Hint: For a stopping time $S$ consider the exit frequencies from each state, i.e. $\nu(y)=$ $\mathbb{E}_{x}\left[\sum_{k=0}^{T-1} \mathbf{l}\left(X_{k}=y\right)\right]$ for all $y$ and compare them for different stopping times. Then use the uniqueness of the invariant measure up to multiplying by a constant.)
8. Let $X$ be a reversible Markov chain with values in the finite space $E$, transition matrix $P$ and invariant distribution $\pi$.
(a) Let $\varphi$ be an eigenfunction of $P$ corresponding to eigenvalue $\lambda \neq 1$ and $\|\varphi\|_{2}=1$. Show that

$$
\mathbb{E}_{\pi}\left[\left(\sum_{s=0}^{t-1} \varphi\left(X_{s}\right)\right)^{2}\right] \leq \frac{2 t}{1-\lambda}
$$

(b) Let $f: E \rightarrow \mathbb{R}$ be a function with $\mathbb{E}_{\pi}[f]=0$. Recall $\gamma=1-\lambda_{2}$ is the spectral gap. Show that

$$
\mathbb{E}_{\pi}\left[\left(\sum_{s=0}^{t-1} f\left(X_{s}\right)\right)^{2}\right] \leq \frac{2 t \mathbb{E}_{\pi}\left[f^{2}\right]}{\gamma}
$$

(c) Using coupling or otherwise, show that if $r \geq t_{\text {mix }}(\varepsilon / 2)$ and $t \geq 4 t_{\text {rel }} \operatorname{Var}_{\pi}(f) /\left(\eta^{2} \varepsilon\right)$, then for all $x \in E$

$$
\mathbb{P}_{x}\left(\left|\frac{1}{t} \sum_{s=0}^{t-1} f\left(X_{r+s}\right)-\mathbb{E}_{\pi}[f]\right| \geq \eta\right) \leq \varepsilon
$$

9. Let $X$ be a reversible Markov chain on a finite state space $E$ with transition matrix $P$ and invariant distribution $\pi$. Let $A \subsetneq E$ and let $B=A^{c}$ with $k=|B|$. Suppose that the sub-stochastic matrix $P_{B}$ (the restriction of $P$ to $B$, i.e. $P_{B}(x, y)=P(x, y$ for $x, y \in B)$ ) is irreducible, in the sense that for all $x, y \in B$, there exists $n \geq 0$ such that $P_{B}^{n}(x, y)>0$.
(i) By defining an appropriate inner product, show that $P_{B}$ has $k$ real eigenvalues

$$
1 \geq \gamma_{1}>\gamma_{2} \geq \ldots \geq \gamma_{k}
$$

(ii) Show that there exist nonnegative numbers $a_{1}, \ldots, a_{k}$ satisfying $\sum_{i} a_{i}=1$ such that for all $t \geq 0$ we have

$$
\mathbb{P}_{\pi_{B}}\left(\tau_{A}>t\right)=\sum_{i=1}^{k} a_{i} \gamma_{i}^{t},
$$

where $\pi_{B}(x)=\pi(x) / \pi(B)$ for all $x \in B$.
(iii) The Perron Frobenius theorem gives that $\gamma_{1}>0$ and $\gamma_{1} \geq-\gamma_{k}$. Using the Courant-Fischer characterisation of eigenvalues establish that

$$
\gamma_{1} \leq 1-\frac{\pi(A)}{t_{\mathrm{rel}}}
$$

(iv) Deduce that $\mathbb{P}_{\pi_{B}}\left(\tau_{A}>t\right) \leq\left(1-\frac{\pi(A)}{t_{\text {rel }}}\right)^{t} \leq \exp \left(-\frac{t \pi(A)}{t_{\text {rel }}}\right)$.
(v) By the Perron Frobenius theorem the left eigenvector $v$ corresponding to $\gamma_{1}>0$ is strictly positive. Let $\alpha$ be a probability distribution given by $\alpha=v / \sum_{i} v(i)$. Show that when the starting distribution is $\alpha$, then the law of $\tau_{A}$ is geometric with parameter $\gamma_{1}$.
Prove that for all $t$ and all $y$

$$
\mathbb{P}_{\alpha}\left(X_{t}=y \mid \tau_{A}>t\right)=\alpha(y)
$$

Finally show that if $P_{B}$ is in addition aperiodic, then for all $x \notin A$ we have

$$
\mathbb{P}_{x}\left(X_{t}=y \mid \tau_{A}>t\right) \rightarrow \alpha(y) \text { as } t \rightarrow \infty .
$$

(The distribution $\alpha$ is called the quasi-stationary distribution.)

