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Example Sheet 2

1. Let X be a reversible Markov chain on a finite state space E with transition matrix P and
invariant distribution π. Prove a generalisation of the Poincaré inequality, i.e. for all f : E → R
show that

Varπ
!
P tf

"
≤ e−2t/trelVarπ (f) .

2. Let P be a reversible transition matrix on a finite state space with invariant distribution π.
Define the total variation distance from stationarity from a typical point, i.e. for all t

dave(t) =
#

x

π(x)
$$P t(x, ·)− π

$$
TV

.

Suppose that 1 = λ1 ≥ . . . ≥ λn ≥ −1 are the eigenvalues, then show that

4dave(t)
2 ≤

n#

j=2

λ2t
j .

3. Consider a lazy simple random walk on Zn. Show that for all α > 0 we have as n → ∞

d(αn2) →
% 1

0

&&&&&

∞#

k=1

e−απ2k2 cos(2πku)

&&&&& du.

(Hint : First write

d(αn2) =
1

2

% 1

0

&&&1− nP ⌈αn2⌉(0, ⌊un⌋)
&&& du

and then use the spectral theorem.)

4. Let X be an irreducible Markov chain on the finite state space E with transition matrix P and
invariant distribution π.

(i) Define the separation distance s(t) = maxx,y
!
1− P t(x, y)/π(y)

"
. Show that s(t) is decreasing

as a function of t.

(ii) Define tsep(ε) = min{t ≥ 0 : s(t) ≤ ε}. Show that for all ε ∈ (0, 1] and all k ∈ N we have that

tsep(ε
k) ≤ ktsep(ε).

5. Consider two copies Kn and K ′
n of the complete graph joined by a single edge. Find the order

of the mixing time for a lazy simple random walk on the resulting graph.

6. Let X be an irreducible, lazy and reversible Markov chain on a finite state space with transition
matrix P and stationary distribution π. Let 1 = λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of P .

(i) Show that

Eπ[τπ] :=
#

x,y

π(x)π(y)Ex[τy] =
#

i≥2

1

1− λi
.
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(Hint: Use question 12(b) from the first example sheet.)

(ii) Show that
∞#

t=k

(P t(x, x)− π(x)) ≤ e−k/trelEπ[τx] .

7. Let X be a reversible Markov chain on the finite state space E with transition matrix P and
invariant distribution π.

(i) Prove that for all x, y

P 2t(x, y)

π(y)
≥

'
1−max

z,w

$$P t(z, ·)− P t(w, ·)
$$
TV

(2

.

Deduce that

P 2tmix(x, y) ≥ 1

4
π(y)

and that there exists a transition matrix )P such that

P 2tmix(x, y) =
1

4
π(y) +

3

4
)P (x, y)

(ii) Define

tstop = max
x

min{Ex[Λx] : Λx is a randomised stopping time s.t. Px(XΛx ∈ ·) = π(·)}.

(It is not clear by the definition that a stationary time achieving the minimum exists. One such
example is the filling rule introduced by Baxter and Chacon.) By defining an appropriate stationary
time, prove that

tstop ≤ 8tmix.

We say that a randomised stopping time T starting from x has a halting state if there exists z ∈ E
such that T ≤ τz, where τz = min{t ≥ 0 : Xt = z}.
(Harder) Show that if T has a halting state, then it is mean optimal, in the sense that

Ex[T ] = min{Ex[Λx] : Λx is a randomised stopping time s.t. Px(XΛx ∈ ·) = π(·)}.

(Hint : For a stopping time S consider the exit frequencies from each state, i.e. ν(y) =

Ex

*+T−1
k=0 1(Xk = y)

,
for all y and compare them for different stopping times. Then use the

uniqueness of the invariant measure up to multiplying by a constant.)

8. Let X be a reversible Markov chain with values in the finite space E, transition matrix P and
invariant distribution π.

(a) Let ϕ be an eigenfunction of P corresponding to eigenvalue λ ∕= 1 and ‖ϕ‖2 = 1. Show that

Eπ

-

.
/

t−1#

s=0

ϕ(Xs)

02
1

2 ≤ 2t

1− λ
.

(b) Let f : E → R be a function with Eπ[f ] = 0. Recall γ = 1− λ2 is the spectral gap. Show that

Eπ

-

.
/

t−1#

s=0

f(Xs)

02
1

2 ≤
2tEπ

3
f2

4

γ
.
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(c) Using coupling or otherwise, show that if r ≥ tmix(ε/2) and t ≥ 4trelVarπ (f) /(η
2ε), then for

all x ∈ E

Px

/&&&&&
1

t

t−1#

s=0

f(Xr+s)− Eπ[f ]

&&&&& ≥ η

0
≤ ε.

9. Let X be a reversible Markov chain on a finite state space E with transition matrix P and
invariant distribution π. Let A ⊊ E and let B = Ac with k = |B|. Suppose that the sub-stochastic
matrix PB (the restriction of P to B, i.e. PB(x, y) = P (x, y for x, y ∈ B)) is irreducible, in the
sense that for all x, y ∈ B, there exists n ≥ 0 such that Pn

B(x, y) > 0.

(i) By defining an appropriate inner product, show that PB has k real eigenvalues

1 ≥ γ1 > γ2 ≥ . . . ≥ γk.

(ii) Show that there exist nonnegative numbers a1, . . . , ak satisfying
+

i ai = 1 such that for all
t ≥ 0 we have

PπB (τA > t) =

k#

i=1

aiγ
t
i ,

where πB(x) = π(x)/π(B) for all x ∈ B.

(iii) The Perron Frobenius theorem gives that γ1 > 0 and γ1 ≥ −γk. Using the Courant-Fischer
characterisation of eigenvalues establish that

γ1 ≤ 1− π(A)

trel
.

(iv) Deduce that PπB (τA > t) ≤
5
1− π(A)

trel

6t
≤ exp

5
− tπ(A)

trel

6
.

(v) By the Perron Frobenius theorem the left eigenvector v corresponding to γ1 > 0 is strictly
positive. Let α be a probability distribution given by α = v/

+
i v(i). Show that when the starting

distribution is α, then the law of τA is geometric with parameter γ1.

Prove that for all t and all y
Pα(Xt = y | τA > t) = α(y).

Finally show that if PB is in addition aperiodic, then for all x /∈ A we have

Px(Xt = y | τA > t) → α(y) as t → ∞.

(The distribution α is called the quasi-stationary distribution.)
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