Example Sheet 1

1. Let P be the transition matrix of a Markov chain with values in E and let μ and ν be two probability distributions on E. Show that

$$
\|\mu P-\nu P\|_{\mathrm{TV}} \leq\|\mu-\nu\|_{\mathrm{TV}}
$$

Deduce that $d(t)=\max _{x}\left\|P^{t}(x, \cdot)-\pi\right\|_{\mathrm{TV}}$ is decreasing as a function of t, where π is the invariant distribution.
2. Let $\Omega=\prod_{i=1}^{n} \Omega_{i}$, where Ω_{i} are finite sets. For each i, let μ_{i} and ν_{i} be probability distributions on Ω_{i} and set $\mu=\prod_{i=1}^{n} \mu_{i}$ and $\nu=\prod_{i=1}^{n} \nu_{i}$. Show that

$$
\|\mu-\nu\|_{\mathrm{TV}} \leq \sum_{i=1}^{n}\left\|\mu_{i}-\nu_{i}\right\|_{\mathrm{TV}}
$$

3. Let X and Y be Poisson random variables with parameters λ and μ respectively. Writing $\mathcal{L}(X)$ and $\mathcal{L}(Y)$ for their laws, prove that

$$
\|\mathcal{L}(X)-\mathcal{L}(Y)\|_{\mathrm{TV}} \leq|\lambda-\mu| .
$$

4. Let Y be a random variable with values in \mathbb{N} which satisfies

$$
\mathbb{P}(Y=j) \leq c, \text { for all } j>0 \text { and } \mathbb{P}(Y=j) \text { is decreasing in } j,
$$

where c is a positive constant. Let Z be an independent random variable with values in \mathbb{N}. Prove that

$$
\|\mathbb{P}(Y+Z=\cdot)-\mathbb{P}(Y=\cdot)\|_{\mathrm{TV}} \leq c \mathbb{E}[Z] .
$$

5. Let X be a Markov chain and let W and V be random variables taking values in \mathbb{N} and suppose they are independent of X. Prove that

$$
\left\|\mathbb{P}\left(X_{W}=\cdot\right)-\mathbb{P}\left(X_{V}=\cdot\right)\right\|_{\mathrm{TV}} \leq\|\mathbb{P}(W=\cdot)-\mathbb{P}(V=\cdot)\|_{\mathrm{TV}}
$$

6. Let $G=(V, E)$ be a finite connected graph with maximal distance between any two vertices equal to D. Suppose that X is a lazy simple random walk on G. Prove that for all $\varepsilon<1 / 2$ we have

$$
t_{\operatorname{mix}}(\varepsilon) \geq D / 2
$$

7. Let X be a Markov chain in E with transition matrix P and invariant distribution π. Let $A \subseteq E$ be a subset with $\pi(A) \geq 1 / 8$. Let $\tau_{A}=\inf \left\{t \geq 0: X_{t} \in A\right\}$. Prove that there exists a positive constant c so that

$$
t_{\text {mix }}(1 / 4) \geq c \max _{x} \mathbb{E}_{x}\left[\tau_{A}\right]
$$

8. Let X be a lazy simple random walk on the d-dimensional discrete torus \mathbb{Z}_{n}^{d}. Show that there exists a positive constant c (depending on the dimension d) so that

$$
t_{\operatorname{mix}}(1 / 4) \leq c n^{2} .
$$

9. A company issues n different coupons. In order to win the prize, a collector needs all n coupons. We suppose that each coupon he acquires is equally likely to be each of the n types. Let X_{t} denote the number of different types represented among the collector's first t coupons. For $\alpha \in(0,1)$, define $T=\min \left\{t \geq 0: X_{t}=n-n^{\alpha}\right\}$.
(a) What is $\mathbb{E}[T]$?
(b) Show that $T / \mathbb{E}[T] \rightarrow 1$ in probability as $n \rightarrow \infty$.
10. (a) Let S_{n} be the symmetric group and let $\sigma \in S_{n}$ be a uniform random permutation. Let X denote the number of fixed points of σ, i.e. the number of $1 \leq i \leq n$ such that $\sigma(i)=i$. Show that $\mathbb{E}[X]=1$ and $\operatorname{Var}(X)=1$.
(b) Consider the random transposition shuffle as a method of shuffing a deck of n cards. At each step, the shuffler chooses two cards, L_{t} and R_{t}, independently and uniformly at random. If L_{t} and R_{t} are different, then transpose them. Otherwise, do nothing. Prove that for any $\varepsilon>0$ and all n sufficiently large we have

$$
t_{\mathrm{mix}}(1 / 4) \geq\left(\frac{1}{2}-\varepsilon\right) n \log n .
$$

11. (a) Let P be a transition matrix. Show that if λ is an eigenvalue, then $|\lambda| \leq 1$.
(b) Suppose that P is irreducible and for every x consider the set $T(x)=\left\{t: P^{t}(x, x)>0\right\}$. Show that $T(x) \subseteq 2 \mathbb{Z}$ if and only if -1 is an eigenvalue of P.
12. (a) Let τ be a stopping time for a finite and irreducible Markov chain satisfying $\mathbb{E}[\tau]<\infty$ and $\mathbb{P}_{a}\left(X_{\tau}=a\right)=1$. Show that for all x

$$
\mathbb{E}_{a}\left[\sum_{t=0}^{\tau-1} \mathbf{l}\left(X_{t}=x\right)\right]=\pi(x) \mathbb{E}_{a}[\tau]
$$

(b) Consider a finite, irreducible and aperiodic Markov chain. Prove that for all x

$$
\pi(x) \mathbb{E}_{\pi}\left[\tau_{x}\right]=\sum_{t=0}^{\infty}\left(P^{t}(x, x)-\pi(x)\right)
$$

Hint: Count the number of visits to x up until $\tau_{x}^{m}=\inf \left\{t \geq m: X_{t}=x\right\}$ in two different ways: using part (a) and also using the convergence to equilibrium theorem.
13. Let P be the transition matrix of a finite reversible chain with invariant distribution π.

Using the Cauchy-Schwarz inequality or otherwise prove that for all x, y and all t

$$
\frac{P^{2 t}(x, y)}{\pi(y)} \leq \sqrt{\frac{P^{2 t}(x, x)}{\pi(x)} \cdot \frac{P^{2 t}(y, y)}{\pi(y)}} \quad \text { and } \quad P^{2 t+2}(x, x) \leq P^{2 t}(x, x)
$$

