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Abstract. We consider the inverse problem of determining the potential f > 0 in the partial
differential equation

1

2
u � f u = 0 on O, u = g on @O,

where O is a bounded C1-domain in R
d and g > 0 is a given function prescribing boundary

values. The data consist of the solution u corrupted by additive Gaussian noise. A nonparametric
Bayesian prior for the function f is devised and a Bernstein–von Mises theorem is proved which
entails that the posterior distribution given the observations is approximated in a suitable function
space by an infinite-dimensional Gaussian measure that has a ‘minimal’ covariance structure in an
information-theoretic sense. As a consequence the posterior distribution performs valid and optimal
frequentist statistical inference on various aspects of f in the small noise limit.
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1. Introduction

Inverse problems form a vast and well studied area within applied mathematics. In the
‘information age’ we live in, algorithms that successfully solve these problems must be
robust to the presence of statistical noise and measurement error. A principled approach to
such statistical inverse problems is the Bayesian one, and it has been shown in influential
work in the last decade that modern MCMC methodology can be used to construct com-
putationally efficient Bayesian algorithms for complicated non-linear inverse problems
in infinite-dimensional settings. This methodology is attractive for scientists because the
Bayesian posterior distribution automatically delivers an estimate of the statistical uncer-
tainty in the reconstruction, and hence suggests ‘confidence’ intervals that allow one to
reject or accept scientific hypotheses. The literature on applications of Bayes procedures
in inverse problems is growing rapidly and cannot be reviewed here; we only mention
Andrew Stuart’s survey papers [17, 50] and the contributions [13–16, 28, 35, 44, 49],
where many further references can be found.

Algorithms that solve ill-posed inverse problems typically involve a regularisation
step, for instance via a penalised variational procedure or a spectral cut-off. In the
Bayesian approach this step is provided by the prior distribution. If the prior represents a
regularisation tool rather than subjective prior beliefs about the state of nature, then a nat-
ural question arises as to whether such Bayesian algorithms deliver adequate inferential
conclusions that are independent of the prior. If so, one may further ask whether Bayes
solutions of inverse problems allow for recovery of an unknown parameter f in a sta-
tistically optimal way. Of particular importance in this context is to understand whether
‘credible regions’ constructed from the posterior distribution are objectively valid, ap-
proximate ‘frequentist’ confidence sets. A paradigm to answer these questions is provided
by performing an analysis of the Bayesian algorithm in the ‘large sample’ or ‘small noise’
limit, and under the assumption that the data are generated from a fixed ‘true’ function
f = f0 (instead of f being drawn at random from the prior distribution). That Bayesian
inference can be valid in this setting has been well studied in mathematical statistics since
Laplace [34, Chapter VI]. We refer to the recent monograph [24] and also to [27, Chap-
ter 7.3] for an account of such ‘frequentist consistency results’ for non-parametric Bayes
procedures in standard statistical models, and to the recent paper [51] and its discussion
for results concerning the particular question of non-parametric Bayesian credible regions
and their frequentist properties.
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For linear inverse problems the theory from Bayesian non-parametric statistics of-
ten carries over to the inverse setting, using the singular value decomposition (SVD) of
the forward operator and/or conjugacy of Gaussian priors. See the papers [33], [45] and
[3] and also the more recent references [31, 32, 40, 51]. From these results one can de-
duce objective guarantees for the Bayesian approach, and in fact Bayes point estimates
(such as MAP statistics) can be shown to be closely linked to commonly used Tikhonov
regularisation or penalisation methods in these inverse problems (see [16], [28]).

In the case of non-linear statistical inverse problems, which include many important
examples arising with partial differential equations (PDEs), little is known about the fre-
quentist performance of Bayesian methods. For the problem of inferring the diffusion
coefficient from noisy observations of the solution of an elliptic PDE, [59] provides some
contraction rate results that entail that the posterior distribution arising from certain pri-
ors concentrates on a neighbourhood of the true parameter f0 (although the conditions
and rates obtained there are far from optimal). Recently it was shown in [43] in a related
parabolic problem that Bayesian inference for the coefficients of a scalar elliptic differ-
ential operator based on discrete samples of the associated diffusion Markov process can
result in optimal posterior contraction rates about the true parameter. A form of weak
consistency in this model had earlier been proved in [56], and a related recent contribu-
tion is [1]. While consistency and contraction rates are relevant results, they do not per se
justify Bayesian ‘credible sets’ and related uncertainty quantification methodology. Such
guarantees may be derived from more precise Bernstein–von Mises theorems, which es-
tablish that the posterior distribution is approximated by a canonical Gaussian distribution
in the small noise or large sample limit. While well understood in the finite-dimensional
case [36, 57], the Bernstein–von Mises phenomenon is more subtle in the setting of high-
and infinite-dimensional statistical models (see [22]), and for non-linear inverse problems
such results are currently not available; exceptions are [38] where normal approximations
of posteriors in Euclidean spaces of increasing dimension are obtained, but under con-
ditions whose suitability for inverse problems is unclear, and also the sequel [42] to the
present paper.

This article constitutes an attempt to advance our understanding of the statistical per-
formance of Bayes algorithms for non-linear inverse problems. In view of the importance
of inverse problems arising in PDE models (see the various examples in the survey papers
[17, 50]) we study here a basic situation where one wishes to recover a coefficient of an
elliptic partial differential operator from an observation of a solution to the associated
PDE under some boundary conditions, corrupted by additive Gaussian noise. In fact we
shall lay out the theory in a simple ‘Laplacian plus potential’ situation which comprises
all the conceptual difficulties but permits a cleaner analytic exposition of the main ideas
behind the results we obtain. We first derive minimax optimal (within log-factors) rates
of posterior contraction about the unknown potential term in L2-distance (Theorems 1
and 13). The main contribution of this article however is Theorem 8 which provides an
infinite-dimensional Bernstein–von Mises theorem for the posterior distribution resulting
from a carefully chosen series prior for the potential term. It is shown that the posterior
measure is approximated, in a sense to be made precise, by a certain ‘canonical’ Gaus-
sian measure whose covariance structure attains the statistical information lower bound
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for this inference problem. As a consequence the resulting posterior parameter inferences
are statistically optimal from an objective, information-theoretic and asymptotic minimax
point of view.

In proving our main result we follow the program put forward in [9, 10] (see also [27,
Section 7.3.4]) and understand the Bernstein–von Mises problem in infinite-dimensional
statistical models as one of showing weak convergence of the (scaled and centred) pos-
terior measure to a fixed Gaussian measure in a function space that is large enough to
support the limit distribution as a tight probability measure. The topology of this func-
tion space turns out to be weaker than the standard Lp-norm that one might otherwise
consider, but one can show, again following [9], that arguments from interpolation theory
imply that Bayesian credible sets constructed for these weak norms are valid frequentist
confidence sets whose diameter also converges to zero in the stronger L1-distance.

In summary, our results give some theoretical support for the assertion that the Bayes
approach can in principle be expected to provide efficient solutions of non-linear statis-
tical inverse problems, and further that the associated uncertainty quantification can be
objectively valid in the large sample/small noise limit. By emphasising ‘in principle’ we
wish to point out though very clearly that our results should not be construed as giv-
ing general guarantees for Bayes solutions of arbitrary inverse problems: Even though
our proofs do give a template for obtaining similar theorems in other settings, the de-
tails depend strongly on the fact that the inverse problem associated with the Schrödinger
equation is in a certain sense ‘globally stable’ on the parameter space we consider, and
that the prior is taken to be supported in that parameter space (see also Remark 9). Ob-
taining similar results for different inverse problems or priors requires a careful analysis
of various properties of the forward operator and of its linearisation, and it is conceivable
that in certain situations the ‘information geometry’ induced by the forward map may
be such that Bernstein–von Mises theorems do not in fact hold true. A comprehensive
understanding of these questions for general non-linear problems remains a formidable
challenge for future research in this area.

2. A statistical inverse problem for the Schrödinger equation

Let O be a bounded C1-domain in R
d , d � 2, with boundary @O. Let Ō be the

closure of O in R
d and let C(Ō) be the space of continuous functions on Ō. For

1 = Pd
i=1 @

2/@x2
i the standard Laplacian operator, we consider the (time-independent)

Schrödinger equation

1

2
u � f u = 0 on O, u = g on @O, (1)

where g : @O ! R is a given function prescribing boundary values, and f 2 C(Ō)

is a non-negative ‘potential’. For f > 0 and g sufficiently regular, a unique solution
uf 2 C(Ō) to (1) exists and has probabilistic representation in terms of the Feynman–
Kac formula

uf (x) = uf,g(x) = Ex
⇥
g(X⌧O )e�

R ⌧O
0 f (Xs) ds

⇤
, x 2 O, (2)
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where (Xs : s � 0) is a d-dimensional Brownian motion started at x 2 O, with exit
time ⌧O from O satisfying

sup
x2O

Ex⌧O  K(vol(O), d) < 1.

We refer to Section 7.2 below, particularly Proposition 25, for details.
In inverse problems terminology, f 7! uf is the forward map, and the inverse prob-

lem is to recover f given uf (and g). If kf k1 ⌘ supx2O |f (x)|  D and infx2@O g(x) �
gmin > 0 then we can apply Jensen’s inequality to (2) to obtain

uf (x) � gmine
�kf k1Ex⌧O � c > 0, c = c(gmin, D, vol(O), d), (3)

so that given u = uf we can solve for f simply by taking

f (x) = 1
2
1u

u
(x), x 2 O. (4)

The potential f models an attenuation of the solution of the Dirichlet boundary value
problem for the standard Laplace equation. In physical language, f describes a local
‘cooling’ of the equilibrium temperature distribution of the classical heat equation, when
initial ‘boundary temperatures’ are given by g. In the theory that follows, 1 could be re-
placed by a general, strongly elliptic second order partial differential operator with known

coefficients, at the expense of mostly notational changes. Recent applications of inverse
problems of this kind can be found, e.g., in photo-acoustics [4] or scattering problems
[5, 29].

The question we ask here is how to optimally solve this non-linear inverse problem
when the observations are corrupted by statistical noise. A natural measurement model to
consider is

Yi = uf (xi) + wi, i = 1, . . . , n, n 2 N,

where the wi are independent standard normal N(0, 1) random variables, and the xi are
‘equally spaced’ approximate lattice points in the domain O. By standard arguments from
asymptotic statistics (see [6, 47] or [27, Section 1.2.3]) this discrete measurement model
is asymptotically (as n ! 1) equivalent to observing the functional equation

Y = uf + "W, " = 1/
p

n, (5)

where W is a Gaussian white noise (see Section 7.4 for details) in the Hilbert space

L2(O) =
⇢
h : O ! R : khk2

L2(O)
⌘

Z

O

h(x)2 dx < 1
�
,

and " > 0 is the noise level. We will develop the theory in this equivalent ‘continuous’
model as it allows for a cleaner exposition of the key ideas.

The noise process W belongs to the Sobolev space H ⌘(O) only for ⌘ < �d/2 and is
not pointwise defined—direct recovery of f from Y by a simple equation such as (4) thus
becomes impossible. So while the noiseless inverse problem has an essentially straightfor-
ward solution, the statistical one has not: Even though (5) is a standard non-linear Gaus-
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sian regression model, the parameter space of admissible regression functions uf carries
non-trivial non-linear constraints (since the uf have to be solutions of the PDE (1)), and
to deal with these constraints in a statistically efficient way is a non-obvious task.

A principled approach to solve such problems is the Bayesian one, which devises a
prior distribution 5 for the ‘unknown’ function f . More precisely, for F ✓ L2(O) some
parameter space, we consider f distributed according to 5 where 5 is some (‘prior’)
probability measure on the trace Borel � -field B of F . Then by standard results (see
Section 7.4 below), for any uf 2 L2(O) we can define the likelihood function pf (Y )

describing the density of the law P Y
f ⌘ P Y

uf
of Y |f in (5) for a suitable fixed dominat-

ing measure. The posterior distribution 5(·|Y ) is the law of f |Y obtained from Bayes’
formula

5(B|Y ) =
R
B pf (Y ) d5(f )R
F

pf (Y ) d5(f )
⌘

R
B e`(f ) d5(f )R
F

e`(f ) d5(f )
, B 2 B. (6)

As is common in the inverse problems literature, we consider the situation where f has
some regularity, say a prescribed number of bounded continuous derivatives on O. We
will see how the regularity influences our ability to reconstruct f from Y, g, and we will
show that a suitable Bayesian algorithm recovers f in an optimal way in various loss
functions, such as L2(O) or certain Sobolev norms.

3. A posterior consistency result

3.1. Basic notation

For O ✓ R
d an open set and a multi-index i = (i1, . . . , id), ij 2 N [ {0}, of length

|i| = P
j ij (not to be confused with | · | otherwise denoting the standard Euclidean

norm on R
d ), and Di the associated (weak) partial differential operator, the usual Sobolev

spaces are defined as

H↵(O) = {f 2 L2(O) : Dif 2 L2(O) 8|i|  ↵}, ↵ 2 N, (7)

where H 0(O) = L2(O). When no confusion may arise we will sometimes omit O in the
notation, and we take as norm on H↵ the functional

kf kH↵ =
X

|i|↵
kDif kL2 . (8)

For ↵ /2 N one defines H↵(O) by interpolation (see [37, Chapter I.9] or [2, Section 7]).
We can similarly define the spaces C↵(O),↵ 2 N [ {0}, by replacing (L2, k · kL2) in

(7), (8) by the space (C(O), k·k1) of bounded uniformly continuous functions on O—for
elements f 2 C↵(O) the functions Dif , 0  |i|  ↵, then all have unique continuous
extensions to Ō, and we sometimes write C↵(Ō) to make explicit that we view such
functions as being defined on Ō. The symbol C1(O) denotes the set of all infinitely dif-
ferentiable functions on O, and C0(O) denotes those elements in C(Ō) whose boundary
trace h|@O is zero. For ↵ /2 N we say f 2 C↵(O) if Dif, |i| = [↵], where [↵] is the
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integer part of ↵, exists and is ↵� [↵]-Hölder continuous. The norm on the space C↵(O)

is then given by

kf kC↵(O) ⌘ kf kC[↵](O) + max
|i|=[↵]

sup
x,y2O; x 6=y

|Dif (x) � Dif (y)|
|x � y|↵�[↵] . (9)

We also need the Hölder–Zygmund spaces C
↵(O),↵ � 0 (see [52, Section 3.4.2] for

definitions). One has C↵(O) = C↵(O), ↵ /2 N, (with equivalent norms) and continuous
imbeddings C↵

0
( C↵ ( C

↵,↵ 2 N [ {0},↵0 > ↵. Attaching a subscript c to any space
S(O) will denote the subspace (Sc(O), k · kS(O)) consisting of functions of compact
support in O, and (SK(O), k · kS(O)) will denote the subspace consisting of elements of
S(O) supported in a subset K ✓ O.

For ↵ > d/2 and O a bounded C1-domain, the Sobolev imbedding implies that
H↵(O) embeds continuously into C�(Ō) for any 0 < � < ↵ � d/2 and we further have

kfgkH↵  ckf kH↵kgkH↵ , ↵ > d/2, (10)

for some c = c(↵, d,O). The above facts are classical for ↵ 2 N (see [2]) and also
hold for ↵ /2 N by the use of interpolation theory [37, 52]. We also repeatedly use the
inequalities

kfgkH↵  ckf kC↵kgkH↵ , kfgkC↵  ckf kC↵kgkC↵ , ↵ � 0. (11)

which follow from [52, Remark 1, p. 143].
On a Hilbert space H we will denote by h·, ·iH the inner product generating the norm

k · kH . For an arbitrary normed linear space (X, k · kX), the topological dual space is

X⇤ = (X, k · kX)⇤

:= {L : X ! R : |L(x)|  CkxkX for all x 2 X and some C > 0},

which is a Banach space for the norm kLkX⇤ ⌘ supx2X,kxkX1 |L(x)|.
If µ is a probability measure on some measurable space, then X ⇠ µ means that

X is a random variable in that space drawn from distribution µ, also called the law
of X, L(X) = µ. We write X

L= Y if two random variables X, Y have the same law,
L(X) = L(Y ).

We will sometimes use the symbols .,&, ' to denote one- or two-sided inequalities
up to multiplicative constants that may be either universal or ‘fixed’ in the context where
the symbols appear. We also use the standard OP , oP , O, o notation to estimate the order
of magnitude of sequences of random variables and real numbers, respectively.

3.2. Wavelet bases for L2(O)

Consider an orthonormal system of sufficiently smooth (‘S-regular’), compactly sup-
ported Daubechies tensor wavelet basis functions

�
8l,r : r 2 Z, l 2 N [ {�1, 0}

 
, 8lr = 2ld/280,r (2l ·) for l � 0,
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of the Hilbert space L2(Rd) (see [18, 39] and [27, Chapter 4]). [In proofs we shall some-
times use the last dilation identity also when l = �1, in slight abuse of notation.] We will
use the fact that such a basis characterises elements of classical function spaces on R

d by
the decay of the sequence norms of wavelet coefficients; for instance

kf k2
H↵(Rd )

'
X

l,r

22l↵hf,8l,r i2
L2(Rd )

(12)

and for some constant C > 0 and all ↵ � 0,

f 2 C↵(Rd) =) sup
l,r

2l(↵+d/2)|hf,8l,r iL2(Rd )|  Ckf kC↵(Rd ), (13)

with a converse of the last inequality holding as well when ↵ /2 N. To be precise, the
previous inequalities hold for all ↵  S, where S 2 N measures the ‘regularity’ of the
wavelet basis used, in particular the 80,r are in CS

c (Rd). Note that S can be chosen as
large as desired.

For a bounded C1-domain O in R
d , one can then also construct an orthonormal

wavelet basis of the Hilbert space L2(O) given by
�
8O

l,r : r  Nl, l 2 N [ {�1, 0}
 
, Nl 2 N, (14)

consisting of all those 8O
l,r = 8l,r that are compactly supported in O, and of some

boundary corrected wavelets 8O
l,r = 8bc

l,r which are orthonormalised linear combinations

8bc
l,r (x) =

X

|m�m0|K

dl
m,m08l,m0(x), m = m(l, r), K 2 N, x 2 O,

of those basic Daubechies wavelets 8l,m0 that have support both in and outside O. We
refer to [53, Theorem 2.33 and Definition 2.4] for details, but record the key properties
that for all l and some fixed positive constants c0, c1, D,

Nl  c02ld;
X

|m�m0|K

|dl
m,m0 |  D;

supp8bc
l,r ✓ {x 2 O : dist(x, @O) < c1/2l};

X

r

|80,r | 2 C(Rd),
(15)

the last property holding as well with 80,r replaced by any derivative Di80,r , |i|  S.
For the above basis any function f 2 L2(O) has an orthogonal wavelet series expan-

sion

f =
X

l

NlX

r=1
hf,8O

l,r iL2(O)8
O
l,r in L2(O),

and we denote by 5VJ (f ) the J -th partial sum of this series, equal to the L2(O)-projec-
tion onto the linear span VJ of {8O

l,r : r  Nl, l  J }.
We next define Hölder–Zygmund type spaces for this wavelet basis by

f 2 C
↵,W (O) () sup

l,r
2l(↵+d/2)|hf,8O

l,r iL2(O)| ⌘ kf kC↵,W (O) < 1, (16)
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a definition that makes sense for all values ↵ 2 R if f is a linear functional whose action
f (8O

l,r ) on the {8O
l,r} is well defined.

The above boundary corrected wavelet basis conveniently retains the multi-scale and
orthonormal basis properties in L2(O), but may not model the regularity of a function
f correctly near @O. Describing smoothness of functions near the boundary by decay of
wavelet coefficients is a delicate problem that we avoid here. For our purposes it will be
sufficient that the spaces C

↵
c (O) and thus also C↵c (O) are continuously embedded into

C
↵,W (O) if ↵ < S (see Proposition 26).

3.3. Construction of the prior distribution

Since f > 0 is assumed, we seek a prior 5 for f that is the law of a ‘generic’ non-
negative random function that possesses enough regularity so that the solution uf of (1)
exists for every f ⇠ 5. We work with the S-regular wavelet basis (14) of L2(O) from the
previous subsection, where 0 < s < S is a fixed integer. We then take as prior distribution
5 = 5J the law L(f ) of the random function

f (x) = e'(x) ⌘ exp
nX

lJ

NlX

r=1
bl,r8

O
l,r (x)

o
, x 2 O, J 2 N, (17)

where, for every l, the (bl,r : r = 1, . . . , Nl) are drawn independently and identically
from the uniform distribution

U(�B2�l(s+d/2)l̄�2, B2�l(s+d/2)l̄�2), l̄ = max(l, 1).

For the prior to be fully adaptive one would have to further model B, s, J by hierarchical
priors, but for the results that follow we will restrict to the case where s is given and B

an arbitrary but fixed positive constant. The truncation point J 2 N will be chosen to
increase as the noise level " decreases—thus 5 is a ‘high-dimensional’ prior.

The factors 2�l(s+d/2)l̄�2 appearing in the weights bl,r imply that a function drawn
from the prior lies in a ball of Cs(O) almost surely: From (15) and if |i|  s < S we
deduce that

|Di'| =
���
X

lJ,r

bl,rD
i8O

l,r

���  B
X

lJ,r

l̄�22l(|i|�s)|Di80,r |  cB
X

lJ

l̄�2  C(B)

for some finite constant C(B), hence ' is contained in C↵(O) for any |↵|  s, s 2 N.
Since the exponential map is smooth on bounded sets, this further implies that

k'kCs(O)  C, kf kCs(O)  C (18)

for some finite constant C that depends only on s, B and the wavelet basis used.
‘Besov priors’ as in (17) have been proposed in inverse problem settings before in

[15, 35, 45, 49]; particularly [49] studies such series priors with uniformly distributed co-
efficients in related PDE-type inverse problems. Other priors than (17) may be of interest,
for instance those where the bl,r are drawn from a Gaussian or Laplace distribution. The
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mathematical techniques we develop in the present paper apply in principle to such priors
too, but the assumption that 5 is supported in a fixed ball of Cs(O) is used crucially in
many places in our proofs, and cannot easily be relaxed. Generalising our results to priors
with unbounded coefficients bl,r remains a challenging open problem for future research.

3.4. A contraction theorem in Sobolev norms

Our first result states that the posterior distribution is consistent in that it concentrates
around any ‘true’ function f0 that generates equation (5), and we quantify the ‘contraction
rate’ in L2 in terms of the smoothness s of f0.

To reduce technicalities related to boundary issues we restrict to functions '0 =
log f0 2 Cs(O) that have compact support in O. Any such '0 is contained in Cs

c(O) ✓
C

s,W (O) by Proposition 26, which implies by (16) that the wavelet coefficients of '0
decay like 2�l(s+d/2) as l ! 1. We will strengthen this decay assumption slightly to

sup
l,r

2l(s+d/2)l̄ 2|h'0,8l,r iL2(O)|  B (19)

to exactly match the decay of the coefficients bl,r in the wavelet prior (17)—this is equiv-
alent to assuming some additional Hölder regularity of '0 on the logarithmic scale. We
will also assume s 2 N for simplicity. Finally, and without loss of generality, we realise
g = g|@O as the boundary trace of an element of Cs+2(Ō). We then have the following
contraction result.

Theorem 1. Let f0 > 0 be such that '0 = log f0 2 Cs
c(O) satisfies (19) for some

s > 2 + d/2, s 2 N. Let 5 = 5J be as in (17) with J 2 N such that 2J ' "�2/(2s+4+d)
,

and let 5(·|Y ) be the resulting posterior distribution (6) arising from observing (5) with

g 2 Cs+2(Ō), g � gmin > 0. If P Y
f0

is the law of Y = uf0 + "W, then for all M large

enough and � = s/(2s + 4) we have, as " ! 0,

5
�
f : kf � f0kL2(O) > M"2s/(2s+4+d) log� (1/")

��Y
� P Y

f0��! 0.

Since (18) implies that f � f0 is bounded in Cs(O) ✓ Hs(O), the standard interpolation
inequality for Sobolev norms (see (49) below) further implies the contraction rates

5
�
f : kf � f0kH↵(O) > M"(2s�2↵)/(2s+4+d) log�

0
(1/")

��Y
� P Y

f0��! 0, 0  ↵ < s,

(20)

with � 0 = (s �↵)/(2s +4), which by the Sobolev imbedding (any ↵ > d/2) also implies
a contraction rate in the uniform norm k · k1.

Except for the log-factor, the rates obtained in Theorem 1 are optimal, as the follow-
ing proposition shows. Removal of the log-factor is possible by more sophisticated prior
choices, but for the main results of this article that follow, this will not be relevant.
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Proposition 2. For every s > 2 + d/2, B > 0, 0 < ↵ < s, fmin > 0, any g as in

Theorem 1 and EY
f the expectation operator corresponding to P Y

f we have, as " ! 0,

inf
ef =ef (Y,g)

sup
f 2Cs(O): kf kCs (O)B, f �fmin>0

"�(2s�2↵)/(2s+4+d)EY
f kef � f kH↵(O) ' c,

where c = c(↵, s, B, gmin, fmin, d, vol(O)) is a finite positive constant.

Inspection of the proof of this proposition reveals that the minimax convergence rate
"(2s�2↵)/(2s+4+d) improves by at most a power of log(1/") if assumption (19) is also
imposed on f , and also that in case ↵ = 0, L2-loss can be replaced by Lp-loss for any
1  p < 1. Moreover the lower bound for the minimax rate can be shown to remain
valid when f is such that log f has compact support in O.

4. Information geometry

While Theorem 1 is already quite satisfactory in that it shows that the posterior con-
centrates near the ‘true’ value, we may hope that the posterior distribution reveals more
precise information about f0. This will ultimately be formalised by proving a Bernstein–
von Mises theorem in a suitable function space, showing that the posterior distribution
is approximated by a canonical Gaussian distribution with a covariance structure that
is ‘minimal’ in an information-theoretic sense. In the language of asymptotic statistics
[30, 36, 57] the structure of this covariance is determined by the ‘LAN’ expansion of the
log-likelihood ratio process, which we obtain now for the observation scheme (5) consid-
ered here. From it we can then construct the Gaussian measure that has to appear as the
limit of the scaled and centred posterior measure.

4.1. Score operator and LAN expansion

We start with the following simple lemma which is a standard application of equation
(110) in the Appendix.

Lemma 3. Let `(f ) = `(f, Y ) = log pf (Y ) be the log-likelihood function arising

from (5), write G(f ) = uf , and assume Y = G(f0) + "W for some fixed f0 such that

G(f0) 2 L2(O). Then for any f, g with G(f ), G(g) 2 L2(O) we have

`(f ) � `(g)

= � 1
2"2

�
kG(f )�G(f0)k2

L2(O)
�kG(g)�G(f0)k2

L2(O)

�
+ 1
"
hG(f )�G(g),WiL2(O).

Since G is non-linear we next have to find a suitable linear approximation to G(f ) �
G(f + h) for a small perturbation h of f . In statistical terminology this amounts to find-
ing the ‘score operator’ of the model. The following proposition shows that this score
operator can be understood as the solution operator for an inhomogeneous Schrödinger
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equation (22) (see Section 7.2 for existence of its solutions and further details). The re-
mainder terms of the linear approximation can be controlled in a ‘weak’ norm that we
define now: we introduce the functional

kf k(H 2
0 )⇤ = sup

'2C0(O): k'k
H2(O)

1

����

Z

O

'(x)f (x) dx

����. (21)

Clearly kf k(H 2
0 )⇤  kf kL2 but k · k(H 2

0 )⇤ generates a strictly weaker topology than the
norm of L2(O), a fact that will be useful in our proofs.

We also write khk(d) = khkL2 when d < 4 but khk(d) = khk1 for d � 4. This ac-
commodates the fact that the Sobolev space H 2(O), which plays a key role for regularity
estimates of solutions of the Schrödinger equation, imbeds into C(O) only when d < 4.

Proposition 4 (Score operator). Let G(f ) = uf solve (1) where f 2 Cs(O), f > 0,

and g 2 Cs+2(Ō) for some s > 0. For h 2 C(Ō), denote by DGf [h] = vh the solution v

to the inhomogeneous Schrödinger equation

1

2
v � f v = huf on O, v = 0 on @O. (22)

Let f, h further be such that f + h � fmin > 0 and kf kCs(O) + khkCs(O)  D for some

D, fmin > 0. Then there exists c1 = c1(O, d,D, fmin, kgkCs+2(Ō)) such that

kG(f + h) � G(f ) � DGf [h]kL2  c1khk(d)khk(H 2
0 )⇤ .

Moreover the score operator DGf satisfies the estimate

kDGf [h]kL2  c2khk(H 2
0 )⇤  c2khkL2 , h 2 C(Ō), (23)

where the constant c2 depends only on upper bounds for kf kCs(O), kgkCs+2(Ō) and

on O, d.

Proof. Let us write u = uf and uh = uf +h in slight abuse of notation, in this proof. Then
in O we must have

(1/2)uh � (f + h)uh = (1/2)u � f u

or equivalently
(1/2)(uh � u) � (f + h)(uh � u) = hu.

Thus if vh solves (22) then

(1/2)(uh � u � vh) � (f + h)(uh � u � vh) = hvh

on O and uh �u� vh = 0 on @O. We conclude that wh = uh �u� vh is itself a solution
to the inhomogeneous Schrödinger equation

(1/2)wh � (f + h)wh = hvh, f + h � fmin > 0, (24)
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with zero boundary condition on @O. Lemma 24, specifically (100) below, and definition
(21) now imply that

kwhkL2  Ckhvhk(H 2
0 )⇤  Ckhk(H 2

0 )⇤ sup
k'k

H21
k'vhkH 2 .

Using (10) when d < 4 gives k'vhkH 2  ck'kH 2kvhkH 2 , whereas for d � 4 we
use (11) and have to replace kvhkH 2 by kvhkC2 in the last inequality. Finally, since vh

solves (22), by the regularity estimates in Lemma 24 with � = 0 and since kuf kC2 
c(D, kgkCs+2(Ō)) by Proposition 25,

kvhkH 2  C0kuf hkL2  C00khkL2 , kvhkC2  C0kuf hkC0  C00khk1,

proving the first claim. Inequality (23) now follows similarly, by using the definition of
DGf and again Lemma 24, (11) and the bound on kuf kC2 . ut
We immediately obtain the pathwise LAN expansion for the log-likelihood ratio process.

Proposition 5. For any f0, h 2 Cs(Ō), f0 > 0, g 2 Cs+2(Ō), s > 0, if Y =
G(f0) + "W then

log
pf0+"h

pf0

(Y ) = hDGf0 [h],WiL2 � 1
2
kDGf0 [h]k2

L2 + oP Y
f0

(1) as " ! 0,

and the LAN-norm is given by

khkLAN ⌘ kDGf0 [h]kL2 .

Proof. Combine Lemma 3 with Proposition 4 and notice that "2khk(d)khk(H 2
0 )⇤ 

"2khk2
1 as well as that hg,Wi = OP (kgkL2) by Markov’s inequality. ut

4.2. Information bound for one-dimensional subproblems

To apply the general theory of statistical efficiency (see Section 7.5 in the appendix for a
review) to estimate a linear functional9(f ) of f at f0, we need to find the Riesz represen-
ter of such a functional for the LAN inner product h·, ·iLAN ⌘ hDGf0 [·], DGf0 [·]iL2(O).

We restrict to functionals of the form 9(f ) = hf, iL2 for some fixed compactly sup-
ported function  . Using the results about the f-Green operator Vf for the Schrödinger
operator Sf from Section 7.2 we have

hh1, h2iLAN = hDGf0 [h1], DGf0 [h2]iL2 = hVf0 [uf0h1], Vf0 [uf0h2]iL2 .

For f0 2 Cs(Ō), g 2 Cs+2(Ō), f0, g > 0, s > 0, we know from Proposition 25
and (3) that uf0 � c > 0 on Ō, and if also s > 2 then the chain rule further implies
1/uf0 2 C4(O). As a consequence, for any  2 C4

c (O) we can define

e9 = e9f0 = [Sf0Sf0 [ /uf0 ]]/uf0 , (25)
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which has the pointwise representation

e9uf0 = 1
4
12


 

uf0

�
� 1

2
1


f0 

uf0

�
� f0

2
1


 

uf0

�
+ f 2

0  

uf0

, (26)

and hence is also compactly supported in O. Then for all h 2 C(Ō), Proposition 22
implies

he9, hiLAN = hVf0 [uf0
e9], Vf0 [huf0 ]iL2 = hVf0Vf0Sf0Sf0 [ /uf0 ], huf0iL2

= h , hiL2 , (27)

so that e9 is indeed the Riesz representer. From the results in Section 7.5 with H = Cs(Ō)

and again Proposition 22 it now follows that the information lower bound for estimating
hf, i at f = f0 from observations Y in (5) equals

ke9f0k2
LAN = kVf0 [uf0

e9f0 ]k2
L2 = kSf0 [ /uf0 ]k2

L2 . (28)

4.3. The ‘canonical’ Gaussian measure Nf0

Collecting the Riesz representers e9 for all linear functions (9(f ) = hf, iL2(O) :
 2 C1

c (O)) from Section 4.2, and for Sf0 the Schrödinger operator from Section 7.2,
we define the centred Gaussian process

(X( ) :  2 C1
c (O)) such that E[X( )X( 0)] = hSf0 [ /uf0 ], Sf0 [ 0/uf0 ]iL2 . (29)

By Kolmogorov’s consistency theorem [19, Section 12.1]) this process defines a proba-
bility measure Nf0 on the cylindrical � -field of RC1

c (O).
In the Bernstein–von Mises theorem that follows we will want to prove weak conver-

gence in probability of the centred and scaled posterior measure towards Nf0 in a suitable
Banach space. The notion of weak convergence we will employ below naturally requires
tightness of the limit law, and we thus first investigate when the measure Nf0 extends to
a tight Gaussian Borel probability measure in the scale of dual spaces (C↵c (O))⇤,↵ > 0.

Proposition 6. Let f0 2 Cs(O) and g 2 Cs+2(Ō), s > 0, satisfy f0, g > 0.

(A) For any ↵ > 2 + d/2, the law Nf0 induced by the Gaussian process (29) defines a

tight Gaussian Borel probability measure on (C↵c (O))⇤.

(B) If ↵ < 2 + d/2 then for every f0 2 Cs(O), s > 2 + d/2, we have

Nf0(x : kxk(C↵c (O))⇤ < 1) = 0.

(C) Both (A) and (B) remain true if (C↵c (O))⇤ is replaced by the space (C↵K(O))⇤ =
(C↵K(O), k · kC↵(O))

⇤
for any compact set K ✓ O with non-empty interior.

To be precise, the proof of (A) shows that the process (29) has a version that acts lin-
early on C1

c (O), and that the cylindrical law of that linear version on (C↵c (O))⇤ =
(C1

c (O), k·kC↵(O))
⇤ ✓ R

C1
c (O) extends to a tight Gaussian measure on the Borel � -field
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induced by k · k(C↵c (O))⇤ when ↵ > 2 + d/2. In (B), the proof implies that for any version
of (X( )) and ↵ < 2 + d/2, the norm sup : k kC↵c (O)1 |X( )| is 1 almost surely.

For ↵ > d/2 the measure Nf0 is tight and thus the results in Sections 4.2 and 7.5 im-
ply that its covariance structure represents the information lower bound for estimating f

in (C↵c (O))⇤ or (C↵K(O))⇤, based on observations from (5).
One may investigate the limiting case ↵ = 2 + d/2 further, but this requires the

introduction of a ‘logarithmic scale’ to measure smoothness of functions, and we abstain
from doing so for ease of exposition. Note that one may also show that Nf0 is not tight
when ↵ = 2 + d/2 (see Remark 12).

5. A Bernstein–von Mises theorem in (C↵K(O))⇤

We now turn to the main result of this article which gives an infinite-dimensional nor-
mal approximation of the posterior distribution arising from the prior (17), in the small
noise limit " ! 0. The following condition on the prior and on f0 will be employed. It
requires f0 to be an ‘interior’ point of the support of the prior (17)—just as in the finite-
dimensional situation a Gaussian approximation of the posterior distribution cannot be
expected when the ‘true value’ lies at the boundary of the support supp5 of 5 (see also
Remark 9).

Condition 7. Let s 2 N satisfy s > max(2 + d/2, d). Suppose the prior 5 arises

from (17) with J 2 N chosen such that 2J ' "�2/(2s+4+d)
, and is based on an S-regular

wavelet basis with S > 2+s+d. Suppose that f0 > 0 and '0 = log f0 2 Cs
c(O) satisfies,

for some fixed ✏ > 0,

|h'0,8
O
l,r i|  (B � ✏)2�l(s+d/2)l̄�2, l̄ = max(1, l).

Again, the restriction to s 2 N is just for convenience and could be removed at the expense
of introducing further technicalities in the proofs.

We will interpret the (scaled and centred) posterior distribution5(·|Y ) of the random
function f |Y as the law of the stochastic process

("�1hf � f̄ , iL2(O) | Y : k kC↵K(O)  1), K ✓ O, (30)

conditional on Y , where f̄ = f̄ (Y ) is the posterior mean (since f |Y is bounded in
L2(O), the posterior mean E5[f |Y ] is well defined as a Bochner integral (see, e.g.,
[27, p. 68]). As " ! 0 the conditional laws of these stochastic processes will be shown
to converge weakly to the law Nf0 of the Gaussian process X from (29), uniformly in
the collection of functions { : k kC↵K(O)  1}, with P Y

f0
-probability approaching 1,

whenever ↵ > 2 + 3d/2, and for any compact subset K ✓ O. Since both processes
induce a linear action on C↵K(O), this is equivalent to weak convergence in probabil-
ity of the induced probability measures L("�1(f � f̄ ) | Y ) to Nf0 on the dual space
(C↵K(O))⇤ = (C↵K(O), k · kC↵(O))

⇤.
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To make these notions of convergence rigorous, recall that a sequence of probability
measures µn on a metric space (S, ⇢) converges weakly to µ, written µn !L µ, ifR
S F dµn !

R
S F dµ for all bounded ⇢-continuous functions F : S ! R. Whenever µ

is tight, this notion of convergence can be metrised by the bounded Lipschitz (BL) metric

�S(⌫, µ) = sup
F :S!R, kFkLip1

����

Z

S
F d(µ � ⌫)

����,

kFkLip ⌘ sup
x2S

|F(x)| + sup
x 6=y, x,y2S

|F(x) � F(y)|
⇢(x, y)

(31)

(see [20, Theorem 3.28]). It is therefore natural to say that a sequence of random probabil-
ity measures converges weakly in probability to some tight limiting probability measure
if their BL-distance converges to zero in probability. This definition is easily seen to be
independent of the metric for weak convergence that is used. We refer to Section 7.6 for
some basic facts about this notion of convergence.

Theorem 8. Let prior 5 and f0 satisfy Condition 7 for the given s > 0, and let 5(· |Y )

be the posterior distribution (6) resulting from observing (5) with g 2 Cs+2(O), g �
gmin > 0. Let f ⇠ 5(·|Y ) conditional on Y , let f̄ = f̄ (Y ) = E5[f |Y ] be the posterior

mean, and let P Y
f0

denote the law of Y = G(f0) + "W.

For every compact subset K ✓ O any ↵ > 2 + 3d/2, as " ! 0 we have

�(C↵K(O))⇤(L("�1(f � f̄ ) | Y ),Nf0)
P Y

f0��! 0 (32)

where L("�1(f � f̄ ) | Y ) is the law on (C↵K(O))⇤ induced by the stochastic process (30),
and where Nf0 is the tight Gaussian Borel probability measure on (C↵K(O))⇤ constructed

in Proposition 6. In particular f̄ is an efficient estimator of f0: as " ! 0 and under P Y
f0

,

"�1(f̄ � f0)
L�! Nf0 in (C↵K(O))⇤.

Remark 9. From the point of view of weak convergence towards Nf0 , the condition
↵ > 2+d/2 would be sufficient (and necessary) in the above theorem (see Proposition 6).
The stronger condition ↵ > 2+3d/2 is, however, required in Theorem 8 for the prior con-
structed in (17), and we wish to give some intuition for this fact: In statistical models with
a parameter space of fixed finite dimension, it is well known that the Bernstein–von Mises
theorem does not hold when the true parameter lies at the boundary of the support of
the prior. When proving Bernstein–von Mises theorems in high and infinite dimensions,
this phenomenon becomes ‘quantitative’—this was already observed in [7, 10] where
priors with ‘heavy tails’ were required to obtain sub-Gaussian approximations of poste-
rior distributions. In the non-linear inverse problem setting here, the prior (17) strongly
regularises the potential f to lie in a fixed ball of Cs(O). As a consequence, the ‘sta-
bility estimate’ induced by (4) holds globally in the support of the prior (see the proof
of Lemma 14), ensuring consistency of Bayesian inversion (Theorem 1). This choice
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of prior, however, also limits the directions  along which "�1hf � f̄ , iL2(O) | Y is
approximately sub-Gaussian by requiring  to be sufficiently well aligned with the sup-
port ellipsoid described by the prior (see the ‘change of measure’ argument in the proof,
particularly in the construction of admissible ‘interior’ directions in Lemma 19). While
↵ > 2+3d/2 appears necessary for the prior (17), it remains an interesting open question
whether the condition ↵ > 2 + d/2 can be attained by other priors.

5.1. Some applications to uncertainty quantification

A key consequence of a Bernstein–von Mises result is that the uncertainty quantification
provided by the posterior distribution for the parameter f is optimal in a frequentist, prior-
independent, sense if the credible sets are constructed for the norm in which the normal
approximation to the posterior holds.

To start with a simple example, suppose  2 C↵c (O),↵ > 2 + 3d/2, is a fixed ‘test’
function ( 6= 0 to avoid triviality) and our target of statistical inference is the scalar
quantity 9(f ) = hf, iL2 . We can use the induced posterior distribution 5 (·|Y ) ⌘
5(·|Y ) �9�1 to construct a prescribed level 1 � � credible set for 9(f ) by taking

C" = {z 2 R : |z � hf̄ , iL2 |  R"},
with R" = R"(Y,�) such that 5 (C"|Y ) = 1 � �, � > 0. (33)

The Bernstein–von Mises and continuous mapping theorems now imply that the law of
"�1(9(f )�9(f̄ )) is approximated in the small noise limit by an N(0, kSf0( /uf0)k2

L2)-
distribution. Let 8(t) = Pr(Z 2 [�t, t]), t > 0, for Z ⇠ N(0, kSf0( /uf0)k2

L2) with
continuous inverse 8�1 : [0, 1] ! R. The following corollary implies that the posterior
credible set C" is an efficient frequentist confidence set for the parameter 9(f ).
Corollary 10. The frequentist coverage probability of C" satisfies

P Y
f0

(9(f0) 2 C") ! 1 � �

as " ! 0, and the diameter of C" is of order R" = OP ("), in fact as " ! 0,

"�1R"
P Y

f0��! 8�1(1 � �).

The above result immediately generalises to fixed non-linear but differentiable function-
als 9 of f , by arguing just as in [9, Section 2.3.2].

For the proof of the previous corollary one would not require the full strength of
Theorem 8. But the infinite-dimensional approximation is required to demonstrate that
also the uncertainty quantification provided by the posterior distribution for the entire

parameter f —by intersecting all admissible linear constraints in (33) for in the unit ball
of C↵K(O)—can be valid. More precisely, if we choose posterior quantiles R" = R"(Y,�)

such that

C" = {f 2 supp5(·|Y ) : kf � f̄ k(C↵K(O))⇤  R"}, 5(C"|Y ) = 1 � �, (34)

where � > 0 is some fixed significance level, and ↵ > 2 + 3d/2 is arbitrary, then one can
prove the following result.
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Corollary 11. The frequentist coverage probability of C" from (34) satisfies

P Y
f0

(f0 2 C") ! 1 � �,

and as " ! 0 the quantile constants satisfy

"�1R"
P Y

f0��! const.

Although the credible ball (34) is constructed in the weaker topology of (C↵K(O))⇤, its
diameter can be shown to converge to zero in probability at rate "2(s�d�)/(2s+4+d), for
every  > 0, also in the much stronger kf kL1(K̄) =

R
K̄ |f | norm (where the Bernstein–

von Mises theorem does not hold), for any compact strict subset K̄ ( K . This can be
proved by noting that the L1(K̄)-norm can be bounded via interpolation between the
bounded support of 5(·|Y ) in Cs(O) and the convergence rate in (C↵K(O))⇤. See [9, 10]
and [46, Section 5] for more discussion of this ‘multi-scale’ phenomenon.

6. Proofs

6.1. Proofs of Propositions 6 and 2

In order to prove Proposition 6(A), let X ⇠ Nf0 with covariance metric d( , 0) =
kSf0 [( �  0)/uf0 ]kL2 . k �  0kC2 . The metric entropy estimate

log N({ : k kC↵K(O)  1, ⌘, d) . log N({ : k k
C↵�2

K (O)
 1, c⌘, k · k1), ⌘ > 0,

(35)

for some constant c > 0, combined with (107), ↵ > 2 + d/2, and [27, Proposition 2.1.5
and Theorem 2.3.7] imply that X defines a tight Gaussian Borel random variable in the
space of bounded and uniformly d-continuous functions on the unit ball of C↵K(O). That
a version of X exists that acts linearly on C↵K(O), thus defining an element of (C↵K(O))⇤,
follows from [27, proof of Theorem 3.7.28] and linearity in  of the covariance in (29).

We now prove Proposition 6(B) for (C↵c (O))⇤; the case of (C↵K(O))⇤ is proved in
the same way by replacing O with a ball contained in K . By the continuous imbeddings
C↵

0
c ✓ C↵c ,↵0 > ↵, it suffices to prove the result for ↵ = 2 + d/2 � ✏ for every ✏ > 0

small enough. Suppose to the contrary that

Nf0(x : kxk(C↵c (O))⇤ < 1) = Pr
⇣

sup
h2C↵c (O): khkC↵1

|X(h)| < 1
⌘

> 0;

then by separability of the unit ball of C↵c (O),↵ > 2, for the covariance metric d of
Nf0 (cf. (35) and (107)), and by [27, Proposition 2.1.12 and Theorem 2.1.20], X ⇠ Nf0
must satisfy EkXk(C↵c (O))⇤ < 1, which will lead to a contradiction. If Vf0 denotes the
inverse Schrödinger operator from Section 7.2, and if X ⇠ Nf0 , then by Proposition 22
the Gaussian process eX defined by the action

�eX(') = X(uf0Vf0 [']), ' 2 C1
c (O)

�
,

has the law of a standard Gaussian white noise W on L2(O). By Proposition 22 again,
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E sup
h2C↵c (O): khkC↵1

|X(h)| = E sup
h2C↵c (O): khkC↵1

|X(uf0Vf0 [Sf0(h/uf0)])|

= E sup
h2C↵c (O): khkC↵1

|eX(Sf0(h/uf0))| = E sup
h2C↵c (O): khkC↵1

|W(Sf0(h/uf0))|

� E sup
h2C↵c (O): khkC↵1

|hW,1(h/2uf0)iL2 | � E sup
h2C↵c (O): khkC↵1

|hW, f0h/uf0)iL2 |

� E sup
h2C↵c (O): khkC↵1

|hW,1(h/2uf0)iL2 | � C

� (1/)E sup
h̄2C↵c (O): kh̄kC↵1

|hW,1h̄iL2 | � C

for some  > 0, where we have used f0, uf0 , 1/uf0 2 C↵(O) under the maintained
assumptions (Section 7.2), that the supremum of the standard white noise process W on
balls in C↵c (O) (↵ = 2 + d/2 � ✏, ✏ < 2) is bounded in expectation by a fixed constant
(use Proposition 27(C) and (91)), and where we have taken h = 2h̄uf0/kh̄uf0kC↵ and
used 2kh̄uf0kC↵   by (11).

We complete the proof by showing

E sup
h2C↵c (O): khkC↵1

|hW,1hiL2(O)| = 1 (36)

as follows: For every j 2 N there exists a small positive constant c0
0 and c0

02jd = nj

Daubechies wavelets (8j,r : r = 1, . . . , nj ) that have disjoint compact supports within
O (Section 3.2). Let bm,· be a point in the discrete hypercube {�1, 1}nj and, for  0 small
enough chosen below, define functions

hm(x) ⌘ hm,j (x) =  0
njX

r=1
bm,r2�j (↵+d/2)8j,r (x), x 2 O, m = 1, . . . , 2nj . (37)

The interior wavelets 8j,r are all orthogonal to the boundary wavelets, thus

khmkC↵,W = sup
l,r

2l(↵+d/2)|h8O
l,r , hmiL2(O)| =  0,

and since by the remarks after (13) the wavelet norm k · kC↵,W is equivalent to k · kC↵

on such hm’s (we can assume ↵ /2 N by the choice of ✏), the hm’s are all contained in
{h 2 C↵c (O) : khkC↵  1} for  0 small enough. We conclude that the supremum in (36)
is lower bounded by

E max
m

|hW,1hmiL2(O)|.

The Gaussian process (W(hm) : m = 1, . . . , 2nj ) has covariance metric

d2(hm, h0
m) = k1(hm � h0

m)k2
L2(O)

,
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and by the Varshamov–Gilbert bound [27, Example 3.1.4] there exist {bm,· : m =
1, . . . ,Mj } ✓ {�1, 1}nj with Mj � 3nj /4 that are nj/8-separated for the Hamming dis-
tance. Then for the hm’s corresponding to these separated bm’s we have

d2(hm, hm0) = ( 0)22�2j (↵+d/2)
���
X

r

(bm,r � bm0,r )18j,r

���
2

L2(O)
. (38)

The 18j,r all have disjoint supports and thus, when normalised by k18j,rkL2 =
22jk180,0kL2 , form an orthonormal system in L2(O). Thus the last term equals, by
Parseval’s identity,

d2(hm, hm0) = ( 0)222j (2�↵�d/2)
X

r

(bm,r �bm0,r )
2 � c22j (2�↵�d/2)nj � (c0)222j (2�↵),

for m 6= m0 in the separated set. By Sudakov’s lower bound ([27, Theorem 2.4.12] with "
there chosen as " = c02j (2�↵)) we then have

E max
m

|hW,1hmi| � c002j (2�↵)
p

log Mj � c0002j (2+d/2�↵),

which for ↵ < 2 + d/2 can be made as large as desired as j ! 1, completing the proof.

Remark 12. A slightly more involved version of the above argument also shows that
Nf0 cannot be tight in (C↵c (O))⇤ in the boundary case ↵ = 2 + d/2, as this would force
the Gaussian process X indexed by the unit ball in C↵c (O) to be sample continuous for
its covariance metric (by arguing as in [27, Proposition 2.1.7]). Sudakov’s lower bound
argument can then be refined (using [27, Corollary 2.4.14]) to also cover ↵ = 2 + d/2.

We finally turn to the proof of Proposition 2: The upper bound follows from Lemma 14
with ⌘ ' "(2s+4)/(2s+4+d) when ↵ = 0—since one may take v & D̄2 in that lemma,
we can integrate tail probabilities to also bound the expected risk. The case of general ↵
then follows from (49) below. For the lower bound we apply the general Theorem 6.3.2
of [27] and arguments akin to those used in the proof of Proposition 6(B) just given. We
assume that g = 1 on @O and that B is large and fmin small enough (chosen below);
the general result requires only minor modifications. Let ḡ be a smooth function such
that ḡ � 1 on Ō and let g0 be the smooth solution to the Poisson equation 1g0 = ḡ on
O with Dirichlet boundary conditions g0 = 1 on @O (a unique such solution exists by
[25, Theorem 6.14]). Since ḡ � 1 on O and g � 1 on @O, the maximum principle for
harmonic functions [25, Theorem 2.3] implies that also g0 � 1 on Ō. Now define

u0 = g0, um = g0 + hm, m = 1, . . . ,Mj ,

where hm is as in (37) but with ↵ there replaced by s+2, and Mj as before (38). Arguing as
after (37), we see that the um are contained in a ball of Cs+2(O) of radius kg0kCs+2 +c 0,
c > 0, and for  0 small enough both um and 1um = ḡ +1hm are positive and bounded
away from zero on Ō. Setting 2j ' "�2/(2s+4+d) and since the KL-divergence in the
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statistical model (5) equals "�2 times the squared L2-distance [27, (6.16)]), given ✏ > 0
we can choose  0 small enough so that

"�2ku0 � umk2
L2  ( 0)2"�2"2(2s+4+d)/(2s+4+d)

X

rnj

1  ✏ log Mj,

verifying [27, (6.103)]. Observe next that the fm = 1
2
1um
um

are all greater than some
fmin > 0, lie in a fixed ball of Cs(O) of radius B, and solve the Schrödinger equation
1um/2�fmum = 0 subject to um = g on @O. Now the result follows since, adapting the
argument after (38) to the present choice of s, we see that the fm are H↵(O)-separated
by at least

kfm�f 0
mkH↵ � ck1(um�u0

m)kH↵�Cku�1
m �u�1

m kH↵ � c2�j (s�↵) ' "2(s�↵)/(2s+4+d),

verifying the hypotheses of [27, Theorem 6.3.2].

6.2. Proof of Theorem 1

We start with a general contraction theorem that applies to priors that are supported on a
fixed s-Hölder ball. Recall (21) for the definition of the (H 2

0 )⇤-norm. We apply the general
approach of [23] to Bayesian contraction theorems (via Theorem 28), but, following [26],
we use frequentist estimators to construct the relevant ‘test functions’.

Theorem 13. Let 5 = 5" be a Borel probability measure supported on a measurable

subset F of L2(O) that satisfies

F ✓
n

inf
x2O

f (x) � fmin, kf kCs(O)  D
o
, D > 0, fmin > 0, s > 2 + d/2, s 2 N.

Let 5(·|Y ) be the resulting posterior distribution (6) arising from observing (5) with

g 2 Cs+2(Ō), g � gmin > 0. Let P Y
f0

be the law generating Y = uf0 + "W for fixed

f0 2 F . Let ⌘ = ⌘" be a sequence satisfying

⌘" � c̄"(2s+4)/(2s+4+d)

and

5(f : kf � f0k(H 2
0 )⇤ < ⌘") � e�C(⌘"/")

2
(39)

for some constants c̄, C > 0 and all " small enough. Then there exists a finite constant M

depending only on c̄, C,D, d, s,O, kgkCs+2(O) such that as " ! 0,

5(f : kf � f0kL2 > M⌘s/(s+2)
" | Y )

P Y
f0��! 0

and

5(f : kf � f0k(H 2
0 )⇤ > M⌘" | Y )

P Y
f0��! 0.

Proof. Proposition 25 implies that for each f 2 F a unique solution uf to (1) exists, and
that {uf : f 2 F} is bounded in Hs+2(O). We apply Theorem 28 below with F = F"

and its trace Borel � -field BF of L2(O), G(f ) = uf ,H = L2(O) and ⌘" = ⌘̄"/c where
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c is the constant from Proposition 25(B), so that (39) gives

5(f 2 F : kG(f ) � G(f0)kH < ⌘̄") � 5(f 2 F : kf � f0k(H 2
0 )⇤ < ⌘") � e�C(⌘"/")

2
,

which proves (112) in Theorem 28 with C0 = Cc2. Thus if we can construct tests 9(Y )

such that

EY
f0
9(Y ) + sup

f 2F : kf �f0kL2�M⌘
s/(s+2)
"

EY
f (1 �9(Y ))  Le�(C0+4)(⌘"/")

2
, (40)

EY
f0
9(Y ) + sup

f 2F : kf �f0k(H2
0 )⇤�M⌘"

EY
f (1 �9(Y ))  Le�(C0+4)(⌘"/")

2
, (41)

for M large enough, respectively, then the result will follow from appropriate choices of
⌘⇤
" , d(·, ·) in Theorem 28. We achieve this by first constructing an estimator for uf from

which we obtain a plug-in test for f , using also (3) and the resulting identification equa-
tion (4). The estimate of uf is obtained as the non-parametric least squares (or maximum
likelihood) estimator bu obtained from maximising the log-likelihood function (cf. (110))

¯̀(u) = 1
"2 hY, uiL2(O) �

1
2"2 kuk2

L2(O)
over Ug = {kukHs+2(O)  D0, u@O = g on @O}.

(42)

Here D0 is chosen large enough so that {uf : f 2 F} ✓ Ug . By the Sobolev imbedding
Hs+2(O) ✓ C1(Ō), so by [19, Theorem 2.4.7] the set Ug is totally bounded in C(Ō).
Since {u : kukHs+2(O)  D0} is easily seen to be closed for the k · k1-topology and since
limits u of uniformly convergent sequences in Ug necessarily satisfy u = g on @O, we
deduce that Ug is also closed and hence a compact subset of C(Ō). Next, the L2-metric
entropy of the bounded subset Ug of Hs+2(O) can be shown [21, Chapter 3] to be at most

log N(Ug, � , k · kL2(O)) . (A/� )d/(s+2), 8� > 0, A = A(D0). (43)

Since s + 2 > d/2 the square root of the L2-metric entropy is � -integrable at zero and by
[27, Proposition 2.1.5 and Theorem 2.3.7] the real-valued maps u 7! hu,WiL2 and then
also ¯̀(u) define Borel random variables in the space of L2-continuous functions on Ug .
Thus, in view of [27, Exercise 7.2.3] a (measurable) maximiser bu 2 Ug of ¯̀(u) over
Ug exists almost surely. We now derive its rate of convergence to uf , initially in L2(O)-
distance, using ‘peeling’ techniques commonly used in M-estimation [54, 55]. For all
f 2 F and D0 large enough, we have

P Y
f (kbu � uf kL2 � D0⌘") = P Y

f ( ¯̀(bu) � ¯̀(uf ) � 0, kbu � uf kL2 � D0⌘")

= P Y
f

✓
� 1

2"2 kbu � uf k2
L2 + 1

"
hbu � uf ,WiL2 � 0, kbu � uf kL2 � D0⌘"

◆

= P Y
f

✓ hbu � uf ,WiL2

kbu � uf k2
L2

� 1
2"

, kbu � uf kL2 � D0⌘"

◆


RX

r=0
Pr
✓

sup
u2Ug : 2rD0⌘"ku�uf k

L22r+1D0⌘"

|hu � uf ,Wi| � 22(r+1)D2
0⌘

2
"

8"

◆
, (44)
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where R = R(D0) < 1. Now using the metric entropy bound (92) for Gaussian pro-
cesses and (43), for all � > 0 we have

E sup
u2Ug : ku�uf k

L2�
|hu � uf ,Wi| .

Z �

0
(A/� )d/(2s+4) d�  C0� 1�d/(2s+4).

For choices � = �r ⌘ 2r+1D0⌘", r � 0, using ⌘" � c̄"(2s+4)/(2s+4+d) and for D0 large
enough, we have C0� 1�d/(2s+4)  � 2/(16") and thus, by using the Borell–Sudakov–
Tsirelson inequality [27, Theorem 2.5.8], the sum in (44) can be bounded by

RX

r=0
Pr
✓

sup
u2Ug : ku�uf k

L2�r

|hu � uf ,Wi| � E sup
u2Ug : ku�uf k

L2�r

|hu � uf ,Wi| � � 2
r

16"

◆

 2
RX

r=0
exp

⇢
�cD2

022r⌘2
"

"2

�
 L exp

⇢
�c0D2

0⌘
2
"

"2

�

where c0 = c0(R) and L > 0 are fixed constants. Since both bu, uf are contained in a ball
of Hs+2(O) of radius D0, what precedes and the interpolation inequality (49) imply

P Y
f (kbu � uf kH↵ � c00D0⌘

(s+2�↵)/(s+2)
" )  L exp{�c0D2

0⌘
2
"/"

2}, 0  ↵ < s + 2,

(45)

for a fixed constant c00 > 0, which by the Sobolev imbedding for d/2 + 2 < ↵ < s + 2
also implies a convergence rate in k · kC2(O)-norm:

P Y
f (kbu � uf kC2 � c000D0⌘

⇣
" )  L exp{�c0D2

0⌘
2
"/"

2}, ⇣, c000 > 0. (46)

Now recall (4) and define

bf = 1bu
2bu

1A" , A" =
n

inf
x2O

bu(x) � c0, k1buk1  D2

o
, c0 > 0, D2 < 1, (47)

which defines a random variable in C(Ō).

Lemma 14. For every v > 0 there exist c0 > 0 small enough and D2, D3 large enough

such that for all D̄ � D3 and ⌘" as in the theorem we have, for all f 2 F ,

P Y
f

�
{kbf � f kL2 > D̄⌘s/(s+2)

" } [ {kbf � f k(H 2
0 )⇤ > D̄⌘"}

�
 e�v(⌘"/")

2
.

Proof. If B is the event whose probability we want to bound, we can write

P Y
f (B) = P Y

f (A" \ B) + P Y
f (Ac

" \ B)

and the second probability is no greater than P Y
f (Ac

"), which is less than e�v(⌘/")2
/3 for c0

small and D2 large enough, since uf 2 C2(O) is bounded away from zero (see (3)), and
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using (46) for sufficiently large D0. It remains to bound P Y
f (A" \ B) by 2e�v(⌘/")2

/3.
For bf as in (47) we see that (3), (4) imply on A" that

kbf � f kL2 . kbu � uf kH 2 ,

kbf � f k(H 2
0 )⇤ . k[bu�1 � u�1

f ]1buf kL2 + k1(bu � uf )u�1
f k(H 2

0 )⇤

. kbu � uf kL2 + k1(bu � uf )k(H 2
0 )⇤ .

In view of density of C2(O) in H 2(O), the last term can be further bounded by

k1(bu � uf )k(H 2
0 )⇤ = sup

h2C0\C2: khk
H21

����

Z

O

h1(bu � uf )

����

= sup
h2C0\C2: khk

H21

����

Z

O

1h(bu � uf )

����

 sup
khk

H21
k1hkL2kbu � uf kL2 . kbu � uf kL2 ,

where we use Green’s identity [25, p. 17] twice, the fact that both h and bu � uf have
vanishing boundary traces 0 and g � g = 0, respectively, and the Cauchy–Schwarz in-
equality.

Summarising we conclude from (45) that for every v we can find D̄ and D0 large
enough so that

P Y
f (kbf � f kL2 > D̄⌘s/(s+2)

" )  P Y
f (kbuf � uf kH 2 > dD̄⌘s/(s+2)

" )  e�v(⌘"/")
2
/3,

P Y
f (kbf � f k(H 2

0 )⇤ > D̄⌘")  P Y
f (kbuf � uf kL2 > d 0D̄⌘")  e�v(⌘"/")

2
/3,

which completes the proof of the lemma by the union bound. ut
The usual plug-in test [27, Proposition 6.2.2]) defined by

9(Y ) = 1{kbf � f0kL2 � D̄⌘s/(s+2)
" }

for D̄ a large enough constant, and likewise with (H 2
0 )⇤, ⌘" replacing L2(O), ⌘

s/(s+2)
" ,

gives
EY

f0
9(Y )  P Y

f0
(kbf � f0kL2 > D̄⌘s/(s+2)

" )  e�(C0+4)(⌘"/")
2

and also, for M large enough and f in the alternative (40),

EY
f (1 �9(Y ))

= P Y
f (kbf � f0kL2  D̄⌘s/(s+2)

" )  P Y
f

�
kf � f0kL2 � D̄⌘s/(s+2)

"  kbf � f kL2
�

 P Y
f

�
kbf � f kL2 � (M � D̄)⌘s/(s+2)

"

�
 e�(C0+4)(⌘"/")

2
,

and likewise for the (H 2
0 )⇤-errors, completing the proof of the theorem. ut

We finally turn to the verification of (39) for priors featuring in Theorem 1.
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Proposition 15. Under the conditions of Theorem 1 and given C > 0, we can choose L̄

large enough such that the prior (17) with J such that 2J ' "�2/(2s+4+d)
satisfies (39)

for

⌘" = L̄
p

log(1/") · "(2s+4)/(2s+4+d).

As a consequence,

⌘s/(s+2)
" ' "

2s
2s+4+d log� (1/"), � = s/(2s + 4),

is the posterior contraction rate about f0 in L2
, and in (H 2

0 )⇤ we obtain the contraction

rate ⌘", both up to multiplicative constants.

Proof. The prior (17) defines a Borel probability measure on VJ and thus on the class
F from Theorem 13. As a consequence of (18) the functions ','0 and then also
e'0

P1
k=2(' � '0)

k/k! are uniformly bounded in C2(O) ✓ C
2(O). Thus, using also

(11) we have

kf � f0k(H 2
0 )⇤  sup

khk
H2(O)

1

����

Z

O

h(e' � e'0)

����  c0k' � '0k(H 2)⇤ .

We can decompose k'�'0k(H 2)⇤  k5VJ ('�'0)k(H 2)⇤ +k5VJ ('0)�'0k(H 2)⇤ . For the
second term we notice that by the compact support of '0 and (15), for l > J large enough
necessarily

R
O
'08

bc
l,r = 0 for the boundary corrected wavelets, and 5VJ ('0) � '0 then

consists of a sum of interior Daubechies wavelets8O
l,r = 8l,r supported compactly in O,

in particular there exists K ✓ O compact such that 5VJ ('0) � '0 is supported within K

for J large enough. Multiplying h 2 H 2(O) by a function in C1
c (O) that equals 1 on K

we obtain eh 2 H 2(Rd) \ Cc(O) such that eh = h on K and kehkH 2(Rd )  ckhkH 2(O).
Then using Parseval’s identity and the Cauchy–Schwarz inequality, we can estimate the
dual norm by

k5VJ ('0) � '0k(H 2)⇤ = sup
khk

H2(O)
1

����

Z

O

h(5VJ ('0) � '0)

����

= sup
khk

H2(O)
1

����

Z

Rd

eh(5VJ ('0) � '0)

����

= sup
khk

H2(O)
1

���
X

l>J,r

2�2lh'0,8l,r iL2(Rd )2
2lheh,8l,r iL2(Rd )

���

 c0 sup
khk

H2(O)
1

kehkH 2(Rd )

s X

l>J,r

2�4l |h8l,r ,'0i|2

 c002�J (s+2)J�2, (48)

where we use (12) and (19). Now introducing ‘true’ coefficients

'0,l,r = 2�l(s+d/2)l̄�2u0,l,r , |u0,l,r |  B,
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and if U is a uniform U(�1, 1) random variable and ul,r
i.i.d.⇠ U(�B, B), then usingP

lJ Nl  c̄02Jd and what precedes we can lower bound, for L̄ large enough,

5(f : kf �f0k(H 2
0 )⇤ < ⌘") � 5(' : k'�'0k(H 2)⇤ < ⌘"/c0)

� 5(' : k5VJ ('�'0)k(H 2)⇤ < ⌘"/c0 �c00J�22�J (s+2))

� 5(' : k5VJ ('�'0)k2
L2 < c1⌘

2
")

= Pr
⇣X

lJ,r

2�l(2s+d)l̄�2|ul,r �u0,l,r |2 < c1⌘
2
"

⌘

� Pr
⇣

max
lJ,r

|ul,r �u0,l,r | < c3⌘"

⌘

=
Y

lJ

NlY

r=1
Pr(|U �u0,l,r /B| < c4⌘")

� Pr(c4⌘"/2)c̄02Jd � e�c5 log(c4/⌘")"
�2d/(2s+4+d) � e�C(⌘"/")

2
,

completing the proof. ut

Remark 16. If k ·k is either the L2- or (H 2
0 )⇤-norm and r" the corresponding contraction

rate, then the proof of Theorem 1 via Theorem 28 actually implies that as " ! 0, for
some c > 0,

5(kf � f0k > r" | Y ) = OP Y
f0

(e�c(⌘"/")
2
).

6.3. Proof of Theorem 8

The proof is organised in a sequence of steps, and the main strategy is to prove the
Bernstein–von Mises theorem via simultaneously controlling the Laplace transform of
a collection of suitably regular linear functionals, an approach inspired by the papers
of Ismaël Castillo and co-authors [7–11]. Of course a main challenge is to make this
proof work outside of the basic LAN models considered in the references just mentioned,
namely in the PDE setting considered here. However, even disregarding the different LAN
structure, our proof needs to confront several new challenges when compared to the above
papers: our prior has a boundary and hence using the ‘perturbation of the likelihood func-
tion’ approach employed in [48], [11], [10] needs some adjustments near the boundary.
Moreover, our prior is supported in an s-regular Hölder wavelet ellipsoid that is asymp-
totically smaller than the ellipsoids considered in [10], which puts stronger constraints
on the admissible directions one can choose when constructing perturbations (see also
Remark 9).

Step I: Localisation of the posterior near f0. We see from Proposition 15 that as
" ! 0,

5
�
kf � f0kL2(O) > M"2s/(2s+4+d) log� (1/")

��Y
� P Y

f0��! 0
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and

5
�
kf � f0k(H 2

0 )⇤ > M"(2s+4)/(2s+4+d)
p

log(1/")
��Y

� P Y
f0��! 0.

From (18) we know kf kCs(O)  C0 for any f = e' and so both prior and posterior
are supported in a fixed ball of Cs(O) ✓ Hs(O). Since also f0 2 Hs(O), we have
kf � f0kHs  D for some fixed constant D, and recalling the standard interpolation
inequality for Sobolev norms (see [37, Remark 1.9.1, p. 44])

kf kH↵(O) . kf k↵/sHs(O)kf k(s�↵)/s

L2(O)
, 0 < ↵ < s, (49)

we also find, for all M large enough and �̄ = �̄ (� , s,↵) > 0, that, as " ! 0,

5
�
kf � f0kH↵(O) > M"2(s�↵)/(2s+4+d) log�̄ (1/")

��Y
� P Y

f0��! 0, 0 < ↵ < s. (50)

Since s > 2 + d/2, we can apply the Sobolev imbedding theorem to deduce

5
�
kf � f0kC� (O) > M"(2s�2��d)/(2s+4+d) log�̄ (1/")

��Y
� P Y

f0��! 0, 0 < � < s � d/2,

(51)
which also implies a contraction rate in the uniform norm k · k1.

Since all f 2 supp5 and f0 are bounded and bounded away from zero on O, the
k · kL2 and k · k1 contraction rates extend to ' = log f around '0 = log f0, by simply
using the estimate k'�'0k . kf �f0k for these norms. The (H 2

0 )⇤-rates carry over too:
To see this, notice that on the events in (51) with � = 2 < s � d/2 we have kf � f0kC2

! 0 and then also k(f � f0)/f0kC2 ! 0, so that using the Taylor expansion of the
logarithm we also have

k' � '0k(H 2
0 )⇤ = sup

g2C0(O): kgk
H21

����

Z

O

g log(f/f0)

����

= sup
g2C0(O): kgk

H21

����

Z

O

g(f � f0)f
�1
0

X

k

(�1)k

k

✓
f � f0

f0

◆k�1����

. kf � f0k(H 2
0 )⇤ (52)

since for k(f � f0)/f0kC2 < 1/2 the series w = f �1
0

P
k(�1)kk�1((f � f0)/f0)

k�1

converges absolutely in C2(O) and hence, after dividing and multiplying by kgwkH 2 
ckgkH 2kwkC2 via (11), the result follows on noting also that g 2 C0(O) implies
gw 2 C0(O).

For a fixed constant M to be chosen, let us now define the event

DM
" = {f = e' 2 supp5 : k' � '0k(i)  Mr(i, "), i = 1, 2, 3}, (53)

where, for some ⌘ = ⌘(s, � ) > 0 and 0 < ⇠/2 < s � 2 � d/2 small enough,

k · k(1) = k · kL2 , r(1, ") = "2s/(2s+4+d) log⌘(1/"),

k · k(2) = k · k(H 2
0 )⇤ , r(2, ") = "(2s+4)/(2s+4+d) log⌘(1/"),

k · k(3) = k · k1, r(3, ") = "(2s�d�⇠)/(2s+4+d) log⌘(1/").
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By increasing the constant M to M̄ we also obtain

DM
" ✓ {f 2 supp5 : kf � f0k(i)  M̄r(i, "), i = 1, 2, 3}, (54)

which is obvious for i = 1, 3 and follows also for i = 2 by just applying the argument
in (52) with the Taylor series expansion of the exponential (instead of the logarithm)
function, using the fact that k(f � f0)/f0kC2 is bounded by a fixed constant.

By Theorem 1 and what precedes we have

5((DM
" )c|Y ) ! 0 in P Y

f0
probability,

for all M large enough. In particular if W is the constant in inequality (61) below, then
there exists M0 such that the last limit holds for all M � M0/(8W), and given such
an M0 we fix any value M � M0 in what follows and just write D" for DM

" when no
confusion may arise. Then, if5D" (·|Y ) is the posterior distribution arising from the prior
5 restricted to the set D", that is, from5(·\D")/5(D"), standard arguments imply that

sup
B

|5(B|Y ) �5D" (B|Y )|  25(Dc
" |Y )

P Y
f0��! 0, (55)

where the supremum extends over all measurable sets B in supp5.

Step II: Construction of the perturbation f⌧ . Fix � > 0. For arbitrary  2 C4
K(O)

such that k kC2+d/2+� (O)  1, we now construct a suitable perturbation f⌧ of f 2
supp5—an asymptotic expansion of the log-likelihood ratio `(f ) � `(f⌧ ) obtained in
the next step will be a key element of our proof. For such  define

e = �e9/f0 (56)

with e9 as in (25). From the representation (26), Proposition 25(A), the definition of the
C↵-norms and the hypotheses on f0, g which imply that u�1

f0
2 Cs+2(O), f �1

0 2 Cs(O),

we deduce that e 2 CK(O), and if �2 + d/2 � 0 then also ke kC�2+d/2+� (O) 
ck kC2+d/2+� (O) for some finite constant c > 0. Thus from Proposition 26 and (16),

ke kC�2+d/2+� ,W (O)  Ck kC2+d/2+� (O), so |he ,8O
l,r iL2 |  C2�l(d�2+� ). (57)

The last estimate is true also in the case �2 + d/2 < 0, as follows from (26) and the
inequalities (105), (106) in Proposition 27 below.

For f 2 supp5 the perturbation will be

f⌧ = f exp{⌧ } = e'+⌧ (58)

(with a slight abuse of notation when ⌧ = 0) where ⌧ is defined as follows: Let J be the
cut-off parameter of the prior, and for L 2 N, L  J, define WL ✓ L2(O) to be the linear
span of those wavelet basis functions (8O

l,r : l  L) for which either he ,8O
l,r i 6= 0 or
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h8O
l,r ,'0iL2 6= 0; in other words, WL is the subspace of VL where 5VL('0) and 5VL(e )

are supported. For 5WL the corresponding L2-projection operator set

⌧ ⌘ ⌧ (', , t, L) = 5WL [t"e + �"('0 � ')] = t"5WL [e ] + �"5WL ['0 � '], t 2 R,

(59)
with, for �1 > 0 small enough chosen below (depending on � ),

�" = "
2d+�1

2s+4+d . (60)

[The second summand in the perturbation (59) is different from the perturbations used in
previous proofs of this kind [10, 11, 48]. It will be useful to deal with the boundary of the
support of the prior in Step IV below, and was used in a related context of non-parametric
maximum likelihood estimation over parameter spaces with boundaries in [41].]

The projection 5WL is a bounded operator for all the norms introduced after (53),
that is,

k5WL(' � '0)k(i)  Wk' � '0k(i), i = 1, 2, 3, 8' 2 VJ , (61)

for some fixed finite constant W � 1. This is clear for i = 1 and also follows easily
for i = 2, 3, by proceeding as in the corresponding proofs for wavelet bases of L2(Rd)

[18, 27, 39] and making use of (15) and the compact support of '0, e . [In case i = 2, one
initially proves that 5WL defines a bounded operator on H 2(O).]

Using Parseval’s identity and (57) we then have

k5WL
e kL2(O)  c

sX

lJ

X

r

he ,8O
l,r i2

L2  C

sX

l<J

2l(4�d�2� ) . 2J (2�d/2) = o("�1)

(62)

for all � > 0 and likewise, using (15) and (57), for every i, |i| = �, 0  � < s+d, � > 0,

kDi5WL
e k1 

X

lJ

2l(�+d/2) sup
x

X

r

|he ,8O
l,r iL2 | |(Di8O

0,r )(2
lx)|

 c
X

lJ

2l(2+��d/2�� ) . "(�4�2�+d)/(2s+4+d) = o("�1), (63)

in particular "k5WL
e kC� (O) = o(1). Now since ','0 are all bounded functions, we

conclude that k⌧k1 ! 0 as " ! 0, and thus also

f⌧ � c0 > 0, |f⌧ � f | = |f | |1 � e⌧ |  c00|⌧ | ��!
"!0

0, c0, c00 > 0. (64)

Likewise we have

kf⌧ � f k(H 2
0 )⇤ = sup

g2C0(O): kgk
H21

����

Z

O

gf (1 � e⌧ )

����

= sup
g2C0(O): kgk

H21

����

Z

O

⌧
⇣
gf

1X

k=1
⌧ k�1/k!

⌘���� . k⌧k(H 2
0 )⇤ (65)
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since the above and the assumptions on f, f0,','0 imply that f
P1

k=1 ⌧
k�1/k! is

bounded in C2(O) and hence by (11) the functions

gf
1X

k=1

⌧ k�1

k! 2 C0(O), kgkH 2  1,

are bounded in H 2(O).

Step III: Expanding the likelihood in the Laplace transform

Theorem 17. For  2 C4
K(O) define e9 as in (25). Let t > 0 and f⌧ be as in (58), (59)

for any �1 > 0. Suppose L = L" " 1 as " ! 0 is a sequence of integers such that either

(i) L = J , or

(ii) L  J but k5WL(e9) � e9k(H 2
0 )⇤  c"�̄ /(2s+4+d)

for some �̄ > d and some constant

c > 0.

If 5D" (·|Y ) is the posterior distribution arising from the prior 5 restricted to the set D"

from (53) with M chosen as before (55), and if DGf0 is the score operator from Lemma 4,

then for all t 2 R,

E5D" ⇥
e

t
" hf �f0, i

L2
��Y

⇤
= e

�thDGf0 [e9],Wi
L2+ t2

2 kDGf0 [e9]k2
L2 ·

R
D"

e`(f⌧ ) d5(f )
R
D"

e`(f ) d5(f )
· eR"

(66)

where R" = oP Y
f0

(1) uniformly in |t |  T for any T and in  2 C(b) ⌘ { 2 C4
K(O) :

k kC2+d/2+� (O)  b} for any b, � > 0, and every fixed compact subset K ✓ O.

Proof. From (6) and recalling `(f ) = log pf (Y ) we have, for all t 2 R,

E5D" ⇥
e

t
" hf �f0, i

L2
��Y

⇤
=

R
D"

e(t/")hf �f0, i
L2+`(f )�`(f⌧ )+`(f⌧ ) d5(f )

R
D"

e`(f ) d5(f )
. (67)

The main technical work now is to obtain an asymptotic expansion of `(f ) � `(f⌧ ) that
is uniform in f, . To do this, we need to start with two linearisation steps: the first takes
care of the non-linearity of the forward operator G, and the second of the exponential
nature of our perturbation f⌧ , ultimately leading to (73) below.

A: Linearisation of the G operator. Using Lemma 3 and Proposition 4 to expand both
G(f ) = uf and G(f⌧ ) = uf⌧ about G(f0) = uf0—from (63) and the definition of the
prior we know that f, f⌧ , f0 are all bounded in Cs(Ō) and bounded away from zero—we
obtain the approximation, for f 2 D",

`(f ) � `(f⌧ ) = � 1
2"2 (kuf � uf0k2

L2 � kuf⌧ � uf0k2
L2) + 1

"
huf � uf⌧ ,WiL2

= � 1
2"2 (kDGf0 [f � f0]k2

L2 � kDGf0 [f⌧ � f0]k2
L2) + 1

"
hDGf0 [f � f⌧ ],WiL2

+ R(f, ) + N(f, ) (68)
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where for some c > 0, using also the Cauchy–Schwarz inequality and Proposition 25(B),

|R(f, )|  c

"2 kf � f0k2
(d)kf � f0k2

(H 2
0 )⇤ + c

"2 kf⌧ � f k2
(d)kf⌧ � f k2

(H 2
0 )⇤

and where the stochastic remainder term is given by

N(f ) = "�1hw(f, ),WiL2

with w(f, ) described below.
For the first term in the bound for R(f, ) let us first assume d < 4; then on D"

(see (54)) the inequality

cM̄4

"2 r2(2, ")r2(1, ") . "�(4s+8+2d)/(2s+4+d)"(8s+8)/(2s+4+d) log4⌘(1/") = o(1)

holds since s > d/2. Also from (64), (65) we know

kf⌧ � f k2
L2kf⌧ � f k2

(H 2
0 )⇤ . k⌧k2

L2k⌧k2
(H 2

0 )⇤ ,

which is o("2) uniformly in f 2 D" and  2 C(b) since

�2
"k' � '0kL2k' � '0k(H 2

0 )⇤ = o("), (69)

since by (62),

k5WL [e ]kL2k5WL [e ]k(H 2
0 )⇤ . k5WL [e ]k2

L2 = o("�2), (70)

and bounding the ‘cross term’ similarly. For d � 4 the k · kL2 -norms have to be replaced
by k · k1-norms in the above estimates, which results in slightly worse convergence rates
on D" and the requirement s > d in place of s > d/2.

For the stochastic term N(f, ) we notice that w(f, ) = wf, � w0
f, in

G(f ) � G(f⌧ ) = DGf [f � f⌧ ] � w0
f, 

= DGf0 [f � f⌧ ] + (DGf � DGf0)(f � f⌧ ) � w0
f, 

⌘ DGf0 [f � f⌧ ] � w0
f, + wf, 

where w0
f, solves (just as in (24)) the inhomogeneous Schrödinger equation

(1/2)w � f⌧w = �(f � f⌧ )Vf [uf (f⌧ � f )] on O, w = 0 on @O,

and where Vf denotes the inverse Schrödinger operator from Section 7.2. Recalling (53)
and (62), we see that both {' : e' 2 D"} and {"5WL [e ] :  2 C(b)} are bounded subsets
of the linear space (VJ , k · kL2) which is isomorphic to a c02Jd -dimensional Euclidean
space (by Parseval’s identity). Any such set can be covered by (A/⌘)c02Jd

balls of L2-
diameter at most ⌘ for all 0 < ⌘ < A and some A < 1 [27, Proposition 4.3.34], and
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moreover, using Lemma 23 and Proposition 25 one shows

kwf, � wf 0, kL2

= kVf0 [uf0(f � f⌧ )] �Vf [uf (f � f⌧ )] � (Vf0 [uf0(f
0 � f 0

⌧ )] �Vf 0 [uf 0(f 0 � f 0
⌧ )])kL2

. kf � f 0kL2 . k'�'0kL2

and likewise kwf 0, � wf 0, 0 kL2 . k5WL [e ] �5WL [e 0]kL2 . Thus the set W = {wf, :
f 2 D",  2 C(b)} can be covered in L2-metric by at most (A0/⌘)c

0
02Jd

balls of ra-
dius ⌘, and if � � supw2W kwkL2 then (92) below applies to the Gaussian process
{hW, wiL2(O) : w 2 W} which is sub-Gaussian for the metric kwf, � wf 0, 0 kL2 . We
conclude that

E sup
f 2D", 2C(b)

|hwf, ,WiL2(O)|  C

✓
� +

Z �

0
2Jd/2

p
2 log(A0/⌘) d⌘

◆
. (71)

We see from Proposition 25 and Lemma 23 that

kwf, kL2 = kVf0 [uf0(f � f⌧ )] � Vf [uf (f � f⌧ )]kL2 . kf � f0kL2k⌧k1,

a bound that will be seen to converge to zero at a polynomial rate in ", uniformly in
w 2 W . By basic calculus [27, p. 190] we can thus bound (71) up to constants by
supf 2D", 2C(b) 2Jd/2kf � f0kL2k⌧k1

p
log(1/"). Next we turn to suprema of the Gaus-

sian process (hW, w0
f, iL2 : f 2 D",  2 C(b)}. Using again the results from Section 7.2

we have

kw0
f, �w0

f 0, kL2 = kVf⌧ [(f �f⌧ )Vf [uf (f⌧�f )]]�Vf 0
⌧
[(f 0�f 0

⌧ )Vf 0 [uf 0(f 0
⌧�f 0)]]kL2

. kf �f 0kL2 . k'�'0kL2 ,

and kw0
f 0, � w0

f 0, 0 kL2 . k5WL(e � e 0)kL2 as well as

kw0
f kL2 = kVf⌧ [(f � f⌧ )Vf [(f⌧ � f )uf ]]kL2 . k⌧k1kf⌧ � f kL2 ⌘ �,

so that repeating the arguments above we obtain

E sup
f 2D", 2C(b)

|N(f, )|

. sup
f 2D", 2C(b)

"�12Jd/2(kf � f0kL2 + kf⌧ � f kL2)k⌧k1
p

log(1/").

Using the definition of ⌧ and s > 2 + d/2 + ⇠/2, we get

"�12Jd/2plog(1/") �"k' � '0k1kf � f0kL2

. "(�2s�4�d�d+2d+2s�d�⇠+2s+�1)/(2s+4+d) log2⌘+1/2(1/") = o(1),
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the same bound holds with kf � f0kL2 replaced by �"k' � '0kL2 . Similarly using (63)
with � = 0 in

2Jd/2plog(1/") k5WL
e k1kf �f0kL2 . "(�d�4+d+2s)/(2s+4+d) log⌘+1/2(1/") = o(1),

and in
"2Jd/2plog(1/") k5WL

e k1k5WL
e kL2 = o(1),

we obtain
sup

f 2D", 2C(b)

|N(f, )| = oP Y
f0

(1),

since the preceding bounds are all uniform in f, .
In view of the above estimates for R(f, ), N(f, ) the LAN expansion (68) now

simplifies to

`(f ) � `(f⌧ ) = 1
"
hDGf0 [f � f⌧ ],WiL2 + 1

2"2 kDGf0 [f � f⌧ ]k2
L2

+ 1
"2 hDGf0 [f � f0], DGf0(f � f⌧ )iL2 + Zn

⌘ I + II + III + Z" (72)

where Z" = oP Y
f0

(1) uniformly in f 2 D" and  2 C(b), for any � > 0.

B: Linearisation of the exponential perturbation. We now linearise f⌧ � f = f (1 � e⌧ )

in ⌧ . Since k⌧k1 ! 0 as " ! 0, we assume k⌧k1 < 1/2 in what follows. We have

DGf0 [f � f⌧ ] � DGf0 [f0⌧ ] = DGf0 [f � f⌧ � f ⌧ � (f0 � f )⌧ ].

Thus from (23) and the triangle inequality we deduce

kDGf0 [f � f⌧ ] � DGf0 [f0⌧ ]k2
L2  c2kf � f⌧ � f ⌧k2

(H 2
0 )⇤ + c2k(f0 � f )⌧k2

(H 2
0 )⇤

. kf k2
1k⌧ 2k2

L2 + k(f0 � f )⌧k2
L2

. k⌧k2
1(k⌧k2

L2 + kf � f0k2
L2),

which we shall use in the following estimates: First, for term II in (72) we have
����II � 1

2"2 kDGf0 [f0⌧ ]k2
L2

����  c0

"2 k⌧k2
1(k⌧k2

L2 + kf � f0k2
L2) = o(1)

using the definition of ⌧ in (59), (62), (63) and s > 2 in the bounds

k5WL
e k2

1kf � f0k2
L2 . "(�8+2d+4s)/(2s+4+d) log2⌘(1/") = o(1),

k5WL
e k2

1"
2k5WL

e k2
L2 . "2"(�16+4d)/(2s+4+d) = o(1),

"�2�"k5WL(' � '0)k2
1kf � f0k2

L2 . "�2"(4d+4s�2d+4s�2⇠)/(2s+4+d) log4⌘(1/")

= o(1),
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and noting that the term involving �"(' � '0) in place of f � f0 is of even smaller order
of magnitude on D". Similarly
����III�

1
"2 hDGf0 [f �f0], DGf0(f0⌧ )iL2

���� . "�2kf �f0k(H 2
0 )⇤k⌧k1(k⌧kL2 +kf �f0kL2)

. "�2kf � f0k(H 2
0 )⇤(�"k' � '0k1 + "k5WL

e k1)

⇥ (kf � f0kL2 + �"k' � '0kL2 + "k5WL
e kL2)

is o(1) on D" using s > 2 and (63) in

"�1kf � f0k(H 2
0 )⇤k5WL

e k1kf � f0kL2 . "(�2s�4�d+4s+4+d�4)/(2s+4+d) log2⌘(1/")

= o(1),

kf � f0k(H 2
0 )⇤k5WL

e k1k5WL
e kL2 . "(2s+4�8+2d)/(2s+4+d) log⌘(1/") = o(1),

and s > 2 + d/2 + ⇠/2 in

"�2�"kf � f0k(H 2
0 )⇤k' � '0k1kf � f0kL2

. "(�4s�8�2d+2d+2s+4+2s�d�⇠+2s)/(2s+4+d) log3⌘(1/")

= "(2s�4�d�⇠)/(2s+4+d) log3⌘(1/") = o(1),

that �"k' � '0kL2 is of smaller order of magnitude than kf � f0kL2 , and that a similar
bound holds if in the last display kf � f0kL2 is replaced by k5WL

e kL2 .
Finally, for the stochastic term I we have

����I�1
"
hDGf0 [f0⌧ ],WiL2

���� . "�1|hDGf0 [f �f⌧�f ⌧ ],Wi|+"�1|hDGf0 [(f0�f )⌧ ],Wi|

and we apply arguments as above (71) to the Gaussian processes {hW, wf, iL2 :
f = e' 2 D",  2 C(b)}, now with wf, equal to either DGf0 [f � f⌧ � f ⌧ ] or
DGf0 [(f0 � f )⌧ ]: In both cases by L2-continuity of DGf0 (see (23)) and the properties
of f⌧ , ⌧ we can bound

kwf, � wf 0, 0 kL2 . k' � '0kL2 + k5WL(e � e 0)kL2 ,

so that using (92) as after (71) gives, for some ⌘0 > 0,

"�1E sup
f 2D", 2C(b)

|hDGf0 [(f0 � f )⌧ ],Wi|

. "�12Jd/2 sup
f 2D", 2C(b)

kDGf0 [(f0 � f )⌧ ]kL2
p

log(1/")

. "�12Jd/2 sup
f 2D", 2C(b)

(�"k' � '0k1 + "k5WL
e k1)kf � f0kL2

p
log(1/")

. log⌘
0
(1/")

�
"(�2s�4�2d+2d+2s�d�⇠+2s)/(2s+4+d) + "(�d�4+d+2s)/(2s+4+d)

�
= o(1)
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since s > 2 + d/2 + ⇠/2, and likewise

"�1E sup
f 2D", 2C(b)

|hDGf0 [f � f⌧ � f ⌧ ],Wi|

. "�12Jd/2 sup
f 2D", 2C(b)

kDGf0 [f � f⌧ � f ⌧ ]kL2
p

log(1/")

 "�12Jd/2 sup
f 2D", 2C(b)

k⌧k1k⌧kL2
p

log(1/")

 "�1plog(1/") 2Jd/2

sup
f 2D", 2C(b)

(�"k' � '0k1 + "k5WL
e k1)(�"k' � '0kL2 + "k5WL

e kL2)

is o(1). So overall (72) (and then (68)) becomes

`(f ) � `(f⌧ ) = 1
"
hDGf0 [f0⌧ ],WiL2 + 1

2"2 kDGf0 [f0⌧ ]k2
L2

+ 1
"2 hDGf0 [f � f0], DGf0(f0⌧ )iL2 + Z̄" (73)

where Z̄" = oP Y
f0

(1) uniformly in f 2 D" and  2 C(b), for any � > 0.

C: Completion of the expansion (critical terms). Now recalling (59) the right hand side
of (73) can further be rewritten as

thDGf0 [f05WL
e ],WiL2 + t2

2
kDGf0 [f05WL

e ]k2
L2

+ t

"
hDGf0 [f � f0], DGf0(f05WL

e )iL2 + Z̄" + Z̄0
" (74)

where Z̄0
" = oP Y

f0
(1) uniformly in f 2 D" and  2 C(b), since

|Z̄0
"|  �"

"
|hDGf0 [f05WL(' � '0)],WiL2 | + �2

"

2"2 kDGf0 [f05WL(' � '0)]k2
L2

+ �"

"2 |hDGf0 [f � f0], DGf0(f05WL(' � '0))iL2 |
= A + B + C.

For A we need to bound the supremum of the Gaussian process {hW, q'iL2 : e' 2 D"}
where q' = DGf0 [f05WL(' � '0)]: The L2-continuity of DGf0 from (23) implies
kDGf0 [f05WL(' � '0)]kL2 . kf0k1k' � '0kL2 and thus arguing as after (71) we
obtain

E sup
': e'2D"

|hDGf0 [f05WL(' � '0),WiL2 |

. sup
': e'2D"

kDGf0 [f05WL(' � '0)]kL22Jd/2plog(1/"),
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which combined with previous bounds and Proposition 4 gives

A = OP Y
f0

�
"�1�"k' � '0k(H 2

0 )⇤2Jd/2plog(1/")
�

= OP Y
f0

�
"(�2s�4�d+2d+�1+2s+4�d)/(2s+4+d) log⌘+1/2(1/")

�
= oP (1)

uniformly in f 2 D" for every �1 > 0. Likewise C = oP (1) since for every �1 > 0,

OP

�
�""

�2kf � f0k(H 2
0 )⇤k' � '0k(H 2

0 )⇤
�

= OP

�
"(2d+�1�4s�8�2d+4s+8)/(2s+4+d) log2⌘+1/2(1/")

�
,

and B = oP (1) follows too as B is stochastically smaller than C thanks to the extra �"
factor.

The last step is to let L ! 1 in the three main terms in (74). We recall from Step
II that e 2 CK(O). For l large enough the boundary corrected wavelets do not intersect
the support K of e and the dual norm of (H 2)⇤ is thus estimated by the dual norm of
(H 2(R))⇤, just as in (48); we thus have, under assumption (i) of Theorem 17 with L = J ,
and by (11), (57),

kDGf0 [f0(5WJ
e � e )]k2

L2 . kf0k2
C2k5WJ

e � e k2
(H 2

0 )⇤

=
X

l>J

2�4l
X

r

he ,8l,r i2
L2(Rd )


X

l>J

2�l(d+2� )  2�J (d+2� ) = o(1). (75)

By (25) we see that {DGf0 [f0e ] = �Vf0 [Sf0 [Sf0 [ /uf0 ]]] = �Sf0 [ /uf0 ] :  2 C(b)}
is bounded in C

d/2+�
c (O) and has covering numbers bounded by Proposition 27(C).

Moreover by L2-continuity of DGf0 and arguing as before (71), we find that the cov-
ering numbers of {DGf0 [f05WJ

e ] :  2 C(b)} are bounded by those of a ball in a
c02Jd -dimensional space. The class of differences of such functions then has covering
numbers bounded by the product of the covering numbers of each class, and using (91)
and also (75) to bound � we have, for any � > 0,

E sup
 2C(b)

|hDGf0 [f0(5WJ
e � e )],WiL2 |

. 2Jd/2
Z �

0

p
log(A/⌘) d⌘ +

Z �

0
(A0/� )(d/2)/(�+d/2) d�

. 2Jd/22�J (d/2+� )
p

log(1/") + o(� ) = o(1).

Finally, using again the previous estimate for k5WJ
e � e k2

(H 2
0 )⇤

we obtain, for every
� > 0,

t

"
|hDGf0 [f � f0], DGf0(f0(5WJ

e � e )iL2 |

. "�1kf0kC2kf � f0k(H 2
0 )⇤k5WJ (e � e )k(H 2

0 )⇤

= O
�
"�1"(2s+4+d+2� )/(2s+4+d) log⌘("�1)

�
= o(1),
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finishing the proof under assumption (i). Under assumption (ii) the proof of the last step
proceeds analogously, with the previous estimates for k5WJ

e � e k2
(H 2

0 )⇤
replaced by the

hypothesis featuring in Theorem 17(ii).
To conclude, since f0e = �e9, the LAN expansion (74) becomes

`(f ) � `(f⌧ ) = �thDGf0 [e9],WiL2

+ t2

2
kDGf0 [e9]k2

L2 � t

"
hDGf0 [f � f0], DGf0 [e9]iL2 + Z00

" (76)

for some Z00
" = oP Y

f0
(1) uniformly in f 2 D" and  2 C(b). Now using (27) we have

hDGf0 [f � f0], DGf0 [e9]iL2 = hf � f0, iL2 , (77)

and we can insert (76) into (67) to obtain

E5D" ⇥
e

t
" hf �f0, i

L2
��Y

⇤
= e

�thDGf0 [e9],Wi
L2+t2kDGf0 [e9]k2

L2

·
R
D"

e`(f⌧ ) d5(f )
R
D"

e`(f ) d5(f )
· eR" , (78)

completing the proof. ut
Step IV: Change of variables. We now analyse the ratio of high-dimensional integrals
appearing on the r.h.s. of (78).

Proposition 18. For every � > 0 and �1 (appearing in the definition of �" in (60))
satisfying 0 < �1 < 2� we have, for the perturbation f⌧ from (58) and any integer

L  J , as " ! 0,

R
D"

e`(f⌧ ) d5(f )
R
D"

e`(f ) d5(f )
= (1 + o(1)) ·

R
D",⌧

e`(f ) d5(f )
R
D"

e`(f ) d5(f )
= OP Y

f0
(1), (79)

uniformly in |t |  T for any T and in  2 C(b) from Theorem 17, where

D",⌧ = {g = f⌧ = e'+⌧ : f = e' 2 D"} ✓ supp5.

Proof. Write ¯̀(') = `(f (')) when viewing the function `(f ), f = e', as a function
of '. Thus `(f⌧ ) = ¯̀(' + ⌧ ), and so

R
D"

e`(f⌧ ) d5(f )
R
D"

e`(f ) d5(f )
=

R
D"

e
¯̀('+⌧ ) d⇡(')

R
D"

e ¯̀(') d⇡(')
, (80)

where ⇡ is the law of ' = log f , f ⇠ 5, and where and in what follows, by abuse of
notation, the integration domain D" is viewed interchangeably as a set of f ’s or of '’s.
By definition of the prior 5 and (15) the d⇡ -integrals are product integrals over hyper-
ellipsoids

supp⇡ =
Y

lJ

I
Nl
l ✓ R

c̄02Jd
, Nl  c02ld , c̄0 < 1,
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with each marginal distribution being the uniform distribution on the intervals

Il = [�B2�l(s+d/2)l̄�2, B2�l(s+d/2)l̄�2].

By definition of ⌧ in (59) we have the orthogonal decomposition

'+⌧ = 5VJ \WL'+(1��")5WL'+�"p(e ), where p(e ) = t"

�"
5WL(e )+5WL'0,

(81)

thus the perturbation ⌧ affects only the subspaces WL in the support of the prior, and
in these subspaces it equals a convex combination of points ' in the support with the
point p(e ) which, as the next lemma shows, is also contained in supp⇡ .

Lemma 19. Let L  J and  2 C(b), |t |  T . Then for every � > 0 and 0 < �1 < 2�
we have p(e ) 2 supp⇡ for all " small enough.

Proof. By Condition 7 we know that '0 is an interior point satisfying

|h'0,8
O
l,r i|  (B � ✏)2�l(s+d/2)l̄�2

for some ✏ > 0 and all l, r . Thus to show that p(e ) 2 supp⇡ it suffices to verify that

t"

�"
|he ,8O

l,r i|  ✏2�l(s+d/2)l̄�2

for all l  J, r . Using (57) we check that for our choice of �", J and � > �1/2,

max
lJ,r

2l(s+d/2)l̄ 2 "

�"
|he ,8O

l,r i|  max
lJ,r

2l(s+2�d/2�� )l̄ 2""�(2d+�1)/(2s+4+d)

. "(�2s�4+d+2s+4�d+2���1)/(2s+4+d) log2(1/") < ✏

for " small enough. ut
We deduce from the lemma and (81) that by convexity of supp⇡ we must have ' + ⌧ 2
supp⇡ too. If ⇡⌧ denotes the law of '+⌧ then obviously on VJ \WL we have ⇡⌧ = ⇡ and
for the marginal coordinates of the subspace WL the densities of the law ⇡⌧ with respect
to the law ⇡ equal the constant (1 � �")

�1 on a strict subinterval eIl ✓ Il (they are the
densities of (1 � �")U + �"p for U a uniform random variable and p a constant). The
density of the product integrals is then also constant and on the support of ⇡⌧ it is given
by

d⇡⌧

d⇡
=

Y

lL

✓
1

1 � �"

◆Nl
0

=
✓

1
1 � �"

◆c̄2Jd

= 1 + o(1), c̄ > 0, (82)

where Nl
0  Nl is the dimension of Wl \ Wl�1 and where we have used the definition

of �" from (60) in
2Jd�" = "(�2d+2d+�1)/(2s+4+d) ! 0
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as " ! 0 for any �1 > 0. We can thus write the l.h.s. of (79) as
R
D",⌧

e`(f (')) d⇡⌧ (')
d⇡(') d⇡(')

R
D"

e`(f (')) d⇡(')
= (1 + o(1)) ·

R
D",⌧

e`(f ) d5(f )
R
D"

e`(f ) d5(f )

where
D",⌧ = {g = f⌧ = e'+⌧ : f = e' 2 D"} ✓ supp5,

completing the proof of the first identity in the proposition. Renormalising byR
F

e`(f ) d5(f ) we find that the last ratio equals

5(D",⌧ |Y )

5(D"|Y )
 1
5(D"|Y )

= OP Y
f0

(1)

using also 5(D"|Y ) ! 1 in P Y
f0

-probability (Step I above), completing the proof. ut

Step V: Convergence of finite-dimensional distributions. For any  2 C4
K(O) and

W = Y � uf0 define the random variables

ef ( ) = hef , iL2 = hf0, iL2 � "hDGf0 [e9],WiL2 , (83)

which in view of Proposition 6 and the results from Section 4.2 define the random variable

ef = ef (Y )
L= f0 + "eX, eX ⇠ Nf0 , (84)

in (C↵K(O))⇤. Let further e5(·|Y ) be the law of "�1(f � ef ) | Y in (C↵K(O))⇤ conditional
on Y .

Proposition 20. For any finite vector ( 1, . . . , k), k 2 N, of functions  i 2 CS
K(O),

S 2 N as in Condition 7, and any random variable Z of law µ in (C↵K(O))⇤, let µk

be the distribution of the random vector (Z( 1), . . . , Z( k)) in R
k
. Then for � = �Rk

the bounded-Lipschitz distance for weak convergence of probability measures on R
k

and

every fixed k 2 N, we have

�(e5(·|Y )k, (Nf0)k)
P Y

f0��! 0 as " ! 0.

Proof. In view of (55) and since the total variation distance dominates any metric for
weak convergence, it suffices to prove the result for 5(·|Y ) replaced by 5D" (·|Y ). We
first need

Lemma 21. Fix  2 CS
c (O). Let ⌧ from (59) be the perturbation in WL associated to  

with L satisfying 2L(s+d/2)L2+⌘"2s/(2s+4+d) = o(1), and let D",⌧ be as in Proposition 18.

Then, as " ! 0 and in P Y
f0

-probability,

5(D",⌧ |Y ) ! 1 and

R
D",⌧

e`(f ) d5(f )
R
D"

e`(f ) d5(f )
! 1.
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Proof. Recall that by our choice of M0 in the paragraph above (55) we have
5(D

M0/(8W)
" | Y ) ! 1 in P Y

f0
-probability. We show that D",⌧ = D",M,⌧ contains the

set DM0/(8W)
" for all " small enough so that the first limit of the lemma will follow. By

definition of D",M,⌧ and (81) we need to show that for every f̄ 2 D
M0/(8W)
" the function

'̄ = log f̄ equals

'⇤ + ⌧ = 5VJ \WL'
⇤ + (1 � �)5WL'

⇤ + �5WL('0) + "t5WL(e )

for some '⇤ such that e'
⇤ 2 D

M
" . Define

'⇤ = 5VJ \WL '̄ +5WL('0) + 5WL '̄ �5WL('0) � "t5WL(e )

1 � �"
. (85)

Then by (81) we have
'⇤ + ⌧ = 5VJ \WL '̄ +5WL '̄ = '̄

so it remains to show that e'
⇤

is indeed in D
M
" . To achieve this we need to show that

'⇤ 2 supp⇡ and the k ·k(i)-norm inequalities in (53) are satisfied. Since '̄ 2 VJ , we have

k'⇤ � '0k(i)  k5WL('⇤ � '0)k(i) + k(Id �5WL)('̄ � '0)k(i)

and the second term is less than [M0/(8W) + (M0/8)]r(i, ")  M0/4 since e'̄ 2
D

M0/(8W)
" and using (61). For the first we use (61) once more and have, for �" and "

small enough,

k5WL('⇤ � '0)k(i)  W(1 � �")
�1⇥k'̄ � '0k(i) + t"k5WL(e )k(i)

⇤

 (M0/4)r(i, ") + o(r(i, "))  (M0/2)r(i, "),

using e'̄ 2 D
M0/(8W)
" and "ke k(i) = O(") for any fixed 2 CS

c (O), S > 4, by definition
of e . Finally, we also have '⇤ 2 supp5: this is clear for l > L as then '⇤ = '̄, and also
for l  L since then, using Condition 7 and e 2 L2 in view of S > 4, we find that

2l(s+d/2)l̄ 2|h'⇤,8O
l,r i|

 2l(s+d/2)l̄ 2|h'0,8
O
l,r iL2 |+(1��")�12l(s+d/2)l̄ 2⇥|h'̄�'0,8

O
l,r iL2 |+"t |he ,8O

l,r iL2 |
⇤

 (B�✏)+(4/3)2L(s+d/2)L2(k'̄�'0kL2 +O("))  B

for " small enough, using the fact that '̄ 2 D
M0/(8W)
" implies k'̄ � '0kL2 =

O("2s/(2s+4+d) log⌘(1/")) and the hypothesis on L. This proves the first claim of the
lemma. For the second we can renormalise both the numerator and denominator byR
F

e`(f ) d5(f ) to obtain
R
D",⌧

e`(f ) d5(f )
R
D"

e`(f ) d5(f )
= 5(D",⌧ |Y )

5(D"|Y )

P Y
f0��! 1. ut
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We are now ready to combine this lemma for the choice

2L ' "�(2s/(s+d/2))/(2s+4+d)/log�0(1/"), L  J,

�0 a large enough constant, with Theorem 17(ii) for fixed 2 CS
K(O): Since 2 CS

K(O)

we have e 2 CS�4
K (O), and since for large l the support K of e does not overlap the

support of the boundary corrected wavelets, we have, as in (48),

k5WL(e ) � e k(H 2
0 )⇤ . 2�L(S�2)

. "[(S�2)(2s/(s+d/2)]/(2s+4+d) log�
0
0(1/") = O("�̄ /(2s+4+d))

for some �̄ > d by assumption on S, s. Thus Theorem 17(ii) and the previous lemma
imply, by definition of ef and for r" = oP Y

f0
(1) that

ED" [et"�1hf �ef , i|Y ] = er"e
t2
2 kDGf0 [e9]k2

L2 , 8t 2 R,

for all  2 CS
K(O). Applying this to any linear combination  = P

ik ai i , ai 2 R,

which still defines an element of CS
K(O), we conclude that the convergence of the Laplace

transform and the Cramer–Wold device (Section 7.6) gives the desired weak convergence
in probability in the �Rk -metric. ut
Step VI: Tightness estimates and convergence in function space. We now prove The-
orem 8 with ef from (84) in place of f̄ . That ef can be replaced by f̄ will constitute
the last Step VII. By (55) and since the total variation distance dominates any metric for
weak convergence, it suffices to prove Theorem 8 for 5D" (·|Y ) replacing 5(·|Y ). Let
f ⇠ 5D" (·|Y ) conditionally on Y and consider the stochastic process

(X1( ) = "�1(hf, iL2 � ef ( )) :  2 C↵K(O))

whose law on (C↵K(O))⇤ we denote by e5D" (·|Y ). Further let X2 ⇠ Nf0 . For � 2 N

large enough to be chosen below and finite-dimensional spaces W� with projection op-
erator 5W� as in Step II, define probability measures e5D"

� (·|Y ),Nf0,� as the laws of the
stochastic processes

P�(Xi) ⌘ (Xi(5W� ) :  2 C↵K(O)), i = 1, 2,

respectively, which, as projections, are defined on the same probability space as the Xi’s.
Then using the triangle inequality for the metric � = �(C↵K(O))⇤ , we obtain

�(e5D" (·|Y ),Nf0)  �(e5D"
� (·|Y ),Nf0,�) + �(e5D" (·|Y ), e5D"

� (·|Y )) + �(Nf0 ,Nf0,�)

= �(e5D"
� (·|Y ),Nf0,�) +

2X

i=1
sup

kFkLip1
|E[F(Xi) � F(P�(Xi))]|

 �W�(
e5D"
� (·|Y ), (Nf0)�) +

X

i

EkXi � P�(Xi)k(C↵K(O))⇤

= A + B + C, (86)

and we wish to show that the last three terms converge to zero in P Y
f0

-probability.
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For B, still writing E = E5D" [·|Y ], from Parseval’s identity and (13), for ‘interior’
wavelets 8O

l,r = 8l,r with l � � large enough, and for some � > 0 such that ↵0 =
2 + d/2 + � < ↵ � d , we have

EkX1 � P�(X1)k(C↵K(O))⇤ = E sup
k kC↵

K
(O)1

"�1|hf � ef , �5W� iL2 |

. E
X

�<l,r

2�l(↵+d/2)"�1|hf � ef ,8O
l,r iL2 |

=
X

�<l,r

2l(↵0�↵)E"�1|hf � ef , 2�l(↵0+d/2)8O
l,r iL2 |. (87)

The functions 2�l(↵0+d/2)8O
l,r are all contained in the set C(b) from Theorem 17 with

� = ↵0 � 2 � d/2 (cf. after (13)), and that theorem combined with (79) and the results
from Section 4.2 now imply that

E5D" ⇥
e

t
" hf �ef ,2�l(↵0+d/2)8O

l,r iL2
��Y

⇤
 r"e

t2
2 kSf0 [2�l(↵0+d/2)8O

l,r /uf0 ]k2
L2 . r"e

ct2
, |t |  T ,

(88)

for some r" = OP Y
f0

(1), c > 0. Then using the inequality E|Z|  EeZ + Ee�Z for any
random variable Z we have the bound

X

�<lJ,r

2l(↵0�↵)E5D" ⇥
"�1|hf � ef , 2�l(↵0+d/2)8O

l,r iL2 |
��Y

⇤
. r"

X

�<lJ

2l(↵0+d�↵),

which is o(1) as � ! 1 since ↵ > ↵0 + d .
For term C in (86), using the fact that hX2,8

O
l,r i ⇠ N(0, kSf0 [8O

l,r /uf0 ]k2
L2) with

kSf0 [8O
l,r /uf0 ]kL2 . 22l , we have

EkX2 � P�(X2)k(C↵K(O))⇤  E sup
k kC↵

K
(O)1

|hX2, �5W� iL2 |

.
X

�<l,r

2�l(↵+d/2)E|hX2,8
O
l,r iL2 | .

X

�<l

2�l(↵�d/2�2) =
�!1

o(1). (89)

To conclude the proof, let ✏0 > 0 be given. By the preceding bounds we can choose
� = �(✏0) large enough so that the terms B, C in (86) are each less than ✏0/3 (with
P Y

f0
-probability as close to 1 as desired in case B). Next, for every fixed � = �(✏), by

Proposition 20 with k = dim(W�), the term A can be made less than ✏0/3 with P Y
f0

-
probability as close to 1 as desired, for " small enough. Overall the quantity in (86) is
thus less than ✏0 > 0 arbitrary, with probability as close to 1 as desired, proving

�(e5D" (·|Y ),Nf0)
P Y

f0��! 0.

STEP VII: Convergence of moments and posterior mean. Recall f̄ = E5[f |Y ]. From
the previous step we know that the law of "�1(f � ef ) converges weakly in probability
to Nf0 in (C↵K(O))⇤ as " ! 0. By tightness of the Gaussian law Nf0 in (C↵K(O))⇤ and
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[27, Theorem 2.1.20 and Exercise 2.1.2], we have Ekef k4
(C↵K(O))⇤ < 1 and also, for some

constants C > 2kf0k(C↵K(O))⇤ and c0 > 0,

P Y
f0

(kef k(C↵K(O))⇤ > C)  Pr(keXk(C↵K(O))⇤ > C/(2"))  2e�c0/"2
.

Moreover, since f |Y is bounded in (C↵K(O))⇤, we see from (55), Remark 16 and the
Cauchy–Schwarz inequality that

"�2E5
⇥
kf � ef k2

(C↵K(O))⇤
��Y

⇤

. E5D"
⇥
"�2kf � ef k2

(C↵K(O))⇤
��Y

⇤
+ C2"�25(Dc

" |Y )

+ "�2kef k2
(C↵K(O))⇤1{kef k(C↵K(O))⇤ > C}

= OP Y
f0

(1) + OP Y
f0

("�2e�c(⌘"/"
2) + "�2e�c0/(2"2)) = OP Y

f0
(1),

where the first term can be bounded by similar arguments to those after (87) above, using
also EZ2  2(EeZ +Ee�Z) for any random variable Z. We conclude that on an event of
probability as close to 1 as desired, "�1(f � ef ) | Y has uniformly bounded second (norm-)
moments. Using the Skorokhod imbedding [19, Theorem 11.7.2]) and standard uniform
integrability arguments we can argue by contradiction and deduce that weak convergence
implies convergence of the first moment (see also Section 7.6) and thus, on the above
event,

"�1(f̄ � ef ) = E5["�1(f � ef ) | Y ] ! ENf0 (X) = 0 in (C↵K(O))⇤, (90)

so that indeed kf̄ � ef k(C↵K(O))⇤ = oP Y
f0

(") and we can replace ef by f̄ in Theorem 8.

6.4. Proofs for Section 5.1

We sketch the proof of Corollary 11; the proof of Corollary 10 is the same (in fact sim-
pler) and omitted. The proof of coverage of C" in Corollary 11 follows [27, proof of The-
orem 7.3.23] (see also [9, Theorem 1]), and we only indicate the necessary modifications:
We first notice that the space (C↵K(O))⇤ is separable (since finite-dimensional wavelet ap-
proximations are norm dense, with the dual norm estimated as in (87)), which implies that
balls in this space form uniformity classes for weak convergence towards Nf0 . Moreover
the mapping 8(t) = Nf0(x : kxk(C↵K(O))⇤  t) is strictly increasing in t since any shell
{x : t < kxk(C↵K(O))⇤ < t + �}, � > 0, of (C↵K(O))⇤ contains an element of the reproduc-
ing kernel Hilbert space of Nf0 (this space equals the image of L2 under the Schrödinger
operator Sf0 ; using arguments from Section 7.2 it is easily seen that this space contains
elements of (C↵K(O))⇤ of any given norm khk(C↵K(O))⇤ ,↵ > 2 + d/2). Thus [27, proof
of Theorem 7.3.23] applies directly to give coverage of C" and also shows that "�1R"
converges in P Y

f0
-probability to 8�1(1 � �).
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7. Appendix

7.1. The metric entropy inequality for sub-Gaussian processes

‘Dudley’s metric entropy inequality’ for suprema of sub-Gaussian random processes has
been used repeatedly in the proofs: A centred stochastic process (X(s) : s 2 S) is said to
be sub-Gaussian for some metric d on its index set S if Ee�(X(s)�X(t))  e�

2d2(s,t)/2 for
all s, t 2 S an � 2 R. Denote by N(S, � , d) the � -covering numbers of the metric space
(S, d). Then for some s0 2 S, D any upper bound for the diameter of the metric space
(S, d) and any � > 0, we have the inequalities

E sup
s2S

|X(s)|  E|X(s0)| + 4
p

2
Z D/2

0

p
2 log N(S, � , d) d� , (91)

E sup
s,t2S: d(s,t)�

|X(s) � X(t)|  (16
p

2 + 2)

Z �

0

p
2 log N(S, � , d) d� . (92)

We also note that provided the last integrals converge, the process (X(s) : s 2 S) has a
version for which the last suprema are measurable. See [27, Theorem 2.3.7] for proofs.

7.2. Some properties of Schrödinger operators

The PDE (1) has been extensively studied, and we review here a few facts that were used
in our proofs. For f 2 C(Ō), the Schrödinger operator

Sf [u] = 1

2
u � f u (93)

is defined classically for all u 2 C2(O), and weakly for all locally integrable functions u

by the action
R
O

Sf [u]' =
R
O

uSf ['] on all ' 2 C1
c (O).

Under suitable conditions the Schrödinger operator will be seen to have an inverse
‘f-Green’ operator Vf which describes the unique solutions Vf [h] of the inhomogeneous

Schrödinger equation

Sf [u] = (1/2)u � f u = h on O, u = 0 on @O. (94)

The operator Vf has a probabilistic representation by the Feynman–Kac formula

Vf [h](x) = �Ex

Z ⌧O

0
h(Xt )e

�
R t

0 f (Xs) ds dt

�
, x 2 O, (95)

where Xs is a standard d-dimensional Brownian motion started at x with exit time ⌧O
from O (see [12, p. 88]). We also recall (e.g., see [12, Theorem 1.17])

sup
x2O

Ex⌧O  K(vol(O), d) < 1.

Some key properties of Sf and Vf are summarised in the following result.



BvM for Schrödinger equation 45

Proposition 22. Let O be a bounded C1
-domain in R

d
. Suppose f 2 C(Ō) satisfies

f � fmin > 0 on Ō. Then for any h 2 C(Ō), Vf [h] 2 C0(O) satisfies

Sf [Vf [h]] = h on O (96)

and is the unique solution of (94). If h 2 C2(Ō) \ C0(O) then also

Vf [Sf [h]] = h on O. (97)

The operator Vf [h] =
R
O

v(·, y)h(y) dy admits a symmetric kernel v(x, y) = v(y, x),

x, y 2 O, and extends to a self-adjoint operator on L2(O).

Proof. These results follow from [12, Theorems 3.18 and 3.22], where we notice that
the space F(D, q), defined just before Proposition 3.16 in that reference, for f = �q

bounded away from zero contains all bounded functions. We notice further that Vf is
defined in [12, (39)], and for f � 0 we obviously see from (95) that supx Vf [1](x) 
supx Ex⌧O < 1, so that the conditions of [12, Theorems 3.18 and 3.22] are satisfied.
Symmetry of the kernel v follows from [12, Corollary 3.18]. Lemma 23 below implies
that the operator Vf is continuous on L2(O) and hence extends to a self-adjoint operator
on that space. ut
We next turn to the mapping properties of Vf and Sf . For O a bounded C1-domain, @O is
a compact smooth manifold and the spaces H �(@O) and C

�(@O) can be defined as usual
[37, 52]. The Schrödinger operator Sf is properly elliptic in the sense of [37, p. 110f.],
and if tr[u] = u|@O is the usual boundary trace map, then (Sf , tr) can be shown to realise
a topological isomorphism of H �+2(O) onto H �(O)⇥H �+3/2(@O) for every � � 0 (see
[37, Theorem II.5.4] or [52, Theorem 4.3.3]. Likewise, (Sf , tr) realises an isomorphism
of the Hölder–Zygmund space C

�+2(O) onto C
�(O) ⇥ C

�+2(@O) for all � � 0 (see
[52, Theorem 4.3.4]). These isomorphisms are proved under the further assumption that
the only smooth solution to the problem Sf [u] = 0 on O with u = 0 on @O equals
u = 0 identically, which is true in view of (95) and Proposition 22. From the above
isomorphisms we deduce

kukH�+2(O) . kSf [u]kH� (O) + ktr[u]kH�+2(@O) 8u 2 H �+2(O), � � 0, (98)

using also H �+2(@O) ✓ H �+3/2(@O), and

kukC�+2(O) . kSf [u]kC� (O) + ktr[u]kC�+2(@O) 8u 2 C
�+2(O), � � 0. (99)

In the above references, the coefficient f is assumed to be a smooth function, but basic
arguments show that (98) and (99) remain valid whenever f 2 C

�(O). The constants in
the preceding inequalities then depend only on �, d,O and on a bound for kf kC� (O).

Lemma 23. For any f as in Proposition 22 and some constant c,

kVf [h]kLp  ckhkLp 8h 2 C(Ō), p 2 {2, 1}.
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Proof. Since Vf [h] 2 C0(O) by Proposition 22, its boundary trace vanishes and thus we
immediately deduce the case p = 2 from that proposition and (98) with � = 0 and since
H 2(O) imbeds continuously in L2(O). The case p = 1 follows directly from (95). ut
For the next more precise lemma we recall the dual norm (21).

Lemma 24. Let f 2 Cs(Ō) satisfy f > 0, kf kCs  D for some s > 0, and let h 2
C(Ō) be given. Suppose that ! is a solution of the inhomogeneous equation

(1/2)! � f! = h on O, ! = 0 on @O.

Then for some constant C(D, d,O),

k!kL2 = kVf [h]kL2  Ckhk(H 2
0 )⇤ . (100)

If moreover � is a non-negative integer and s � �, then also, for some constant C0 =
C0(D,�, d,O),

k!kH�+2 = kVf [h]kH�+2  C0khkH� (101)

and for all h 2 C�(O) and s > �,

k!kC�+2 = kVf [h]kC�+2  C0khkC� . (102)

Proof. We first prove (101) for h 2 H �(O). By [25, Theorems 8.9, 8.13] and Proposi-
tion 22 the solution ! is unique, lies in H �+2(O) \ C0(O) and can be represented as
! = Vf [h]. Then (98) gives

k!kH�+2(O) . kSf [Vf [h]]kH� (O) + ktr[Vf [h]]kH�+2(@O) = khkH� (O).

Replacing (98) by (99) and using [25, Theorems 6.14, 6.19] and again Proposition 22 to
ensure that ! 2 C�+2(O)\C0(O) for h 2 Cs(O), f 2 Cs(Ō), the same estimate follows
for C� -norms replacing H � -norms, giving (102) for such h. Since Cs(O), s > �, is dense
in C�(O) ✓ C

�(O), the overall result follows from a basic approximation argument.
We finally prove (100): By Proposition 22 the operator Vf is self-adjoint and takes

values in C0(O). We thus see from (101) with � = 0 that

kwkL2 = kVf [h]kL2 = sup
'2Cc(O): k'k

L21

����

Z

O

'Vf [h]
����

= sup
'2Cc(O): k'k

L21

����

Z

O

Vf [']h
����  sup

'2Cc(O): k'k
L21

kVf [']kH 2khk(H 2
0 )⇤  Ckhk(H 2

0 )⇤ ,

completing the proof. ut
We turn to existence and properties of solutions to the homogeneous Schrödinger equa-
tion (1), and some basic stability estimates for the ‘solution maps’ of (1), (94).
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Proposition 25. Let f > 0 satisfy kf kCs(O)  D for some s, D > 0, and assume that

g 2 Cs+2(Ō).

(A) A unique solution uf 2 C2(Ō) of (1) exists and has Feynman–Kac representa-

tion (2). Moreover, for every non-negative integer 0  �  s we have

kuf kH�+2(O)  D0kgkH�+2(@O) (103)

and if 0  � < s then also

kuf kC�+2(O)  D0kgkC�+2(@O) (104)

where D0
depends only on D, d,O.

(B) If f, h 2 Cs(O), s > 0, and uf , uh 2 C(Ō) are solutions to (1) with coefficients

f, h, respectively, then

kuf � uhkL2  ckf � hk(H 2
0 )⇤  ckf � hkL2

where c > 0 depends only on upper bounds for kf kCs(O), khkCs(O), kgkCs+2(Ō) and

on d,O.

(C) If f, h 2 C(Ō) both satisfy f, h � fmin > 0, then for all q 2 C(Ō),

kVf (q) � Vh(q)kL2 . kf � hkL2kqk1.

Proof. (A) The existence result follows from [25, Theorem 6.14]. The Feynman–Kac
representation (2) is derived, e.g., in [12, Theorem 4.7]. To prove (103) we notice that
[25, Theorem 8.13] and the hypotheses imply uf 2 H �+2 so that (98) gives

kuf kH�+2(O) . kSf [uf ]kH� (O) + ktr[uf ]kH�+2(@O) . kgkH�+2(@O).

We can then prove (104) completely analogously, using [25, Theorem 6.19] to establish
uf 2 C�+2(O) and then (99).

(B) We notice that ! = uf �uh solves the inhomogeneous equation (1/2)!�f! =
(f � h)uh on O with ! = g � g = 0 on @O. By Proposition 22, Lemma 24 and (11) we
thus have

kuf � uhkL2 = kVf [(f � h)uh]kL2  Ckuh(f � h)k(H 2
0 )⇤

 C sup
kgk

H21
kguhkH 2kf � hk(H 2

0 )⇤  ckuhkC2kf � hk(H 2
0 )⇤ ,

and the result follows since kuhkC2  const by part (A) with � = 0.
(C) Notice that v = Vf [q] � Vh[q] solves 1v/2 � f v = (f � h)Vh[q] on O subject

to zero boundary conditions. Thus v = Vf [(f � h)Vh[q]] and so by Lemma 23 we must
have kvkL2 . kf � hkL2kVh[q]kL1 . kf � hkL2kqk1. ut
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7.3. Some properties of Hölder-type spaces

Proposition 26. We have C↵c (O) ✓ C
↵
c (O) ✓ C

↵,W (O) for all 0 < ↵ < S, and

kf kC↵,W (O)  c0
2kf kC↵(O)  c2kf kC↵(O), with uniform constants c2, c

0
2.

Proof. We first prove the result for f 2 C↵c (O), which has a zero extension from O to R
d

that defines an element of C↵(Rd) and the global Hölder norm is equal to the intrinsic
one. Thus by (13), for all the interior wavelets 8O

l,r = 8l,r supported within O we have

2l(↵+d/2)|hf,8O
l,r iL2(O)| = 2l(↵+d/2)|hf,8l,r iL2(Rd )|  ckf kC↵(O),

and for the boundary wavelets, by the support of f in O and (15),

sup
l,r

2l(↵+d/2)|hf,8O
l,r iL2(O)|  c sup

l,r

X

|m�m0|K

|dl
m,m0 |2l(↵+d/2)|hf,8l,m0 iL2(Rd )|

 cDkf kC↵(O).

The preceding proof also applies to f 2 C
↵
c (O) since the wavelet norm (13) is an equiva-

lent norm on C
↵(Rd) [27, Chapter 4], and since C↵c (O) ✓ C

↵
c (O) (see after (9)). ut

Some further properties are the content of the next proposition. For these we recall the
usual definition of Besov spaces B↵pq(Rd),↵ 2 R, by tensor Littlewood–Paley decompo-
sition and of B↵,Wpq (Rd),↵ 2 R, by a tensor wavelet basis, equivalent to each other and to
the classical definition in terms of moduli of continuity when ↵ > 0. See [39, 52, 53] and
also [27, Section 4.3.1] (adapted to the multi-dimensional setting) for details.

Proposition 27. (A) Let ↵ > 0 but ↵ � 2` < 0 for some ` 2 N. Then for any h in

C↵c (O) ✓ C↵c (Rd) and 1` = 1 . . .1 (` times) the iterated Laplace operator, we

have

k1`hk
B↵�2`11 (Rd )

 CkhkC↵(O). (105)

(B) Let ↵ < 0, ⇢ > |↵| and g 2 C⇢(O). Then, using the definition of the C
↵,W (O)-norms

in (16) also for negative values of ↵, we have, for all h 2 Cc(O) and some constant

c > 0,

khgkC↵,W (O)  ckhkB↵11(Rd )kgkC⇢ (O). (106)

(C) For every ↵ > 0 there exist finite constants A > 0 depending on d,↵ such that the

k · k1-metric entropy of the unit ball of C↵c (O) can be bounded as

log N({ : k kC↵c (O)  1}, ⌘, k · k1)  (A/⌘)d/↵, 0 < ⌘ < A/2. (107)

Proof. For (A), we have the inequalities

k1`hk
B↵�2`11 (Rd )

 ckhkB↵11(Rd )  c0khkC↵(O),

where the first inequality follows from [52, Theorem 2.3.8] (or as in [27, proof of Propo-
sition 4.3.19]), and where we have used the continuous imbedding C↵c (O) ✓ C↵(Rd) ✓
B↵11(Rd) (see [52]) in the second inequality.
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We now prove (B): since h has compact support in O we can multiply g by a function
in C1

c (O) so that hg = hḡ on O and ḡ 2 C
⇢
c (O) satisfies kḡkC⇢ (O)  ckgkC⇢ (O). Then

[52, Theorem 2.8.2] implies

khḡkB↵11(Rd )  c0khkB↵11(Rd )kḡkB
⇢
11(Rd )  c00khkB↵11(Rd )kgkC⇢ (O).

The khḡkB↵11 -norm bounds the khḡk
B
↵,W
11

-norm up to a constant multiple, which implies
the desired decay of the wavelet coefficients of hḡ—the bound on the khgkC↵,W -norm
now follows by just repeating the estimates from the proof of Proposition 26.

Finally, the metric entropy bound in (C) is proved in [58, Theorem 2.7.1] (the do-
main O there has to be bounded and convex but we can always extend elements of C↵c (O)

by zero to a larger bounded convex domain without increasing the norm). ut

7.4. Likelihood functions and a contraction theorem for general inverse problems

Let F be a Polish space with Borel � -field BF and let H be a real Hilbert space that
is separable for the norm induced by the inner product h·, ·iH, with Borel � -field BH.
Suppose G : F ! H is a Borel-measurable mapping and, for " > 0 a scalar ‘noise
level’, consider the formal equation in H given by

Y = G(f ) + "W. (108)

Here W is a centred Gaussian white noise process (W(h) : h 2 H) with covari-
ance EW(h)W(g) = hh, giH, defined on some probability space (�,A, µ) (we can
take � = R

N with its cylindrical � -algebra and µ the law of ⌦1
k=1N(0, 1), see [27,

Example 2.1.11]). Observing (108) then means that we observe a realisation of the
Gaussian process (Y (h) = hY, hiH : h 2 H) with marginal distributions Y (h) ⇠
N(hG(f ), hiH, khk2

H
). We sometimes write hW, hiH for the random variable W(h).

If (ek : k 2 Z) form an orthonormal basis of H, and if w = (wk : k 2 Z) 2 `2,
wk � 0, wk # 0 as |k| ! 1, then we can define the new Hilbert space

Hw =
n
f =

X

k

ekfk :
X

k

f 2
k w2

k = kf k2
Hw

< 1
o
, (109)

as the completion of H with respect to the k · kHw -norm, where fk = hf, ekiH. By defini-
tion

EkWk2
Hw

=
X

k

EW(ek)
2w2

k < 1,

so using Ulam’s theorem [19, Theorem 7.1.4]) and separability of Hw, the cylindri-
cally defined law of W extends to a tight Gaussian probability measure on the Borel
� -field BHw of Hw. The equation Y = G(f ) + "W then makes rigorous sense in Hw,
with P Y

G(f ) denoting the shifted Gaussian law of the random variable Y : (�,A) !
(Hw,BHw). If we let the law P Y

0 of "W serve as a common dominating measure then
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for G(f ) contained in the RKHS H of P Y
0 , the Cameron–Martin theorem (e.g., as in

[27, Proposition 6.1.5]) allows us to define the log-likelihood function

`(f ) = log pf (Y ) ⌘ log
dP Y

G(f )

dP Y
0

(Y ) = 1
"2 hY, G(f )iH � 1

2"2 kG(f )k2
H
. (110)

The mapping (!, f ) 7! pf (Y (!)) is jointly measurable from (� ⇥ F,A ⌦ BF ) to
(R,BR). [Indeed, using the BF -BH-measurability of G it suffices to show joint measur-
ability of the map L : (!, h) 7! hW(!), hiH defined on (� ⇥ H,A ⌦ BH). By what
precedes, (hW(!), hiH : h 2 H) is a centred Gaussian process, so joint measurability
follows from separability of H and [27, Proposition 2.1.12 and Definition 2.1.2].]

If now 5 is a prior probability distribution on (F,BF ), then we can apply Bayes’
theorem in the product space

(�⇥ F,A ⌦ BF , Q), dQ(y, f ) = pf (Y (!))µ(!)5(f ),

to deduce (as in [24, p. 7]) that the posterior distribution of f |Y = f |Y (!) equals

5(B|Y ) =
R
B pf (Y ) d5(f )R
F

pf (Y ) d5(f )
=

R
B pf (Y (!)) d5(f )R
F

pf (Y (!)) d5(f )
, B 2 BF . (111)

A general contraction theorem can now be proved as in the standard direct setting
[23, 24, 27], after noting that the induced ‘information distance’ is kG(f ) � G(f0)kH in
the measurement model (108).

Theorem 28. Let5 = 5" be a sequence of prior distributions on (F,BF ), and let d(·, ·)
be a (measurable) distance function on F . Let 5(·|Y ) be the posterior distribution from

(111) and suppose Y = G(f0) + "W has law P Y
f0

⌘ P Y
G(f0)

for some fixed f0 2 F . For a

sequence of numbers ⌘̄" ! 0 such that ⌘̄"/" ! 1 and C0, L fixed constants, suppose 5

satisfies

5(f 2 F : kG(f ) � G(f0)kH < ⌘̄") � e�C0(⌘̄"/")2
(112)

and

5(F \ F")  Le�(C0+4)(⌘̄"/")
2

for a sequence of measurable sets F" ✓ F and numbers ⌘⇤
" for which we can find tests

(indicator functions) 9(Y ) such that

EY
f0
9(Y ) + sup

f 2F" : d(f,f0)�⌘⇤
"

EY
f (1 �9(Y ))  Le�(C0+4)(⌘̄"/")

2
.

Then for some c > 0 and as " ! 0, we have

5(d(f, f0) � ⌘⇤
" | Y ) = OP Y

f0
(e�c(⌘̄"/")

2
) = oP Y

f0
(1). (113)

Proof. The result is proved just as [27, Theorem 7.3.5], by adapting the proof of Lemma
7.3.4 there to the present situation by replacing the L2-norm by our H-norm, 1/

p
n there

by our ", and "n there by our ⌘̄", respectively. Inspection of the proof shows that also the
stronger conclusion (113) is satisfied (cf. also [24, Exercise 8.7, p. 230]). ut
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7.5. Information lower bounds in function space

We now recall some standard facts from efficient estimation in infinite-dimensional pa-
rameter spaces (see [57, Chapter 25] for an introduction to the general theory). Assume
that for all h in some linear subspace H of an inner product space with Hilbert norm
k · kLAN, the log-likelihood-ratio process of a statistical model of laws {P"f +h : h 2 H }
on some sequence (X") of measurable spaces has locally asymptotically normal (LAN)
expansion

log
dP"f +"h

dP"f
= D"(h) � 1

2
khk2

LAN, h 2 H,

where, as " ! 0, D"(h) converges in distribution under P"f to D(h) ⇠ N(0, khk2
LAN)

for every fixed h 2 H . Next, let (C, k · kC) be a Banach space and consider a continuous
linear map

 : (H, k · kLAN) ! (C, k · kC).

Theorem 3.11.5 in [58] implies that the information lower bound for estimating the pa-
rameter (f ) is given by the Gaussian random variable G on C with marginal distributions

T (G) ⇠ N(0, keT k2
LAN), T 2 C⇤, (114)

whereeT is the Riesz representer of the continuous linear map T � : (H, k ·kLAN) ! R.
Note thateT necessarily lies in the completion H̄ of H for the k·kLAN-norm. In particular,

lim inf
"!0

inf
b:X"!C

sup
f
"�2Ef kb � (f )k2

C � EkGk2
C

where the supremum extends over an "-neighbourhood of f in H . The above result holds
whenever G is a tight Borel random variable on C. If C = R then the lower bound is sim-
ply given by kek2

LAN wheree is the Riesz representer of the map  : (H, k · kLAN) ! R.

7.6. Some facts about weak convergence of random probability measures

The following result is given in [11, Lemma 2 of supplement].

Proposition 29. Let Pn, P , n 2 N, be random probability measures on R. Suppose

that for any real t , the Laplace transform
R
R

etx dP (x) is finite almost surely andR
R

etx dPn(x) !
R
R

etx dP (x) in probability. Then for any metric � for weak conver-

gence of probability measures, �(Pn, P ) ! 0 in probability.

As a consequence, we also deduce that by the ‘Cramer–Wold device’, if Pn, P are random
probability measures on R

K and
R

eht,xi dPn(x) !
R

eht,xi dP (x) in probability for all
t 2 R

K , then �(Pn, P ) ! 0 in probability. Here h·, ·i is the standard Euclidean inner
product.

Since convergence in probability implies convergence almost surely along a subse-
quence, if �S(Pn, P ) ! 0 in probability on any separable metric space S, then any
‘limiting’ consequence of weak convergence such as the continuous mapping theorem,
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convergence of moments or uniform convergence along classes of Borel sets or functions,
also holds in probability, simply by arguing by contradiction and extracting subsequential
almost sure limits. See the appendix in [9] or [11] for more details.

Acknowledgments. This research was supported by the European Research Council under ERC
grant agreement UQMSI (No. 647812). I would like to thank Gabriel P. Paternain for many help-
ful discussions and Sven Wang for helpful remarks about Section 7.2. I am also grateful to two
anonymous referees for valuable remarks and suggestions.

References

[1] Abraham, K.: Nonparametric Bayesian posterior contraction rates for scalar diffusions with
high-frequency data. Bernoulli 25, 2696–2728 (2019) Zbl 1428.62139 MR 4003562

[2] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)
Zbl 1098.46001 MR 2424078

[3] Agapiou, S., Larsson, S., Stuart, A. M.: Posterior contraction rates for the Bayesian ap-
proach to linear ill-posed inverse problems. Stochastic Process. Appl. 123, 3828–3860 (2013)
Zbl 1284.62289 MR 3084161

[4] Bal, G., Uhlmann, G.: Inverse diffusion theory of photoacoustics. Inverse Problems 26,
art. 085010, 20 pp. (2010) Zbl 1197.35311 MR 2658827

[5] Bao, G., Li, P.: Inverse medium scattering problems for electromagnetic waves. SIAM J. Appl.
Math. 65, 2049–2066 (2005) Zbl 1114.78006 MR 2177738

[6] Brown, L. D., Low, M. G.: Asymptotic equivalence of nonparametric regression and white
noise. Ann. Statist. 24, 2384–2398 (1996) Zbl 0867.62022 MR 1425958

[7] Castillo, I.: On Bayesian supremum norm contraction rates. Ann. Statist. 42, 2058–2091
(2014) Zbl 1305.62189 MR 3262477
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Zbl 0546.46027 MR 0781540

[53] Triebel, H.: Function Spaces and Wavelets on Domains. EMS Tracts in Math. 7, Eur. Math.
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