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Preface

Die Schriftsteller
auch wenn sie Wissenschaftler sind
sind Übertreibungsspezialisten

T. Bernhard

These notes are based on graduate (‘Nachdiplom’) lectures given in spring term
2022 at the Department of Mathematics, ETH Zürich, Switzerland. I am very grateful
to the Forschungsinstitut für Mathematik (FIM) at ETH Zürich for hosting me, as
well as to Afonso Bandeira and Sara van der Geer for their hospitality during my
visit.

Chapters 1 and 2 develop a framework of Bayesian Gaussian process methods in
non-linear random design regression models and give sufficient conditions to obtain
global convergence guarantees for posterior measures in PDE-type inverse problems.
Chapters 3 to 5 develop the local theory about fluctuations and shape of posterior
measures in high dimensions, and touch on the related issue of convergence proper-
ties of gradient-based MCMC algorithms. The reader will require background in real
analysis, measure-theoretic probability and stochastic convergence theory – one may
consult [46] or similar texts. We will frequently use mathematical techniques from
high-dimensional statistics and probability as developed in [60]. Relevant material
from elliptic partial differential equations, functional analysis and stochastic calculus
will be reviewed in Appendices A and B.

I would like to thank the many colleagues whose feedback and input over the
past years have helped shape my understanding of this material. Let me mention
Francis Bach, Afonso Bandeira, Ismaël Castillo, Victor Chernozhukov, Marc Hoff-
mann, Ankur Moitra, Francois Monard, Kolyan Ray, Sebastian Reich, Markus Reiß,
Philippe Rigollet, Judith Rousseau, Christoph Schwab, Vladimir Spokoiny, Botond
Szabo, Andrew Stuart, Edriss Titi, Sasha Tsybakov, Sara van de Geer, Aad van der
Vaart, Harry van Zanten and Martin Wainwright; as well as current, former and visit-
ing members of my research group, among them Kweku Abraham, Randolf Altmeyer,
Jan Bohr, Matteo Giordano, Hanne Kekkonen, Aksel K. Rasmussen, and Sven Wang.
I would particularly like to thank Gabriel P. Paternain for the many inspiring discus-
sions about non-linear inverse problems over the past years – these notes owe much
to them.

Cambridge, UK, March 2023 Richard Nickl
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Chapter 1

Non-linear statistical inverse problems

The study of inverse problems forms an active field at the interface of applied and pure
mathematics as well as the statistical and physical sciences. Prototypical examples
include parameter identification in partial differential equations (PDEs) as well as
various tomography and data assimilation tasks. The Bayesian approach to such prob-
lems has seen substantial activity in the last decade after seminal work by Andrew
Stuart [118] – the recent references [37], [80, 108], [40], [25], [5], among many oth-
ers, survey the relevance of such inference techniques in various areas of applied
mathematics. Some of these ideas can be traced back as far as Henri Poincaré – see
the discussion in Persi Diaconis’ early contribution [42], which is itself a relevant
predecessor to the use of Bayesian thinking in this field.

The recent surge of interest stems from the inherent ability of the Bayesian ap-
proach to automatically and simultaneously address a variety of challenges of con-
temporary data science. These include algorithmic feasibility even for non-convex
problems in high- or infinite-dimensional parameter spaces (via Markov chain Monte
Carlo methods) as well as the provision of uncertainty quantification methods and
‘error bars’ for algorithmic outputs. A scientist using such methodology needs to
specify a numerically tractable likelihood-function modelling the statistical measure-
ment process and a reasonable prior distribution (such as a Gaussian random process)
on the parameter, and in return obtains a posterior distribution that in principle can be
used to solve all inferential tasks.

As much as the Bayesian ‘package’ is attractive in applications, a framework
providing rigorous statistical and algorithmic guarantees for such methods – such as
a convergence analysis in the large sample size scenario – has been developed only
recently. For linear inverse problems the Bayesian approach is fairly well understood
(e.g., [76, 107] and also [61, 64, 89] and references therein) and can be related to the
well established ‘regularisation’ literature [51], [73], [17], where a convex penalised
least squares fit functional is minimised to reconstruct the parameter of interest. But
for non-linear problems Bayesian methods are genuinely distinct from optimisation
based approaches and hence the theory requires different ideas. The purpose of these
notes is to lay out some of the main mathematical mechanisms underpinning a body
of recent theoretical work [93], [90, 91], [101], [1, 23, 62, 75, 100] on this subject. It
builds on previous work on the understanding of Bayesian procedures in general high-
and infinite-dimensional models by Aad van der Vaart and co-authors (e.g., [128] and
the monograph [58]).

A common setting involves a non-linear ‘forward map’ G defined on some infinite-
dimensional ‘parameter’ space‚ and taking values in some Hilbert space of functions
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or operators. We can think of G.�/ describing the solution of a PDE in dependence of
an unknown function (or ‘coefficient’) f� modelled by some parameter � . The inverse
problem is to recover � from ‘data’ G.�/. Even if � 7! G.�/ is proved to be inject-
ive, so that an inverse G�1 exists in principle, solution maps G of PDEs are typically
‘smoothing’ (compactifying), which in infinite-dimensions means that G�1 may not
be continuous in relevant topologies. Also, since G is non-linear, we typically do not
have an explicit representation of the inverse map and analytical formulæ reconstruct-
ing � from G (such as, e.g., for Fourier, Laplace and Radon transforms available in
linear settings) are out of reach. And the problem becomes even less tractable if we
explicitly acknowledge discretisation and statistical measurement error. Nevertheless,
we will show that a principled Bayesian ‘likelihood’ approach may overcome such
obstacles and, under certain conditions, provide provably valid algorithmic solutions
for non-linear inverse problems.

1.1 Model examples

Non-linear forward maps G arise in a variety of settings with spectral inverse prob-
lems, X-ray transforms, boundary rigidity problems, data assimilation and more gen-
erally in parameter identification problems with PDEs – see [74], [118], [73], [80,
108], [68] and also the recent monograph [104], by Gabriel Paternain, Mikko Salo
and Gunther Uhlmann. We first describe some classical examples.

1.1.1 Boundary measurements in tomography

1.1.1.1 The Calderón problem. Let X � Rd , d � 2; be a bounded domain with
smooth boundary @X and � WX ! Œ�min;1/ a differentiable map. Consider unique
solutions u D u�;h to the PDE

r � .�ru/ D 0 in X;

u D h on @X;

where hW @X ! C prescribes some boundary values. (Existence of such solutions is
discussed in more detail after (1.2) below.) If we cannot measure u inside of X, we
may record boundary information of u�;h for sufficiently many distinct h. Specific-
ally, one can measure the Neumann (boundary) data as

ƒ� .h/ WD
@u�;h

@�

ˇ̌̌
@X
;

where @=@� denotes the outward normal derivative on @X (to be understood in a
trace sense). The inverse problem here is to recover � from knowledge of the bound-
ary operator G.�/ D ƒ� only – this is known as the Calderón problem, which has
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fundamental applications in electric impedance tomography, where � models a con-
ductivity inside of X to be recovered from non-invasive measurements. See [123] for
an overview of the theory and applications of this problem (first studied by Alberto
Calderón [26]), and [92, 119] for landmark injectivity theorems for G.

1.1.1.2 Non-Abelian X-ray transforms. Let M � R2 be the closed unit disk with
boundary @M . Consider lines in the plane (i.e., geodesics) parameterised by .t/ D
x C tv, where x 2 R2 and v 2 S1. We further introduce the influx boundary as

@CSM D ¹.x; v/ 2 @M � S1 W x � v � 0º;

where ‘ � ’ is the standard dot product in the plane. If we take .x; v/ 2 @CSM , then
the line .t/ D x C tv will exit the disk in finite time � D �.x; v/ WD �2 x � v:

Let � WM ! Cn�n be a continuous matrix field. Given a geodesic  W Œ0; � �!M

with endpoints .0/; .� / 2 @M , we consider the matrix ODE

PU C �..t//U D 0; U.� / D Id:

We define the boundary scattering data of � on  to be C� ./ WD U.0/. This problem,
backward in time for convention here, is well-posed and leads to a unique definition
of U.0/, containing information about � along the geodesic  . Note that when � is
scalar (n D 1), we obtain

logU.0/ D
Z �

0

�..t// dt;

which is the classical X-ray/Radon transform [106] of � along the ray  . Considering
the collection of all such data makes up the non-Abelian X-ray transform of � , viewed
here as the non-linear map

G.�/ � C� W @CSM ! Cn�n; (1.1)

and the goal is to recover � from C� . We refer to [102, 103] and references therein
for injectivity theorems for G. A concrete physical application arises when � takes
values in the Lie algebra so.n/ of skew-symmetric matrices associated to the special
orthogonal group SO.n/. In this case the scattering data C� maps into SO.n/, and for
n D 3, this is relevant in neutron spin tomography, see [67, 114] and also Figure 1.1
below.

1.1.2 Parameter identification for elliptic PDEs

The two preceding examples are within the scope of the general theory to be deve-
loped here – see Remark 2.3.4 and the notes to subsequent chapters for more details.
But in these lecture notes we will focus exclusively on two non-linear model examples
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with elliptic PDEs that arise from steady state measurements of heat-type equations.
Their relative analytical simplicity allows us to give a largely self-contained treatment
of the material, yet at the same time these examples provide a ‘pedagogical’ template
for more complicated settings.

To this end, let us introduce our elliptic base examples. Let X be a bounded
domain in Rd with smooth boundary @X. For a linear elliptic differential operator Lf
indexed by some function f WX ! R, we consider solutions u D uf ,

Lf u D g on X;

u D h on @X;
(1.2)

where g is a given smooth source function and h prescribes smooth boundary values.
For the examples of Lf studied in these notes, unique solutions uf to the boundary
value problem (1.2) exist by standard results for linear elliptic PDEs (see after (A.10)
in Appendix A). We will later parameterise f D f� by a function � varying in a linear
space but suppress this in the notation for now.

If r�;r and � denote the divergence, gradient and Laplace operations respect-
ively, our first example will be the divergence form operator Lf described by the
action on sufficiently regular functions uWX ! R via

Lf u D r � .f ru/ D rf � ruC f�u for f � fmin > 0: (1.3)

Here f models a real-valued diffusivity (or conductivity) of the medium X and as
explained in more detail in the next subsection, (1.2) describes ‘steady state’ solu-
tions of a diffusion equation. Determining f from solutions uf to (1.2) has various
applications in physics and engineering, for instance, in the context of ‘groundwater
flow’ it is sometimes called Darcy’s problem (see [118, Section 3.7]). Unlike in the
Calderón problem from earlier which deals with the same PDE, we will assume that
we can measure uf throughout X and not just at @X – see Remark 2.3.4 below for a
discussion of the resulting differences.

The second example we shall examine closely is a Schrödinger operator Lf given
by the action

Lf u D
�u

2
� f u for f � 0; (1.4)

where the absorption potential f models an attenuation in the diffusivity (e.g., a
cooling effect in the heat flow) – in this case we speak of (1.2) as the (steady state)
Schrödinger equation – even though we do not consider the more complicated com-
plex valued version of (1.2) relevant in quantum physics. Determining f from solu-
tions uf to (1.2) for such Lf is a problem appearing, for instance, in photo-acoustic
tomography [8,9]. In (1.4),� could be replaced by any given (known) elliptic second-
order differential operator but we stick to the standard Laplacian for (mostly nota-
tional) simplicity. The Schrödinger model is in a certain sense atypical for most
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non-linear inverse problems as it gives a direct inversion formula for f D �u=2u

(provided u does not vanish on X). But it will be very useful to succinctly explain
several mathematical ideas in these notes related to the ‘local curvature’ of typical
non-linear forward maps f 7! uf encountered in the theory. It also provides a relev-
ant template for general operators of the form Lf D DC f , with f an order-zero
perturbation of a given (not necessarily elliptic) differential operator D. One example
would be the one underlying (1.1), where D arises from the geodesic vector field. See
the notes to this section for more discussion.

We note that while the operator Lf in the preceding two examples is linear, the
forward map G arising from f 7! uf is not, see Exercise 1.4.1. It will however be
injective (under conditions to be detailed below), and the problem of inferring f
from uf is then a well-posed non-linear inverse problem.

1.1.2.1 From heat to steady state equation. As we will later consider noisy ‘real
world’ measurements of ‘steady state’ solutions uf of (1.2), we digress briefly and
explain a way to acquire approximate measurements of uf from observations of the
process of diffusion over a time interval .0; T �. Consider solutions ¹u D uf .x; t/ W

x 2 X; t 2 .0; T �º of the time evolution equation

@u

@t
D Lf u on X � .0; T �;

u. � ; t / D 0 on @X; for all t 2 .0; T �;

u. � ; 0/ D g on X;

(1.5)

where g is some initial condition. It is well known (see Appendix A.2 for details)
that the elliptic operators Lf from (1.3), (1.4) equipped with Dirichlet boundary con-
ditions (i.e., on the space H 1

0 from Appendix A.1) have a spectral representation in
terms of eigen-pairs

.�j;f ; ej;f / 2 .0;1/ �H 1
0 .X/; j 2 N;

of the form
Lf D �

X
j�1

�j;f ej;f hej;f ; � iL2 (1.6)

where h � ; � iL2 is the standard inner product of the Hilbert spaceL2.X/DL2.X;dx/,
with dx being the Lebesgue measure. The unique solutions to the heat equation (1.5)
with initial condition g then have the well known representation

uf . � ; t /.g/ D
X
j

e�t�j;f ej;f hej;f ; giL2 ; t � 0:

Formally, integrating term by term,Z b

a

e��j;f s ds D �
1

�j;f
Œe��j;f b � e��j;f a� for all a < b; j 2 N;
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and taking limits a! 0, b ! 1, we see that time averages of uf . � ; s/.g/,

�

Z 1

0

uf . � ; s/.g/ ds D �

X
j�1

��1j;f ej;f hej;f ; giL2 D L�1
f .g/;

provide the solution to (1.2) with hD0 (Dirichlet boundary conditions). So a Riemann
sum approximation

�

X
l

uf . � ; sl/.g/Œsl � sl�1�; (1.7)

where uf . � ; sl/.g/ are measurements of the solution of (1.5) at discrete equally
spaced times sl 2 .0;1/, will give an approximate measurement of the ‘steady state’
solution uf of (1.2).(Boundary values different from hD 0 can be considered likewise
by modifying the base heat equation (1.5) accordingly.)

1.1.3 Data assimilation

While steady state approximations to time evolution equations such as those just
described are commonly used in applications, sometimes modelling time horizon
dynamics is the explicit task of statistical inference – for instance, in ‘data assimila-
tion’ problems [36,80,108]. A prototypical example arising in atmospherical sciences
and fluid dynamics is tracking a velocity field describing the solutions to the non-
linear (incompressible) Navier–Stokes equations with unknown initial condition. If
� > 0 denotes a scalar viscosity parameter, we can consider two-dimensional vec-
tor fields u D u� D .u� .t; x/ W t 2 .0; T �; x 2 �/, � � R2; solving the system of
non-linear partial differential equations given by

@

@t
u � ��uC u � ruCrp D 0 on � � .0; T �;

r � u D 0 on � � .0; T �;

u D 0 on @�;

u.0; �/ D u0 on �;

where u.0/ is a divergence free initial condition and rp a pressure term, see [35]
for details. One regards the initial condition u.0/ � � as the unknown parameter and
the solutions G.�/ D u� measured at discrete points .ti ; Xi / in time and space as the
‘forward’ data. The aim is to infer � and then also all subsequent states .u� .t; x/ W
t > 0; x 2 �/ of the system.

In the above example the non-linearity of G arises from the underlying PDE
– had we used the standard heat equation (1.5) instead, the resulting solution map
� 7! u� would have been linear. With heat-equation type data arising from the gen-
erator Lf , non-linearities still arise for the coefficient to solution maps f 7! uf .t; �/.
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For some observational settings, steady state approximations can be infeasible, spe-
cifically when measurements are available only at low ‘observation frequency’ in
time t . In this case, knowledge of the Markovian time evolution structure should be
exploited to solve the inverse problem. We will not prove rigorous theorems about
such data assimilation problems here, but the key ideas and techniques apply to these
settings as well – we refer to [63, 94, 96, 99] for some first results in this direction.

1.2 Bayesian inference in non-linear regression models

1.2.1 The forward map G

We now introduce a notational framework designed to accommodate a large variety
of examples of non-linear inverse problems. Let .X;A/ and .Z;B/ be measurable
spaces equipped with measures � and �, respectively. We assume that � is a prob-
ability measure and that � is a finite measure. Let further V; W be vector spaces of
fixed finite dimensions pV ; pW 2 N, with inner products h � ; � iW ; h � ; � iV and norms
j � jW ; j � jV , respectively. Then

L1.X/; L2.X/ D L2�.X; V / and L1.Z/; L2.Z/ D L2� .Z; W /

denote the bounded measurable, and �- or �- square integrable, V - or W -valued vec-
tor fields defined on X;Z, respectively. Denote by

k � kL2
�
.Z/; k � kL2

�
.X/; h � ; � iL2.Z/; h � ; � iL2.X/

the usual L2-norms and Hilbert space inner products on these spaces. We write gen-
erically k � k1 for the supremum norm of a function over its domain.

We shall consider parameter spaces ‚ that are (Borel-measurable) subsets of
L2.Z; W / – later these will often have to be linear spaces so that Gaussian meas-
ures can be defined on them, but for now this is not necessary. On ‚, measurable
‘forward maps’

� 7! G.�/; G W ‚! L2�.X; V /; (1.8)

are defined. For the PDEs introduced in Section 1.1.2 we will regard the coefficient
f D f� as being parameterised by � 2 ‚, and G will be the solution map � 7! uf�

of (1.2). In this case we have V D W D R and X D Z, but in many other inverse
problems such as those from Sections 1.1.1, 1.1.3 (or see [74, 104]), a more flexible
choice of V;W;X;Z is of interest, which is why we present the general theory in this
way.

1.2.2 A random design regression model with normal errors

Real-world measurements in inverse problems arising from forward data G.�/ in (1.8)
are discrete and subject to observational noise. For instance, with solutions uf of (1.2)
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one typically discretises X into a finite set X1; : : : ; XN for which measurements
uf .Xi / are taken. We regard the Xi ’s as chosen at random from X according to the
probability distribution �. This viewpoint of ‘probabilistic numerics’ (see the notes
to this section for discussion) combines naturally with our second source of random-
ness – the additive measurement error "i occurring when performing a measurement
of G.�/.Xi /. We will follow Gauss [56] and assume that "i follows a normal (Gaus-
sian) distribution, which has a solid probabilistic foundation – for instance, if our
observations arise from time averages (1.7) of solutions uf of the underlying heat
equation, then each "i itself is already a cumulative sum of independent measurement
errors, which by the central limit theorem of probability will be approximately nor-
mally distributed. We note, however, that the assumption that the "i be Gaussian is
not necessary, see the notes to this chapter.

To fix ideas suppose that observations arise as the jointly independent and identic-
ally distributed (i.i.d.) random vectors .Yi ; Xi /NiD1 of the form

Yi D G.�/.Xi /C "i ; "i
i:i:d:
� N.0; IV /; i D 1; : : : ; N; (1.9)

where G is as in (1.8), and the Xi ’s are random i.i.d. covariates drawn from law �

on X, independent of the noise "i . We assume that the inner product of V is chosen
such that the covariance matrix IV of each noise vector "i 2 V is diagonal.

The joint law of the random variables .Yi ;Xi /NiD1 in (1.9) defines a product prob-
ability measure on .V � X/N , and it will be denoted by PN

�
D

NN
iD1 P

i
�

, where we
note P i

�
D P 1

�
for all i . We write P� D P i

�
for the law of a ‘generic copy’ .Y; X/,

which has probability density (Radon–Nikodym derivative)

dP�

d�
.y; x/ � p� .y; x/

D
1

.2�/pV =2
exp

°
�
1

2
jy � G.�/.x/j2V

±
; y 2 V; x 2 X; (1.10)

for dominating measure d� D dy � d�, with dy Lebesgue measure on V .
The infinite product probability measure

N1

iD1 P� describing the law of all pos-
sible infinite sequences of observations (in .V � X/N) will be denoted by PN

�
. The

usual stochasticOP ; oP notation will be used throughout for P DPN
�

or equivalently
PN
�

– see [126] for the standard theory of stochastic convergence. The expectation
operator of PN

�
is denoted by E� and we sometimes write E� for the expectation

under the Xi ’s only, while E" denotes expectation under the noise variables "i only.
We also write shorthand

DN WD ¹Y1; : : : ; YN ; X1; : : : ; XN º; N 2 N; (1.11)

for the full data vector.
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1.2.3 The Bayesian prior and posterior distribution

We now let ‚ be a measurable subset of L2
�
.Z; W / with trace Borel-� -algebra F

– in fact all that follows in this subsection works for parameter spaces ‚ which are
Polish spaces equipped with their Borel � -algebra F . Let… be a probability measure
on .‚;F / that we will often just call the ‘prior’. On the product space‚ � .V � X/

with tensor Borel � -algebra F ˝ .BV ˝A/we can consider a probability measureQ
given by the density

dQ.�; .y; x// D p� .y; x/ d�.y; x/ d….�/; y 2 V; x 2 X; � 2 ‚;

where p� is as in (1.10), and where we assume that .�; x/ 7! G.�/.x/ is jointly F ˝

A � BR measurable. This space formally supports the Bayesian model: the random
variables .Y;X/j� have conditional �-densities

p� .y; x/ d….�/R
V�X

p� .y; x/ d�.y; x/ d….�/
D p� .y; x/;

as in (1.10), whereas � j.Y;X/ has ‘posterior’ density

p� .Y;X/ d….�/R
‚
p� .Y;X/ d….�/

:

Then for an i.i.d. sample from this model we have likewise

.Yi ; Xi /
N
iD1j�

i:i:d:
� PN�

with posterior distribution

…. � jDN / D …. � j.Yi ; Xi /
N
iD1/

of � j.Yi ; Xi /NiD1 on ‚ now given by the ratio

d….� jDN / D

QN
iD1 p� .Yi ; Xi / d….�/R

‚

QN
iD1 p� .Yi ; Xi / d….�/

D
e`N .�/d….�/R
‚
e`N .�/d….�/

; � 2 ‚; (1.12)

where we introduce the notation

`N .�/ D
X
i�N

`i .�/ for `i .�/ D �
1

2
jYi � G.�/.Xi /j

2
V ; (1.13)

which is, up to additive constants, the log-likelihood function log dPN
�
.DN / of the

data DN . At this point the preceding ratios are well defined at least Q-almost surely
because they are conditional distributions/densities on the product space‚�.V �X/.
A second ‘frequentist’ way to make sense of these ratios is discussed before Lem-
ma 1.3.3 below. See also [58, Chapter 1] for more discussion of the latter aspect.



Non-linear statistical inverse problems 10

1.2.4 Posterior computation by MCMC

A Bayesian statistician will base its inferences about � on the posterior distribution
…. � jDN / from (1.12). In our context where G is non-linear, the expression in (1.12)
remains abstract and in absence of analytical formulæ it is unclear how we can extract
practical statistical information from it, specifically if we wish to avoid computation
of the normalising factor which would involve the evaluation of a possibly intract-
able integral over ‚. It is here where Markov chain Monte Carlo (MCMC) methods
enter the stage. The main idea behind MCMC methods is to generate a Markov chain
that has the posterior distribution as invariant measure. This can often be done in a
way that requires at each step a single evaluation of the likelihood function `N .�/
from (1.13), which in turn involves an evaluation of G rather than of its typically
much more complicated inverse G�1, and also bypasses calculation of the normal-
ising factor in (1.12). If such a Markov chain .#k/ is ergodic and ‘mixes well’ we
can collect averages .1=J /

PJ
kD1 #k and use them to numerically approximate the

posterior mean or quantiles – see Figure 1.1 below for an illustration.
We will turn to the study of performance guarantees for MCMC methods later,

but for now let us give a concept proof for how to setup Markov chains that have
prescribed posterior distributions …. � jDN / as invariant measures. Recall that the
distribution of a Markov chain is characterised by its initial condition #0 and by its
transition probabilities Pr.#m 2 Bj#m�1 D t /, t 2 ‚,m 2 N, where B is any (meas-
urable) subset of ‚. By the Markov property, the preceding transition probabilities
are the same for all m, with Markov kernel K.t; �/,

Pr.#1 2 Bj#0 D t / D K.t; B/ for t 2 ‚;B � ‚ (measurable):

A probability measure � on ‚ is called invariant (or stationary) for the Markov ker-
nel K if Z

‚

K.t; B/d�.t/ D �.B/ for all B � ‚ (measurable):

In numerical practice we will work with a high-dimensional Euclidean ‘approxim-
ation’ space RD of ‚, and wish to generate samples #1; #2; : : : ; #M ; : : : from a
Markov chain ¹#m W m 2 Nº taking values in ‚ D RD that has as invariant measure
� D …. � jDN / the posterior distribution.

1.2.4.1 The pCN algorithm as a Metropolis–Hastings algorithm. A general class
of so-called Metropolis–Hastings algorithms arises in settings where we can evaluate
ratios �.s/=q.sjt / for some auxiliary conditional probability density function q. � jt /
on ‚. In this case we can generate a Markov chain ¹#m W m 2 Nº as follows:

(1) For m 2 N and given #m, generate a new draw (the ‘proposal’)

sm � q. � j#m/:
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(2) Define

#mC1 D

´
sm; with probability �.#m; sm/;

#m; with probability 1 � �.#m; sm/;

with ‘acceptance’ probability

�.t; s/ D min
°�.s/
�.t/

q.t js/

q.sjt /
; 1
±
:

The following proposition is standard and left as Exercise 1.4.2.

Proposition 1.2.1. Let the Markov chain ¹#m W m 2 Nº be generated as above and
suppose �; q. � jt /, t 2 ‚; are strictly positive throughout ‚. Then � is an invariant
measure for the Markov chain.

When the prior … giving rise to (1.12) is a Gaussian N.0; †D/-distribution on
‚ D RD with non-singular covariance matrix †D , we can use it to construct the
‘proposal distribution’ q. This leads to the following ‘pCN’ Markov chain:

(1) For m 2 N and given #m, generate a random vector � � N.0;†D/ and set

sm D
p
1 � 2ı #m C

p
2ı �

for some fixed ‘step size’ ı > 0.

(2) Define

#mC1 D

´
sm; with probability �.#m; sm/;

#m; with probability 1 � �.#m; sm/;

with ‘acceptance probabilities’

�.#m; sm/ D min¹e`N .sm/�`N .#m/; 1º:

An implementation of pCN for the non-linear inverse problem from (1.1) can be
found in Figure 1.1 below – this is taken from [90], where further details about the
precise statistical measurement model, step size and choice of prior parameters can
be found.

The statistical intuition behind this algorithm is simple: We compute the new
(conditionally Gaussian) proposal sm and perform a likelihood ratio test against the
previous position #m of the Markov chain. If the likelihood is increased, we always
accept the proposal. If the likelihood is decreased, we still accept with a certain prob-
ability to ensure the Markov chain does not stick to a local optimum. The data DN
only enters the algorithm when computing the likelihood ratios. This method targets
the correct posterior distribution:

Proposition 1.2.2. The preceding pCN Markov chain .#m/ has the posterior dis-
tribution (1.12) as invariant measure whenever the prior … follows a N.0; †D/
distribution on RD D ‚.
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Figure 1.1. Top 3 rows: The 3-dimensional posterior mean field .1=J /
PJ

kD1 #k for sample
sizes N D 200; 400; 800, arising from a (so.3/-valued) Matern Gaussian process prior, applied
to a non-Abelian X-ray transform (1.1). The number of MCMC iterations via pCN is J D

100000. Bottom: the true matrix field �0.

Proof. Note that for our choice of prior the target distribution (1.12) is of the form

�.�/ / exp
°
`N .�/ �

�T†�1
D �

2

±
; � 2 RD;

where `N is as in (1.13). We will show that the pCN chain is a special case of a
Metropolis–Hastings algorithm with proposal density

q. � jt / � N.
p
1 � 2ı t; 2ı†D/ on ‚ D RD; t 2 ‚:

To simplify the algebra we set †D D ID , so that the proposal densities are

q.sjt / / exp
°
�
1

4ı
ks �

p
1 � 2ı tk2

±
; s; t 2 RD;

with k � k the Euclidean norm on RD – but the proof works for any non-singular †D
just as well. Conditional sampling from q. � jt / amounts simply to drawing a normal
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random vector. Basic calculations give

�.s/

�.t/

q.t js/

q.sjt /
D exp

°
`N .s/ �

ksk2

2
� `N .t/C

ktk2

2

±
� exp

°
�
1

4ı
kt �

p
1 � 2ı sk2 C

1

4ı
ks �

p
1 � 2ı tk2

±
D e`N .s/�`N .t/;

showing that the pCN scheme indeed has the appropriate ‘Metropolis–Hastings’ cor-
rection, and Proposition 1.2.1 applies.

We conclude that for Gaussian priors, approximate posterior computation by
MCMC is in principle possible so long as we can evaluate `N .�/ at each iteration.

1.2.4.2 Langevin algorithm. Another approach to sample from a prescribed target
measure � is based on ideas from stochastic differential equations. Here � does not
need to arise from a Gaussian prior as in Proposition 1.2.2 but rather � D �U is a
general Borel probability measure on‚D RD which has a Lebesgue density propor-
tional to e�U for some potential U WRD ! R, specifically,

�U .B/ D

R
B
e�U.�/d�R

RD e�U.�/d�
; B � RD measurable: (1.14)

If the gradient rU of U is Lipschitz continuous, we define the continuous time
Langevin diffusion process as the unique strong solution .Lt W t � 0/ of the stochastic
differential equation (SDE)

dLt D �rU.Lt / dt C
p
2 dWt ; t � 0; Lt 2 RD; (1.15)

where .Wt W t � 0/ is a D-dimensional standard Brownian motion.

Proposition 1.2.3. The above SDE has a path-wise solution .Lt W t � 0/ which is a
continuous time Markov process with invariant measure �U from (1.14).

Proof. This is a standard result in stochastic calculus. The generator of this Markov
process equals the second-order elliptic operator LU D�CrU � r. Then �U solves
the PDE L�

B�U D 0, where L�
B is the adjoint of LB for dx, and hence is an invariant

measure. See [7, p. 46f] or also [13] for details.

The Euler–Maruyama discretisation of the dynamics (1.15) gives rise to the dis-
crete-time Markov chain .#k W k � 0/,

#kC1 D #k � rU.#k/C
p
2 �kC1 for all k � 0; (1.16)

where .�k W k � 1/ form an i.i.d. sequence of D-dimensional standard Gaussian
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N.0; ID�D/ vectors,  > 0 is some fixed step size, and #0 an initial value. By choos-
ing for U D `N C log d… the appropriate potential from (1.12), we can thus target
the posterior measure by the Markov chain .#k W k 2 N/.

Just as in the pCN scheme, running this Markov chain requires drawing a Gaus-
sian variable at each step as well as an evaluation of the gradient of `N (and hence
of G;rG), but neither the computation of G�1 nor of the normalising factor in (1.12).
Note that in contrast to pCN, the above algorithm does not include an ‘accept/reject’
Metropolis–Hastings correction step – the invariant measure of the discrete scheme is
thus slightly different from �U even though the misspecification error decreases with
the discretisation error/step size  , so that the method is still practical in numerical
computation. We will refer to .#k/ as the unadjusted Langevin algorithm (ULA) in
what follows, and its performance will be studied in detail in Chapter 5.

1.3 The frequentist perspective on posterior inference

While we rely on the Bayesian formalism in order to construct the posterior distri-
bution …. � jDN / from which we generate statistical inference algorithms, to obtain
performance guarantees, we will instead take an ‘objective’ point of view and study
the behaviour of …. � jDN / under the ‘frequentist hypothesis’ that the X1; X2; : : : ;
are drawn from the infinite product measure PN

�0
, where �0 2 ‚ is the ‘ground truth

parameter’. This view-point dates back to Laplace [78] and is well-studied in math-
ematical statistics [58, 60, 82, 126] – see also the notes to this section for more on the
history of this problem. It also appears most reasonable in the scientific applications
of PDEs and inverse problems we have in mind, where the prior should be regarded
as a regularisation tool rather than a subjective belief. In this section we give a first
fundamental result about the frequentist behaviour of posterior measures in the set-
ting of the regression model (1.9). In the proofs we will require some information
theoretic inequalities which we derive first.

1.3.1 Information distances for random design regression

Various features of statistical models can be encoded in so-called information dis-
tances on the laws ¹P� W � 2 ‚º indexing the statistical ‘experiment’. In our model
(1.9) these laws are equivalently represented by the probability densities p� from
(1.10). The first and most classical information distance is the ‘Kullback–Leibler’
(KL) divergence, or entropy, given by

KL.P� ; P#/ WD E�

h
log

p�

p#
.Y;X/

i
;

a quantity that is always non-negative by an application of Jensen’s inequality. Some-
times we need to control higher (say, second) moments of the log-ratio in the last
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expectation, so we introduce

V.P� ; P#/ WD E�

h
log

p�

p#
.Y;X/

i2
:

The Hellinger distance h is given by

h2.p� ; p#/ WD

Z
V�X

Œ
p
p� �

p
p# �

2d�

The following proposition relates these distances to more analytical aspects of the
‘forward’ maps G.�/ appearing in our regression model (1.9), assuming the latter are
uniformly bounded by a fixed constant U .

Proposition 1.3.1. Suppose that for a subset‚�L2.Z;W / and some finite constant
U D UG;‚;V > 0 we have

sup
�2‚

jG.�/. �/jV 1 � U: (1.17)

For the model densities from (1.10) arising from (1.9), we have for every �; # 2 ‚,

KL.P� ; P#/ D
1

2
kG.�/ � G.#/k2

L2
�
.X;V /

; (1.18)

V.P� ; P#/ � 2.U 2 C 1/kG.�/ � G.#/k2
L2

�
.X;V /

; (1.19)

as well as

CU kG.�/ � G.#/k2
L2

�
.X;V /

� h2.p� ; p#/ �
1

4
kG.�/ � G.#/k2

L2
�
.X;V /

; (1.20)

where

CU D
1 � e�U

2=2

2U 2
:

Proof. For .Y;X/�P� , from (1.9) with noise variable "�N.0;IV / and using (1.10),
we see that

log
p�

p#
.Y;X/ D

1

2
jG.�/.X/ � G.#/.X/j2V C h";G.�/.X/ � G.#/.X/iV ; (1.21)

and theE� DE�E" expectation of the right-hand side is precisely (1.18) asE" "D 0.
Next, squaring the last displayed identity and using .aC b/2 � 2.a2 C b2/,

E�

h
log

p�

p#
.Y;X/

i2
�
1

2
E�

�
jG.�/.X/ � G.#/.X/j2V

�2
C 2E�E"

˝
";G.�/.X/ � G.#/.X/

˛2
V

� 2.U 2 C 1/kG.�/ � G.#/k2
L2

�
.X;V /

;
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where we have used (1.17) and the fact that conditionally on X , the random variable
h"; G.�/.X/ � G.#/.X/iV is N.0; jG.�/.X/ � G.#/.X/j2V / distributed. This proves
inequality (1.19).

It remains to prove (1.20). We first bound the so-called Hellinger affinity defined
as

�.p� ; p#/ WD

Z
V�X

p
p�p# d� D 1 �

1

2
h2.p� ; p#/; (1.22)

where the second identity is easily verified. In view of (1.10), by writing �V D

.2�/�pV =2e�j � j2
V
=2 for the (Lebesgue-) probability density of a standard multivariate

normal variable Z on the finite-dimensional vector space V , and using the standard
identity Eehu;ZiV D ejuj

2
V
=2, u 2 V; for Laplace transforms of such variables,

�.p� ; p#/

D
1

.2�/pV =2

Z
V�X

exp
°
�
1

4
jy � G.�/.x/j2V �

1

4
jy � G.#/.x/j2V

±
d�.y; x/

D

Z
X

exp
°
�
1

4
.jG.�/.x/j2V CjG.#/.x/j2V /

±Z
V

e
1
2 hy;G.�/.x/CG.#/.x/iV �V .y/dyd�.x/

D

Z
X

exp
°
�
2

8
.jG.�/.x/j2V C jG.#/.x/j2V /C

1

8
jG.�/.x/C G.#/.x/j2V

±
d�.x/

D E� exp
°
�
1

8
jG.�/.X/ � G.#/.X/j2V

±
:

By Jensen’s inequality the right-hand side is lower bounded by

exp
°
�
1

8
kG.�/ � G.#/k2

L2
�
.X;V /

±
:

Combined with (1.22) and the standard bound 1 � e�z � z for z � 0, this gives

h2.p� ; p#/

2
� 1 � exp

°
�
1

8
kG.�/ � G.#/k2

L2
�
.X;V /

±
�
1

8
kG.�/ � G.#/k2

L2
�
.X;V /

;

so that the second inequality in (1.20) follows. For the first inequality we use the basic
consequence of convexity of e�z ,

e�z1 �
e�z2 � 1

z2
z1 C 1 for 0 � z1 < z2;

with choices

z1 D
1

8
jG.�/.X/ � G.#/.X/j2V ; z2 D

U 2

2
;

permitted, in view of (1.17), to the effect

E� exp
°
�
1

8
jG.�/.X/ � G.#/.X/j2V

±
�
e�U

2=2 � 1

4U 2
kG.�/ � G.#/k2

L2
�
.X;V /

C 1:
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Combined with the displayed identity for �.p� ; p#/ and (1.22), this implies

1 �
1

2
h2.p� ; p#/ �

e�U
2=2 � 1

4U 2
kG.�/ � G.#/k2

L2
�
.X;V /

C 1

from which the left-hand side of (1.20) follows immediately.

We see from this proposition that relevant information distances are closely related
to the standardL2

�
.X; V /-norms, as long as the G.�/ are uniformly bounded (without

the latter assumption the story can be quite different, see [20]). In the PDE models
relevant here, the uniform boundedness hypothesis will be satisfied.

1.3.2 A first posterior contraction theorem

Let us introduce the (semi-) metric

dG.�; �
0/ WD kG.�/ � G.� 0/kL2

�
.X;V /

on‚. For any subset‚0 �‚, we denote byN.‚0; dG; �/, � > 0; the minimal number
of balls of dG-radius � needed to cover ‚0.

The proof of the next theorem is based on a general principle that ensures that
posterior measures in i.i.d. models contract about Hellinger neighbourhoods of the
ground truth �0 2 ‚ that generated the data, as long as the prior is not too rough (i.e.,
concentrates on sets of not too large metric capacity) and charges a ‘neighbourhood’
of �0 for the KL- and V -distance of the model with sufficiently high probability. By
Proposition 1.3.1 this translates into a comparable result in the dG-distance when data
arises from (1.9) with uniformly bounded regression functions G.�/.

Theorem 1.3.2. Let …N be a sequence of prior Borel probability measures on some
Borel subset ‚ � L2

�
.Z; W /, and let …N . � j.Yi ; Xi /

N
iD1/ D …N . � jDN / be the res-

ulting posterior distribution (1.12) arising from observations in model (1.9) with
forward map GW‚! L2

�
.X; V /. Assume that for some fixed �0 2 ‚, envelope con-

stants U D UN � 1, kG.�0/k1 � U; and a sequence ıN ! 0 such that Nı2N � 1,
p
NıN =UN ! 1 as N ! 1, the sets

BN WD
®
� 2 ‚ W dG.�; �0/ � ıN ; kG.�/k1 � U

¯
(1.23)

satisfy, for all N large enough,

…N .BN / � e�ANı
2
N for some A > 0: (1.24)

Further, assume that there exists a sequence of Borel sets ‚N � ‚ for which

…N .‚
c
N / � e�BNı

2
N for some B > AC 2, (1.25)

and such that, for all Nm > 0 large enough,

logN.‚N ; dG; NmıN / � Nı2N : (1.26)
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Then, for all 0 < b < B � A � 2, we can choose L D L.B; Nm; b/ large enough such
that

PN�0

�
…N

�
� 2 ‚N ; dG.�; �0/ � LıNC

�1
VN

jDN
�
� 1 � e�bNı

2
N

�
! 0 (1.27)

as N ! 1, where the constant CV is as after (1.20), with

V D VN D max
�
U; sup

�2‚N

kG.�/k1
�
:

Proof. We first need a lemma that we shall also use in different contexts later, and
that also clarifies that the denominator in the formula for the posterior measure (1.12)
is bounded away from zero on events of high PN

�0
-probability, so that the posterior

ratio is well-defined not just Q-almost surely but also in the frequentist sense.

Lemma 1.3.3. Let G be as in the theorem and let � be a probability measure on some
(measurable) subset BN � BN . Then, for `N from (1.13) and all K � 2, we have

PN�0

� Z
BN

e`N .�/�`N .�0/ d�.�/ � e�KNı
2
N

�
�
8.U 2 C 1/

K2Nı2N
:

Proof. Notice first that, by (1.19), log.p�=p�0
/.Y; X/ is square-integrable for the

product measure P�0
˝ �. Then from Jensen’s inequality (applied to log and

R
. �/d�)

and recalling (1.10), the probability in question is bounded by

PN�0

�Z Z
BN

log
p�

p�0

d�.�/ d.PN � P�0
/ � �Kı2N �

Z Z
BN

log
p�

p�0

d�.�/ dP�0

�
;

where PN D .1=N /
PN
iD1 ı.YiXi / is the empirical measure associated to the sample

from P�0
. Now as in (1.21) and by the definition of BN , for all � 2 BN ,

�

Z
log

p�

p�0

dP�0
D
1

2
kG.�/ � G.�0/k

2

L2
�
.X;V /

� ı2N ;

so that forK � 2 and using also Fubini’s theorem, the last probability can be bounded
by

PN�0

�p
N

Z Z
BN

log
p�0

p�
d�.�/ d.PN � P�0

/ �
K
p
Nı2N
2

�
:

Now using the inequalities of Chebyshev and Jensen, Fubini’s theorem, (1.19) from
Proposition 1.3.1 and again the definition of BN �BN , the last probability is bounded
as

4E�0

� R
BN

log.p�0
=p� /.Y;X/ d�.�/

�2
K2Nı4N

�
4
R
BN

V.P�0
; P� / d�.�/

K2Nı4N
�
8.U 2 C 1/

K2Nı2N
;

completing the proof of the lemma.
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We now prove the theorem. In view of the last lemma with � D …. �/=….BN /,
BN D BN , K D AC 2; and (1.24), we can restrict to events

AN D

° Z
‚

e`N .�/�`N .�0/ d….�/ � e�.AC2/Nı
2
N

±
(1.28)

of probability PN
�0
.AN /! 1 as N ! 1. Moreover, using (1.26) and the right-hand

side in (1.20) we can verify the metric entropy condition in [60, Theorem 7.1.4] with
choices "0 D m0ıN and logN."/ D cNı2N , c > 0; constant in " > "0, to deduce
that for every k > 1, we can choose m0 < m large enough and find ‘tests’ ‰N D

‰W .V � X/N ! ¹0; 1º for which

PN�0
.‰N D 1/

N!1
����! 0 and sup

�2‚N

h.p� ;p�0
/>mıN

EN� .1 �‰N / � e�kNı
2
N : (1.29)

Now let us write
N‚N D ‚N \ ¹h.p� ; p�0

/ � mıN º

and N‚cN for its complement in ‚. By (1.12), as N ! 1,

PN�0

�
…. N‚cN jDN / � e�bNı

2
N

�
D PN�0

�R
N‚c

N
e`N .�/�`N .�0/d….�/R

‚
e`N .�/�`N .�0/d….�/

� e�bNı
2
N ; ‰N D 0; AN

�
C o.1/

� PN�0

� Z
N‚c

N

e`N .�/�`N .�0/d….�/.1 �‰N / � e�.bCAC2/Nı
2
N

�
C o.1/:

By Markov’s inequality, decomposing

N‚cN D ‚cN [ ¹h.p� ; p�0
/ > mıN º;

and using Fubini’s theorem as well as

EN�0

NY
iD1

p�

p�0

.1 �‰N / D EN� .1 �‰N / � 1; (1.30)

we further bound the last probability as

e.bCAC2/Nı
2
N

Z
N‚c

N

EN� .1 �‰N / d….�/

� e.bCAC2/Nı
2
N

�
2….‚cN /C

Z
�2‚N Wh.p� ;p�0

/>mıN

EN� .1 �‰N /d….�/
�

. e.bCAC2�B/Nı
2
N C e.bCAC2�k/Nı

2
N

N!1
����! 0;
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where we have used (1.25) and (1.29) with k and then m large enough. The proof of
the theorem is completed after noting that the Hellinger-distance contraction result
implies the one in dG-distance, by virtue of the first inequality in (1.20) with appro-
priate envelope constant.

1.4 Notes

1.4.1 Exercises

Exercise 1.4.1. Show that the solution maps f 7! uf for (1.2) with Lf given by
(1.3), (1.4), respectively, are not linear. [Hint: Initially consider the case d D 1 and
then for d > 1 take f .x1; : : : ; xd / D f .x1/. For the Schrödinger equation this can
also be inferred from the Feynman–Kac formula (A.23).]

Exercise 1.4.2. Prove Proposition 1.2.1. (See, e.g., [112].)

1.4.2 Remarks and comments

Inverse problems and parameter identification problems for PDEs have been studied
for a long time – see [51, 68, 73, 74, 104, 118] and references therein. The PDE (1.2)
with diffusion operator Lf from (1.3) serves as ‘fruitfly’ example throughout large
parts of the literature (see [118, Section 3.7] and [62] for many more references).
The example arising with Schrödinger operators (1.4) has its own physical motiva-
tion (see [8, 9, 75]) but equally importantly provides a template for other ‘perturbed’
differential operators of the form D C f , where D is not necessarily elliptic or of
second order. In fact, the theory laid out in these notes has been demonstrated to
be compatible with the analytically more challenging example of non-Abelian X-ray
transforms from (1.1), see [90], [91], [23] for references. Here one can regard D

to be the geodesic vector field on a simple manifold. Many more such ‘geometric’
non-linear inverse problems are discussed in detail in [74, 104] and serve as further
examples. But the focus of these notes is primarily on statistical aspects of the prob-
lem and the analytically ‘softer’ elliptic model examples already exhibit many of the
main statistical features of the theory.

Random design regression models (1.9) are convenient in our setting because
of the i.i.d. structure of the samples .Yi ; Xi /, which will later on permit the use of
techniques from empirical process theory and concentration of measure [47, 60, 120,
129, 131]. They also provide a natural link between standard information distances
and the L2-structure on the ‘forward data’ G.�/ – Proposition 1.3.1 is essentially due
to [20]. Regarding the Xi as random is a popular approach studied independently in
‘probabilistic numerics’, see [42] and more recently [25]. Random design regression
models can be shown to be ‘asymptotically equivalent’ to most other commonly used
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non-parametric regression models, see [109], and our findings thus also inform such
measurement settings. We further note that the theory in this manuscript works as well
if the noise vector "i is not Gaussian but has mean zero E"i D 0 and sub-Gaussian
moments. As long as we still use the (now mis-specified) ‘quasi-likelihood’ model
arising from Gaussian densities (1.10), one can prove a version of Theorem 1.3.2
following ideas in [58, Section 8.5.2]. A similar remark about the noise variables
applies to developments in later chapters and will not be repeated.

Key references for the Bayesian approach to inverse problems were discussed at
the beginning of this chapter. MCMC methods have been highly influential in stat-
istical science in the last few decades, see [112] for an introductory text and [37],
[65], [18] in the context of the infinite-dimensional models relevant here. See spe-
cifically [65] for a more detailed theoretical treatment of the pCN algorithm in this
context. Langevin MCMC methods also have a long history [113] and recent interest
has been triggered in high-dimensional settings by the articles [39, 48] which will be
relevant in Chapter 5.

Theorem 1.3.2 is a variant of a by now classical contraction rate result for pos-
terior distributions in infinite-dimensional statistical parameter spaces first given in
the landmark paper [57]. An in depth account of this theory can be found in [58]
and what is relevant for the proofs here can also be found in [60, Chapter 7.3]. The
proofs naturally exploit properties of the Hellinger distance which plays a central
role throughout mathematical statistics, see [19,58,60,82,124]. In traditional ‘direct’
models, such posterior ‘consistency’ theorems have a long history with important
contributions by Doob, Le Cam, Schwartz, Freedman, Diaconis, Barron, Shervish,
Wasserman, Ghosal, van der Vaart among others, see [45], [81], [54], [116], [43],
[12], [57] and also [58, Section 6.9] for a precise historical discussion.





Chapter 2

Global stability and posterior consistency

In this section we investigate when the Bayesian posterior distribution solves a non-
linear problem successfully in the sense that it will converge in the large sample limit
(N ! 1) to a Dirac measure at the ‘ground truth’ parameter �0 generating the data
– a notion called posterior consistency. We will quantify that rate of convergence in
norms on the parameter space‚ of interest. Just as in Theorem 1.3.2, this will involve
probabilistic statements under the law PN

�0
.

The main challenge compared to classical ‘direct’ statistical problems here is the
presence of the non-linear map G: Firstly, Bayesian inference can be expected to
recover G.�/ if an appropriate prior for the regression function G.�/ is used (verify-
ing (1.24)). In our setting one will initially employ a – say, Gaussian – prior for the
parameter � of interest. It is not clear whether the implied prior for the regression
functions G.�/ is still adequate, for instance, the prior for G.�/ is not Gaussian any
longer when G is non-linear. This issue will be addressed by a ‘forward regularity’
condition which basically requires Lipschitz continuity of G for correct norms on a
sufficiently large portion ‚0 of the parameter space ‚, and which can be verified
for the examples considered here by regularity estimates for inhomogeneous elliptic
PDEs, as we will show.

The second challenge goes more directly to the heart of the subject: If the ‘forward
map’ G satisfies what is commonly called a stability estimate

k�1 � �2k � c.‚0/kG.�1/ � G.�2/k
� for any �1; �2 2 ‚0; (2.1)

for suitable norms, sufficiently large subsets ‚0 � ‚ and ‘stability’ Hölder exponent
� > 0, then there may be hope that a Bayes method that successfully infers the regres-
sion maps G.�/ also recovers the parameter � of interest in the inverse problem. Such
stability estimates can be regarded as ‘quantitative statements’ about the injectivity
of the map � 7! G.�/ and hence require a deeper understanding of the analytical
properties of the inverse problem at hand. They imply in particular statistical identi-
fiability of the model ¹P� W � 2 ‚º, but for non-linear G the implied constant c.‚0/

typically grows with the diameter of ‚0 and the stability estimate does not hold on
the entire parameter space ‚. This causes difficulties in the application of techniques
from Bayesian non-parametric statistics with the unbounded parameter spaces that
naturally support Gaussian priors.

We will show how the preceding programme can be made to work nevertheless
for a class of Gaussian process priors (infinite-dimensional normal distributions).
We start with the analytical properties that the forward map G will be required to
verify and check them for our main PDE examples. We then draw from the theory
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of Gaussian measures in infinite-dimensions to apply Theorem 1.3.2 with appropri-
ate ‘regularisation sets’ ‚N , and ultimately deduce a variety of posterior consistency
theorems.

2.1 Analytical hypotheses on the forward map and PDE examples

Recall the forward map GW‚!L2
�
.X;V / from (1.8), where the domain‚ is assumed

to be a (measurable) subset of L2
�
.Z;W /. We introduce a norm k � kR of some linear

regularisation subspace R of L2
�
.Z; W / whose choice will later be related to the

prior … used. One could think of R as a Sobolev or Hölder space of functions over a
domain Z. We write

BR.M/ D ¹� 2 R W k�kR �M º (2.2)

for the ball of radius M in the space R.

2.1.1 Forward regularity conditions for G

For Z a bounded smooth domain in Rd , the standard Sobolev spaces H �.Z/ of W -
valued vector fields are naturally defined, and so are their topological dual spaces
.H �.Z//�, see Appendix A.1. When � D 0, we have H 0.Z/ D L2

�
.Z; W / and note

that then k � k.H0.Z//� D k � kL2
�

in (2.4) by self-duality of Hilbert spaces.

Condition 2.1.1. Consider a parameter space ‚ � L2
�
.Z; W / and measurable map

GW‚! L2
�
.X; V /. Let � � 0. Suppose for all M > 0 and some normed linear sub-

space .R; k � kR/ of L2
�
.Z; W /, there exist finite constants U � 1 and L > 0 (that

may depend on M ) such that

sup
�2‚\BR.M /

sup
x2X

jG.�/.x/jV � U (2.3)

and

kG.�1/�G.�2/kL2
�
.X;V / �Lk�1��2k.H�.Z//� for all �1; �22‚\BR.M/: (2.4)

The condition requires that on bounded subsets of R, the forward map G is uni-
formly bounded and Lipschitz from .H �/� to L2

�
. As we are taking a dual space,

for � > 0 the dual norm is weaker than the standard L2
�
.Z; W /-norm on ‚ (when

� is Lebesgue measure on Z). One can regard � as measuring the ‘forward smooth-
ing’ nature of G. Determining the correct value of � can be challenging in non-linear
inverse problems but the results that follow can be used for any choice of � � 0.
(When � D 0 we can slightly weaken the requirement (2.4), see Exercise 2.4.4.) The
theory also easily generalises to G that is only Hölder instead of Lipschitz continuous,
but this will not be relevant in these notes.
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2.1.1.1 Condition 2.1.1 and PDE examples. To use Gaussian process priors we will
require ‚ in Condition 2.1.1 to be a linear space. For the model PDE from (1.2), the
parameter f indexing the differential operators Lf in (1.3) and (1.4) does not lie in a
linear space (as f � fmin or f � 0 are required), but we can map a linear space of � ’s
into positive f ’s by use of a ‘link’ function (such as f D f� D e� > 0). The forward
map G is then the solution map of these PDEs composed with the link function.

As for these PDEs both parameters �; f� and solutions G.�/ are all real-valued
functions defined on the same bounded smooth domain X �Rd , we will take X DZ,
V D W D R, and � D � equal to Lebesgue measure normalised to �.X/ D 1 when
verifying Condition 2.1.1 in what follows. We will use standard techniques from the
theory of elliptic PDEs reviewed in Appendix A.

2.1.1.2 Schrödinger equation. Let us first show how this works in the elliptic PDE
(1.2), where

Lf D
�

2
� f

is a Schrödinger operator (1.4). We choose a parameter space ‚ � H �.X/ � C.X/

for some � >d=2, and enforce positivity of the potential f 2H � by re-parameterising
f� D e� > 0. The forward map is given by the unique solution

G.�/ � u� ; � 2 ‚; (2.5)

of (1.2) with Lf D Lf�
, smooth boundary ‘temperatures’ h � hmin > 0 and with

vanishing source g D 0. The Feynman–Kac formula (A.23) (for standard Brownian
motion  D 1=2 and V D f� � 0) implies (cf. (A.26))

sup
�2‚

kG.�/k1 D sup
�2‚

ku�k1 � khk1 � U <1; (2.6)

which verifies (2.3) without even specifying a regularisation space R. To check the
Lipschitz property (2.4), note that for any �i 2C.X/we necessarily have u�1

�u�2
D

h � h D 0 on @X as well as

Lf�1
Œu�1

� u�2
� D .Lf�2

� Lf�1
/u�2

D .f�1
� f�2

/u�2
on X;

in other words, w D G.�1/ � G.�2/ solves the inhomogeneous Schrödinger equa-
tion Lf�1

w D .f�1
� f�2

/u�2
on X subject to Dirichlet boundary conditions w D 0

on @X. The inverse Schrödinger operator L
�1
f for these boundary conditions is a

Lipschitz operator on L2
�
.X/ with uniform in f � 0 Lipschitz-constant c > 0, see

(A.12) with  D 1=2, V D f . Hence, using also (2.6),

kG.�1/ � G.�2/kL2
�
D kL�1

f�1
Œ.f�1

� f�2
/u�2

�kL2
�

� cku�2
k1kf�1

� f�2
kL2

�

� C.c;M/khk1k�1 � �2kL2
�
;
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where M � maxi k�ik1 is required only in the last step to control the Lipschitz
constant of e� . (Choosing a positive ‘link’ function �WR ! Œ0;1/ with k�0k1 <1

[instead of the exponential map], one can obtain G that is in fact globally Lipschitz
on ‚ D H � .) Let us summarise this in the following result.

Proposition 2.1.2. Let‚�H �.X/ for some � > d=2. The forward map G from (2.5)
satisfies Condition 2.1.1 for � D 0 and for any regularisation norm k � kR that dom-
inates the k � k1-norm.

What precedes is already useful and general and will be used in later chapters,
even though in terms of forward Lipschitz estimates it is not fully sharp: The forward
map G is actually smoothing of order two and Condition 2.1.1 can be checked for
� D 2 instead of just � D 0 (unless the boundary temperatures h are ‘irregular’). In
this case, however, the non-linearity of the map becomes more apparent and stronger
regularisation norms k � kR are required to control the Lipschitz constants in the pre-
ceding estimates. We examine how this works for the diffusion equation and leave the
details for the Schrödinger case to the reader, see Exercise 2.4.1 of this section.

2.1.1.3 Diffusion equation. We now study solutions to the equation (1.2) with diver-
gence form operator Lf D r � .f r/ from (1.3). As parameter space we consider a
subset of the Sobolev space ‚ � Hˇ .X/, ˇ > 1C d=2. While weaker hypotheses
on ˇ are conceivable, we assume sufficient regularity to streamline the exposition.
For a fixed positive scalar fmin > 0, we then parameterise positive conductivities as

f� WD fmin C e� for � 2 Hˇ .X/; (2.7)

ensuring strict ellipticity of the operator Lf�
. The forward map is then given by the

solution
G.�/ � uf�

; � 2 ‚; (2.8)

of (1.2) with Lf D Lf�
and smooth g; h.

To check Condition 2.1.1, we can infer the uniform boundedness (2.3) from the
Feynman–Kac representation (A.23) with  D f� , V D 0 (see also (A.26)),

kuf�
k1 � c.X; d; fmin/kgk1 C khk1 � U <1: (2.9)

For (2.4) notice that for any distinct �i 2 ‚ and on X,

Lf�1
ŒG.�1/ � G.�2/� D g � g C .Lf�2

� Lf�1
/Œuf�2

� D r � ..f�2
� f�1

/ruf�2
/;

and also that G.�1/ � G.�2/ D h � h D 0 on @X. Thus G.�1/ � G.�2/ itself solves
an equation of the type (1.2) with operator Lf D Lf�1

, boundary values h D 0 and
source g given in the right-hand side in the last display and can hence be represented
via the inverse L�1

f�1

of Lf�1
for Dirichlet boundary conditions. Using the elliptic
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regularity estimate from Proposition A.5.1 (with  D f�1
; V D 0), we have

kG.�1/ � G.�2/kL2
�
D

L�1
f�1
Œr � ..f�2

� f�1
/ruf�2

/�

L2

�

� C.M/
r � ..f�2

� f�1
/ruf�2

/

.H2

0
/�
; (2.10)

so long as the regularisation norm k � kR bounds the C 1-norm of � to the effect that
(using also (2.7)) sup�2BR.M/kf�kC1 � C.M/ <1.

Note that Proposition A.5.2 with  D f� 2H
ˇ , for ˇ > 1C d=2 and V D 0, com-

bined with the Sobolev imbeddingHˇC1�C 2 imply that sup�2BR.M/kuf�
kC2 <1

whenever the k � kR-norm dominates that Hˇ -norm. Then, applying the divergence
theorem (A.7) to the vector field .f�2

� f�1
/ruf�2

, we have

kr � ..f�2
� f�1

/ruf�2
/k.H2

0
/� D sup

'2H2
0
; k'k

H2�1

ˇ̌̌ Z
X

'r � ..f�2
� f�1

/ruf�2
/
ˇ̌̌

D sup
'2H2

0
; k'k

H2�1

ˇ̌̌ Z
X

.f�2
� f�1

/r' � ruf�2

ˇ̌̌
� kf�2

� f�1
k.H1/� sup

k'k
H2�1

kr' � ruf�2
kH1

. kuf�2
kC2kf�2

� f�1
k.H1/� ;

using also (A.3). Finally, for maxi k�ikC1 � M , the series
P1

kD1.�1 � �2/
k�1=kŠ

converges (absolutely) to a function that is uniformly bounded in C 1, and by (A.3)
we see

kf�2
� f�1

k.H1/� D sup
k'k

H1�1

ˇ̌̌ Z
X

.�2 � �1/'e
�1

1X
kD1

.�2��1/
k�1

kŠ

ˇ̌̌
. k�1��2k.H1/� :

In summary this gives

kG.�1/ � G.�2/kL2
�

. c.M/k�1 � �2k.H1/� ;

and since the Hˇ -norm (ˇ > 1C d=2) dominates the C 1-norm by (A.4) we have:

Proposition 2.1.3. Let ‚ � Hˇ .X/ for some ˇ > 1 C d=2. The forward map G

from (2.8) satisfies Condition 2.1.1 for � D 1 and for any regularisation norm k � kR

that dominates the Hˇ .X/-norm.

2.1.2 Injectivity and stability estimates

A statistical model of probability distributions ¹P� W � 2 ‚º is called identifiable
if P� D P� 0 can only occur whenever � D � 0. In the case of observations arising
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from (1.9), with uniformly bounded G.�/ as in (2.3), this is equivalent to injectivity
of the map � 7! G.�/ on the parameter space ‚ (as follows, e.g., from (1.20)). To
obtain statistical guarantees for posterior distributions, mere injectivity is not enough
and we need to quantify in a certain sense ‘how injective’ the map G is.

Consider first the forward map (2.5) arising from solutions uf to the Schrödinger
equation. As a consequence (A.25) of the Feynman–Kac formula, there exists c D

c.X; d / such that uf � hmine
�ckf k1 > 0, and so we can divide by uf and represent

f D
�uf

2uf
on X; (2.11)

in particular, if uf D ug , then f D g and the map f 7! uf is injective (from H � !

H �C2, say, cf. (A.11)). If �0 D log f0, f0 > 0; is the true parameter, the last identity
suggests a stability estimate of the form

k���0kL2 . kf��f0kL2 . kuf�
�uf�0

kH2 for any � 2‚DH �; �>d=2; (2.12)

but the constants in these inequalities are not uniform in � 2H � , among other reasons
because the lower bound for uf�

deteriorates as ee
k�k1 for large k�k1. This illus-

trates why regularisation is important: if we know � is bounded in a suitable R-norm,
we can control the constants in these inequalities and then interpolate the H 2-norms
(using (A.5)) to bound them by a constant factor times the L2-norm raised to some
Hölder exponent � < 1. This motivates the following hypothesis on the ‘inverse mod-
ulus of continuity’ of G as in (2.1).

Condition 2.1.4 (Stability estimate). Let BR.M/ be as in (2.2) for the regularity
space R. For some � > 0 and all M > 0, suppose there exists a constant L0 D L0

G

such that for all ı > 0 small enough,

sup
®
k� � �0kL2

�
W � 2 ‚ \ BR.M/; kG.�/ � G.�0/kL2

�
� ı

¯
� L0ı�: (2.13)

For the Schrödinger equation this condition can be checked (see Exercise 2.4.1)
using the preceding ideas. Condition 2.1.4 is relevant in non-linear inverse problems
more generally as only a ‘stability inequality’ (2.13) is required rather than an inver-
sion formula for G�1 such as (2.11).

2.1.2.1 Stability estimate for Darcy’s problem. We will prove a stability estimate
for the forward map (2.8) arising with the diffusion operator from (1.3). The inverse
problem can be cast as determining a solution f D f� in the first-order PDE

rf � v C af D g on X; (2.14)

given vDru, aD�u, g and boundary values uD 0 (say). When ru does not vanish
(e.g., as in Exercise 2.4.2), we could use the method of characteristics to solve this
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equation in f along the flow lines (integral curves) of the vector field ru (where it
becomes an ODE). The hypothesis that ru does not vanish is however rather atypical
given that u arises as a solution to (1.2), and when ru has zeros this approach is not
appropriate. While this issue will resurface in later chapters, for now we note that
when g > 0, then for any x 2 X where ru.x/ D 0, we must have �u.x/ > 0, and
this can be used to show injectivity of G by an argument using ‘integrating factors’. To
accommodate such scenarios in a unified way we will require the hypothesis (2.15),
discussed in some more detail after the proof.

Proposition 2.1.5. Let �1; �2 2 Hˇ .X/, ˇ > 1 C d=2; be such that k�ikC1 � B ,
�1 D �2 on @X, and denote by uf�

the corresponding solutions to (1.2) with Lf�

from (1.3), f� as in (2.7), and for smooth g; h. Assume, moreover,

inf
x2X

h1
2
�uf�

.x/C �jruf�
.x/j2

Rd

i
� c0 > 0 (2.15)

holds for � D �1 and some �; c0 > 0. Then for some finite constant

C D C.B;�; c0;X; g; h; fmin/ > 0;

we have
k�1 � �2kL2 � Ckuf�1

� uf�2
kH2 :

Proof. We will use throughout that uf�
2HˇC1.X/ defines an element of C 2.X/ in

view of (A.4) and (A.11) with V D 0. Define the operator

h 7! T� .h/ WD r � .hruf�
/; T� W H 1

c .X/! L2.X/:

Lemma 2.1.6. Under the hypotheses of Proposition 2.1.5 with � D �1, we have

kT� .h/kL2 D kr � .hruf�
/kL2 � ckhkL2

for all h 2 H 1
c .X/ and some constant c D c.�; U; c0/ > 0, where U is from (2.9).

Proof. Let us write u� D uf�
in the proof. Applying the divergence theorem (A.7) to

any v 2 C 1.X/ vanishing at @X gives

h�u� ; v
2
iL2 C

1

2
hru� ;r.v

2/iL2 D
1

2
h�u� ; v

2
iL2 :

Consider first h 2 C1.X/ of compact support in X (and h ¤ 0 without loss of
generality). Scaling h by integrating factors, we set v D e��u�h with � > 0 to be
chosen and obtain

1

2

Z
X

r.v2/ � ru� D �

Z
X

�jru� j
2
Rd v

2
C

Z
X

ve��u�rh � ru� ;
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so that, by the Cauchy–Schwarz inequality,ˇ̌̌ Z
X

�1
2
�u�C�jru� j

2
Rd

�
v2

ˇ̌̌
D

ˇ̌̌
h.�u�C�jru� j

2
Rd /; v

2
iL2 C

1

2
hru� ;r.v

2/iL2

ˇ̌̌
D

ˇ̌
hh�u� Crh � ru� ; he

�2�u� iL2

ˇ̌
� N�kr � .hru� /kL2khkL2 (2.16)

for N� D exp.2�ku�k1/. We next lower bound the multipliers of v2 in the left-hand
side of (2.16). By (2.15),ˇ̌̌ Z

X

�1
2
�u� C �jru� j

2
Rd

�
v2

ˇ̌̌
� c0

Z
X

v2;

and combining this with (2.16) we deduce, for appropriate c0 > 0,

kr � .hru� /kL2khkL2 � c0kvk2
L2 & khk2

L2 ;

which proves the lemma for all h 2 C1.X/ of compact support. If a sequence hn
of such functions converges in H 1.X/-norm to some h as n ! 1, then hn and
using (A.3) also T� .hn/ converge in L2 to h and T� .h/, respectively, and hence the
inequality of the lemma is preserved after taking limits, so that the result extends to
the completion H 1

c .X/ of C1
c .X/ for the k � kH1-norm.

To deduce Proposition 2.1.5, we first notice that by the mean value theorem, for
Q�.x/ 2 Œ�1.x/; �2.x/�,

f�1
� f�2

D e�1 � e�2 D e
Q� .�1 � �2/;

and since the �i are bounded in C 1, they and then also Q� are uniformly bounded by a
constant depending only on B , whence

k�1 � �2kL2 � c.B/kf�1
� f�2

kL2 :

Then let us write hD f�1
� f�2

which defines an element ofH 1
0 .X/DH 1

c .X/ under
the hypotheses maintained. By (1.2) we have

r � .hru�1
/ D r � .f�2

r.u�2
� u�1

// D Lf�2
.u�2

� u�1
/;

and hence for the constants on the right-hand side depending only on an upper bound
for kf�2

kC1 . c.B/ <1, we obtain

kr � .hru�1
/kL2 . ku�2

� u�1
kH2 :

By Lemma 2.1.6, the left-hand side is lower bounded by a constant multiple of
khkL2 D kf�1

� f�2
kL2 , so that the result follows.
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Condition (2.15) can be verified for a large class of constellations of h; g in (1.2),
with Lf from (1.3). It clearly holds whenever the gradient of u� does not vanish (for
examples, see Exercise 2.4.2). More generically if hD 0 and the ‘initial temperatures’
in (1.5) are strictly positive, g � gmin > 0, then

0 < gmin � g D f��uf�
Crf� � ruf�

on X; (2.17)

so that either�uf�
� gmin=.2kf�k1/ or jruf�

.x/jRd � gmin=.2kf�kC1/ has to hold
on X, which allows one to check Condition (2.15).

To conclude, the verification of Condition 2.1.4 for R D Hˇ .X/, ˇ > 1C d=2;

now follows from Proposition 2.1.5, an elliptic regularity estimate for solutions uf�

of (1.2), and interpolation. This is summarised in the final result of this subsection.

Proposition 2.1.7. Let �; �0 2Hˇ .X/ for some ˇ > 1C d=2 satisfy � D �0 D 0 on
@X and letB � max.k�kHˇ ;k�0kHˇ /. Let G.�/D u� be the forward map from (2.8),
and suppose further (2.15) holds for � D �0 and some �; c0. Then there exists a
constant c D c.B; �; c0;X; g; h; fmin; ˇ/ such that

k� � �0kL2 � ckG.�/ � G.�0/k
�

L2 for � D
ˇ � 1

ˇ C 1
;

in particular, Condition 2.1.4 holds with this choice of � and L0 D L0.B/ if the regu-
larisation norm k � kR dominates the Hˇ -norm.

Proof. Since the Hˇ norms bound the C 1-norms by (A.4), we deduce from Propos-
ition 2.1.5 and (A.5) that

k� � �0kL2 . ku� � u�0
kH2 . ku� � u�0

k
.ˇ�1/=.ˇC1/

L2 ku� � u�0
k
2=.ˇC1/

HˇC1 ;

with constants only depending on permitted quantities. The last factor is uniformly
bounded in view of the elliptic regularity estimate in Proposition A.5.2 with  D

f� ; f�0
, V D 0, so that the result follows.

2.2 Regularisation with Gaussian process priors

In this section Z will be a bounded domain in Rd with smooth boundary. (For Z

equal to a d -dimensional Torus, the proofs that follow work as well if one considers
periodic Sobolev spaces.) We will apply Theorem 1.3.2 to prior measures… that arise
from Gaussian processes .X.z/ W z 2 Z/ indexed by the domain Z. That is,… will be
an infinite-dimensional Gaussian distribution that is the law of a random field taking
values in a closed linear subspace ‚ of the Hilbert space L2

�
.Z/, see Appendix B.1

for a review of these concepts.
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Normed linear subspaces R � ‚ where the measure … is supported, i.e.,

….R/ D ….� 2 ‚ W k�kR <1/ D 1;

will be shown to serve as choices for the ‘regularisation spaces’ in Conditions 2.1.1
and 2.1.4 – they often encode ‘path regularity’ of the Gaussian process on its index
set Z. Further features of these prior measures are related to so-called reproducing
kernel Hilbert spaces (RKHS) H of the prior. These are also subspaces of ‚ but do
not (in infinite dimensions) support …. Rather they describe geometric ‘covariance-
related’ properties of …. In the theory that follows we can think of R D Hˇ .Z/ and
H D H˛.Z/ with ˛ > ˇ C d=2, perhaps endowed with further boundary conditions
(via Hˇ

c .Z/ or Hˇ
0 .Z/ spaces, see Appendix A.1).

Condition 2.2.1. Let …0 be a centred Gaussian Borel probability measure on the
linear space ‚ � L2

�
.Z; W / with RKHS H . Suppose further that …0.R/ D 1 for

some separable normed linear subspace .R; k � kR/ of ‚.

In Appendix B.1.3 we review some standard examples of Gaussian processes
satisfying Condition 2.2.1 (see also Exercise 2.4.3). The prior … D …N arises from
the base prior …0 as the law L.�/ after ‘rescaling’

� D N�d=.4˛C4�C2d/� 0; � 0 � …0; (2.18)

for ‘regularity’ parameter ˛ > 0 to be chosen and where � is the ‘forward smooth-
ing degree’ of G from (2.4). In other words, we shrink the random Gaussian series
� 0 towards zero – quantitatively this entails (in our context, essential) extra regu-
larisation of the posterior measure since one can heuristically (say if H is finite-
dimensional) think of the ‘reweighting’ factor in (1.12) as being of Gaussian density
form

d…. �/ / exp
°
�
N d=.2˛C2�Cd/k � k2

H

2

±
;

thus penalising large values of k�kH more than one would do without re-scaling.
While the catonic (subjective) Bayesian may wish to avoid such N -dependent pri-
ors, penalties of this type are widely used in the analysis of regularised least squares
procedures (e.g., [124, p. 174]) and also in the Bayesian context [127].

Theorem 2.2.2. Suppose Condition 2.1.1 holds for the forward map G, some � � 0,
U <1, regularisation space R and bounded domain Z�Rd with smooth boundary.
Let the prior …0 satisfy Condition 2.2.1 for this choice of R and suppose its RKHS
H satisfies the continuous imbedding

H � H˛
c .Z/ if � � 1=2 or H � H˛.Z/ if � < 1=2;

and denote by …N the law of the rescaled prior from (2.18). If �0 2 H \ R, then
the hypotheses (1.24), (1.25) and (1.26) in Theorem 1.3.2 hold for some A > 0, for
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sequence
ıN D N�.˛C�/=.2˛C2�Cd/; (2.19)

and any B if the ‘regularisation sets’ are chosen as

‚N D
®
� 2R W � D �1C �2;k�1k.H�/� �MıN ; k�2kH �M; k�kR �M

¯
; (2.20)

for M DM.B/ sufficiently large. In particular, (1.27) holds with V D U <1.

Proof. The proof is organised in four steps. The small ball computation in the second
step determines the sequence ıN , and the first and third steps combined verify the
deviation bound (1.25), while the fourth step checks the complexity condition (1.26).
We note that the proof in fact works for any subset N‚N of ‚N as long as …. N‚cN / �
e�BNı

2
N holds for some B > A C 2. We use throughout that N d=.4˛C4�C2d/ D

p
NıN for our choice of ıN .

Step 1. As R is separable the Hahn–Banach theorem implies that its norm can be
represented as

k� 0kR D sup
T2T

jT .� 0/j; � 0 2 R;

where T is a countable family of continuous linear forms on .R;k � kR/. In particular,
for � 0 � …0, the collection of random variables ¹T .� 0/ W T 2 T º defines a centred
Gaussian process with countable index set and Pr.k� 0kR D supT2T jT .� 0/j<1/D 1

by hypothesis. Thus Fernique’s theorem [60, Theorem 2.1.20] implies initially that
Ek� 0kR � D for some constant D depending only on the base prior …0, and then
gives the bound

….k�kR > M/ D …0.k� 0kR > M
p
NıN /

� …0
�
k� 0kR �Ek� 0kR >

M
p
NıN

2

�
� e�cM

2Nı2
N

�
1

2
e�BNı

2
N (2.21)

for all M large enough (and since
p
NıN � 1).

Step 2. We next address the small ball computation for (1.24) with sets BN

from (1.23). Since �0 is assumed to belong to R, we have for allM and NM D NM.M/

large enough that

k� � �0kR �M ) k�kR �M C k�0kR � NM;

and by (2.3) in Condition 2.1.1 then also kG.�/k1 � U for some constant U D

UG. NM/. Next, using also (2.4) in Condition 2.1.1, [60, Corollary 2.6.18] and the
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Gaussian correlation inequality, Theorem B.1.2, we have

….� W kG.�/ � G.�0/kL2 � ıN ; kG.�/k1 � U/

� ….� W kG.�/ � G.�0/kL2 � ıN ; k� � �0kR �M/

� …
�
� W k� � �0k.H�/� �

ıN

LG. NM/
; k� � �0kR �M

�
� e�

1
2Nı

2
N

k�0k
2
H…

�
� W k�k.H�/� �

ıN

LG. NM/

�
�….k�kR �M/: (2.22)

The last probability equals

…0.k� 0kR �M
p
NıN / D 1 �…0.k� 0kR > M

p
NıN / � 1 � e�cMNı

2
N �

1

2
;

by virtue of (2.21) in Step 1 (and for M large enough). So it remains to lower bound
the middle factor in (2.22), which equals

…0
�
� 0 W k� 0k.H�/� �

p
Nı2N

LG. NM/

�
:

We use (A.21) to the effect that a ball h˛c .r/ of radius r in H �H˛
c has log-�-covering

numbers bounded as

logN.h˛c .r/; k � k.H�/� ; �/ . ��d=.˛C�/ for any 0 < � < r; (2.23)

and this remains valid for � < 1=2 also with H˛
c replaced by H˛ as discussed after

(A.21). Hence an application of Theorem B.1.1 in the ambient Banach space B D

.H �.Z//� � L2.Z/ supporting …0 gives, after some basic calculations,

…0
�
� 0 W k� 0k.H�/� �

p
Nı2N

LG. NM/

�
� e�NaNı2

N (2.24)

for some Na > 0. Overall the right-hand side in (2.22) is lower bounded by

1

2
exp

°
�

�
NaC

k�0k
2
H

2

�
Nı2N

±
� e�ANı

2
N

for A D NaC k�0k
2
H
=2 > 0.

Step 3. We next show (1.25). By Step 1, it suffices to prove

….� W � D �1 C �2 W k�1k.H�/� �MıN ; k�2kH �M/ � 1 �
1

2
exp¹�BNı2N º

for M large enough. We can ignore the 1=2 factor by increasing the constant B . For
the rescaled prior measures this requires a lower bound for

…0
�
� 0 W � 0 D � 01 C � 02; k�

0
1k.H�/� �M

p
Nı2N ; k�

0
2kH �M

p
NıN

�
:
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Using Theorem B.1.1 as before (2.24), we deduce that for some c > 0,

� log…0.� 0 W k� 0k.H�/� �M
p
Nı2N / � c.M

p
Nı2N /

�2d=.2˛C2��d/;

so that taking any M > .B=c/�.2˛C2��d/=.2d/ implies

� log…0.� 0 Wk� 0k.H�/� �M
p
Nı2N /�B.

p
Nı2N /

�2d=.2˛C2��d/
DBNı2N : (2.25)

Next, denote
BN D �2ˆ�1.e�BNı

2
N /;

where ˆ is the standard normal cumulative distribution function. Then, by standard
inequalities for ˆ�1 (e.g., [58, Lemma K.6]), we have BN '

p
BNıN as N ! 1,

so that for M �
p
B ,

…0
�
� 0 W � 0 D � 01 C � 02; k�

0
1k.H�/� �M

p
Nı2N ; k�

0
2kH �M

p
NıN

�
� …0

�
� 0 W � 0 D � 01 C � 02; k�

0
1k.H�/� �M

p
Nı2N ; k�

0
2kH � BN

�
:

By (2.25) and the isoperimetric inequality for Gaussian measures, see [60, The-
orem 2.6.12], the last probability is then lower bounded by

ˆ
�
ˆ�1Œ…0

N .k�
0
k.H�/� �M

p
Nı2N /�C BN

�
� ˆ.ˆ�1Œe�BNı

2
N �C BN /

D 1 � e�BNı
2
N ;

concluding the proof.
Step 4. It remains to prove (1.26). By definition of the set ‚N and (2.4) from

Condition 2.1.1, it suffices to construct a NmıN =4-covering in .H �/�-distance of a
ball in H intersected with a ball in R, for all NmD Nm.M;L/ large enough. The bound
required in (1.26) then follows directly from (2.23) with � D . Nm=4/ıN and Nm large
enough. (The case � < 1=2 again follows similarly, cf. after (A.21)).

The last theorem applies readily to choices for …0 discussed in Appendix B.1.3.
For high-dimensional ‘sieved’ priors expressed in appropriate basis functions of the
Dirichlet Laplacian, the proofs require minor adjustments and they also permit some
refinements regarding the ‘regularisation sets’ ‚N , see Exercise 2.4.3. We also note
that when � D 0, it suffices to require Condition 2.1.1 with the stronger k � k1-norm
replacing the L2 D H 0 norm on the right-hand side in (2.4), see Exercise 2.4.4.

2.3 Convergence of posterior measure and mean

From the preceding developments we can now state the following posterior contrac-
tion rate result in the inverse problem at hand.
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Theorem 2.3.1. Suppose the Gaussian process prior …N and forward map G satisfy
the conditions of Theorem 2.2.2 with ‚N as in (2.20), some regularisation norm R,
ıN D N�.˛C�/=.2˛C2�Cd/ and some � � 0. If …. � j.Yi ; Xi /NiD1/ D …. � jDN / is the
posterior distribution from (1.12) arising from observations in the model (1.9), then
for all b > 0, we can choose m large enough such that as N ! 1,

PN�0

�
…N

�
� 2 ‚N ; kG.�/ � G.�0/kL2

�
.X;V / � mıN jDN

�
� 1 � e�bNı

2
N

�
! 0:

Moreover, assuming also Condition 2.1.4 for the present choice of R and some
�;L0 > 0, we deduce that

PN�0

�
…N

�
� 2 ‚N ; k� � �0kL2

�
� L0.mıN /

�
jDN

�
� 1 � e�bNı

2
N

�
D o.1/: (2.26)

Proof. From Theorems 1.3.2 and 2.2.2 we deduce directly the contraction rate (2.27)
on the ‘forward level’. Next Condition 2.1.4 implies the set inclusion®

� 2 ‚N ; kG.�/ � G.�0/kL2
�
.X;V / � mıN

¯
�

®
k� � �0kL2

�
� L0.mıN /

�
¯
;

so that (2.26) follows directly from (2.27).

To construct a concrete statistical estimator (or ‘algorithm’), we extract a specific
feature of the posterior distribution such as the mean E…Œ� jDN � or posterior mode
(maximiser of the posterior surface). The former is well defined as a Bochner integral
and a natural Bayesian estimator, not the least since we can form ergodic averages of
the MCMC outputs to numerically approximate it. The following theorem shows how
the contraction rate from (2.3.1) translates into a convergence rate for E…Œ� jDN �.

Theorem 2.3.2. Under the conditions of (2.26) in Theorem 2.3.1, we have that

kE…Œ� jDN � � �0kL2
�
D OPN

�0

.ı
�
N /:

Proof. Let us write L2 D L2
�

in this proof and set �N D L0.mıN /
� , with constant m

to be chosen large enough. Then, by the inequalities of Jensen and Cauchy–Schwarz,

kE…Œ� jDN � � �0kL2

� E…Œk� � �0kL2 jDN �

� �N CE…Œk� � �0kL21¹k� � �0kL2 > �N ºjDN �

� �N CE…Œk� � �0k
2
L2 jDN �

1=2….k� � �0kL2 > �N jDN /
1=2;

and we now show that the last term is OPN
�0
.�N / to prove the theorem. We recall the

sets AN from (1.28) which satisfy PN
�0
.AN / ! 1 as N ! 1. Then using (2.26),

Markov’s inequality, Fubini’s theorem, (1.30) and that the Gaussian measure …0 is
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supported in L2 and hence integrates k � k2
L2 to a finite constant,

PN�0

�
E…Œk� � �0k

2
L2 jDN � �….k� � �0kL2 > �N jDN / > �

2
N

�
� PN�0

�
E…Œk� � �0k

2
L2 jDN �e

�bNı2
N > �2N

�
C o.1/

� PN�0

�
e�bNı

2
N

R
k� � �0k

2
L2 e

`N .�/�`N .�0/d….�/R
e`N .�/�`N .�0/d….�/

> �2N ; AN

�
C o.1/

� e.AC2�b/Nı
2
N ��2N

Z
k� � �0k

2
L2E

N
�0
Œe`N .�/�`N .�0/� d….�/C o.1/

� e.AC2�b/Nı
2
N ��2N

Z
k� � �0k

2
L2 d….�/C o.1/

N!1
����! 0;

for m and then b large enough.

Putting all what precedes together we can obtain posterior contraction theor-
ems for the non-linear inverse problem arising from the model PDE (1.2) with Lf
from (1.3) or (1.4). We formulate a detailed result for Darcy’s problem and leave the
Schrödinger case to Exercise 2.4.1.

Recall from (2.17) that simple sufficient conditions for the hypothesis (2.15) in
the following theorem can be given in terms of the source function g in (1.2), and that
natural priors satisfying the required hypotheses exist (see Appendix B.1.3).

Theorem 2.3.3 (Bayes solution of Darcy’s problem). Consider a Gaussian process
prior …0 verifying Condition 2.2.1 with ‚ D R D H

ˇ
c .X/ for some ˇ > 1C d=2

and RKHS H � H˛
c .X/ for some ˛ > ˇ C d=2. Let the rescaled prior …N arise

from (2.18) for some 0 � � � 1. Consider the forward map GW‚ ! L2
�
.X/ from

(2.8) and assume that (2.15) is satisfied for � D �0 2 H . Let…. � j.Yi ;Xi /NiD1/ be the
posterior distribution from (1.12) arising from observations in the model (1.9). Let
ıN D N�.˛C�/=.2˛C2�Cd/. Then for all b > 0 we can choose m large enough such
that as N ! 1,

PN�0

�
…N

�
�; kG.�/ � G.�0/kL2

�
� mıN ; k�kHˇ � mjDN

�
� 1 � e�bNı

2
N

�
D o.1/: (2.27)

Moreover, for � D .ˇ � 1/=.ˇ C 1/ and constant M > 0 large enough, we also have

PN�0

�
…N

�
� W k� � �0kL2

�
> Mı

�
N jDN

�
� e�bNı

2
N

�
D o.1/

as N ! 1, and likewise the posterior mean satisfies

kE…Œ� jDN � � �0kL2
�
D OPN

�0

.ı
�
N /: (2.28)

Proof. Proposition 2.1.3 verifies Conditions 2.1.1 for � D 1 and then for any 0 �

� � 1. Moreover, for all � 2 ‚ D H
ˇ
c � H

ˇ
0 (see Appendix A.1) the boundary

values .f� /j@X D 1C fmin co-incide at @X, so that Proposition 2.1.7 verifies Condi-
tion 2.1.4. The result then follows from Theorems 2.3.1 and 2.3.2.
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One shows easily that the same convergence rate toward f�0
is inherited by the

induced estimates f� D fmin C e� ; � �…. � j.Yi ;Xi /
N
iD1/ of the conductivity, since e�

is Lipschitz on bounded sets of Hˇ . Inspection of the proof further shows that when
0 � � < 1=2, one can replace Hˇ

c ; H
˛
c by Hˇ

0 ; H
˛
0 , respectively, in the hypotheses

of the preceding theorem. The preceding theorem shows that the posterior contracts
towards �0 at a rate as close to 1=

p
N as desired in the ‘smooth case’ where ˛; ˇ !

1, which is near-optimal in this situation. A discussion of more general optimality
considerations can be found in the notes below.

Remark 2.3.4 (Relationship to other inverse problems). A classical non-linear inverse
problem (the Calderón problem) arising with the diffusion operator Lf from (1.3)
was discussed already briefly in Section 1.1.1, where only boundary measurements
of uf are available. We refer to [1] for an account of the precise forms of statistical
measurement models one can consider. As mentioned earlier the resulting forward
map G is injective [92, 119] even in absence of interior measurements, but it is also
‘severely ill-posed’ in the sense that the recovery guarantees are at best of logarithmic
order .logN/�a, a > 0; in natural statistical measurement settings and with parameter
spaces for f paralleling those in Theorem 2.3.3. A proof of this fact as well as many
more relevant references can be found in [1]. We can thus conclude from the previous
theorem that the availability of ‘interior’ measurements of the solutions uf of (1.2) in
Darcy’s problem substantially accelerates these convergence rates to algebraic ones
(i.e., N�a for some a > 0). Note however that in other settings where only bound-
ary measurements (‘scattering data’) are available, algebraic rates can be achieved
– see [90] for the non-linear inverse problem with non-Abelian X-ray transforms
from (1.1), with proofs that follow the same lines as those laid out in this chapter.
The information-theoretic complexity of statistical recovery rates thus depends on
possibly subtle interactions between the types of measurements one takes and the
underlying partial differential equation. For data assimilation problems discussed in
Section 1.1.3, see [94, 99].

2.4 Notes

2.4.1 Exercises

Exercise 2.4.1. Consider the Schrödinger forward map G from (2.5) and let �0 2H �

for some � > 2C d=2. Show that G satisfies the forward regularity Condition 2.1.1
with � D 2 and R D H � . [Hint: adapt the arguments from (2.10) and below it,
or see the proof of [100, Theorem 12].] Show further that G satisfies the stability
Condition 2.1.4 with this choice of R and � D �=.2 C �/. [Hint: Track the con-
stants in (2.12) and then use interpolation and elliptic regularity as in the proof of
Proposition 2.1.7; alternatively see [100, Lemma 28].] Then prove an analogue of
Theorem 2.3.3 with contraction rates ı�N ; ıN D N�.˛C2/=.2˛C4Cd/.
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Exercise 2.4.2. For Lf from (1.3) with f D 1 (the standard Laplacian), consider
solutions uf to (1.2) with g D 2 identically and h D .j � j2

Rd � 1/=d . Show that if
X is a domain separated away from the origin, then jru1j � c > 0 on X. Show by
perturbation that this lower bound extends to ruf whenever kf � 1kHˇ < �, � small
enough, and ˇ > 1C d . Then verify Condition (2.15) for such f D f� .

Exercise 2.4.3. For eigen-pairs .�j ; ej / 2 .0;1/ � H 1
0 of the Dirichlet Laplacian

�L1;0 from (A.9) and ıN as in (2.19) with � D 0, consider a prior …N D Law.�/ as

� D
1

p
NıN

DX
jD1

gj�
�˛=2
j ej for D . Nı2N and ˛ > 1C

d

2
:

For � 2 ‚ denote its projection onto the linear span ED of ¹ej W j � Dº by �D .
Suppose for G satisfying Condition 2.1.1 and ground truth �0 2 H˛

0 , we have

kG.�0/ � G.�0;D/kL2 �
ıN

2
: (2.29)

Show that the conclusions of Theorem 2.2.2 hold true with regularisation sets

‚N �
®
� 2 H˛

0 \ED W k�kH˛ �M
¯

and that hence Theorem 2.3.3 holds with ˇ replaced by ˛ for this prior. [Hint: If…0 is
the law of the infinite series from (B.1) then its RKHS H equals QH˛ � H˛

0 . We also
have…0.R/D 1 for RDH

ˇ
0 just as in the last step of the proof of Theorem B.1.3. We

can then follow the steps of the proof of Theorem 2.2.2 for this choice of H ;R; �D 0;

and with…N the law of � D � 0D=.
p
NıN /, � 0 �…0. One uses that the projection onto

ED does not increase H ;R-norms, and in the small ball calculation (2.22) we use
(2.29). On the sets ‚N from (2.20), we can then use the definition of the QH˛-norm
in (A.15), Weyl’s law (A.14) and Parseval’s identity, to estimate

k�1kH˛ . k�1k QH˛ . D˛=d
k�1kL2 � .Nı2N /

˛=d ıN �M:�

Exercise 2.4.4. Prove Theorem 2.2.2 for the case � D 0 and under the weaker hypo-
thesis where k�1 � �2k1 replaces k�1 � �2k.H0/� on the right-hand side of (2.4)
in Condition 2.1.1. [Hint: The proof is the same, but instead of (2.23), one uses
the entropy bound (4.184) in [60] and applies Theorem B.1.1 in the Banach space
L1.Z/.]

2.4.2 Remarks and comments

Conditions such as 2.1.1 and 2.1.4 have been used implicitly or explicitly in the stat-
istical analysis of non-linear inverse problems for a while, we mention [93, 97, 100,
133] among others. Their verification for the elliptic PDE models here is fairly routine
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but does require some attention to the exact dependence of the constants on the para-
meter space employed: Proposition 2.1.5 is from [100] – see also [69,95] – but results
of this flavour go back as far as [110], with a recent reference on the topic being [24].
The main ideas combine with more complex non-linear inverse problems where such
stability estimates are often also available (but more difficult to obtain), see, e.g.,
[90, 103], [21, 23] and also more generally [104].

The main mathematical mechanisms behind Theorem 2.2.2 have been introduced
in the important contribution [128] for ‘direct’ statistical inference problems, see
also [58]. The present form of this theorem relevant for non-linear inverse problems
via ‘rescaled’ Gaussian priors that ensure sufficient ‘posterior regularity’ to permit
the application of stability estimates is due to [90]. That reference [90] also contains
the first proofs of results such as Theorems 2.3.1 and 2.3.2 in the non-linear setting.
In the context of Darcy’s problem, the consistency Theorem 2.3.3 was first obtained
in [62] by adapting the ideas from [90]. For specific (‘sieved’) Gaussian process pri-
ors one can give improved results for the posterior regularity sets ‚N from (2.20),
see Exercise 2.4.3 and also [23, 101].

Regarding optimality of the results, one can prove that the rate ıN obtained
in (2.27) for the ‘PDE-constrained regression problem’ is optimal in a minimax sense
(see [100, Theorem 10]), which implies in particular that Proposition 2.1.3 cannot
hold for � > 1. In contrast, the rate ı�N from (2.28) is unlikely to be sharp, since we
have not attempted to optimise the exponent � in the stability estimate in Propos-
ition 2.1.7. For ‘smooth’ conductivities where ˛; ˇ ! 1, the rate in (2.28) does
approach the optimal convergence rate 1=

p
N of finite-dimensional models. But

the optimal reconstruction rate for Darcy’s problem with general Sobolev regularity
remains open at present. For the Schrödinger equation, the minimax optimal rate for
inferring f in L2-distance is N�˛=.2˛C4Cd/, see [93] and Exercises 2.4.1, 2.4.3. Our
focus here is not on ‘optimal’ rates but to provide sufficient conditions for posterior
consistency with ‘algebraic’ rates N�a, a > 0, for a flexible class of commonly used
Gaussian process priors. Such contraction rate results constitute the key ‘localisation’
step in the analysis of posterior measures in subsequent chapters.



Chapter 3

Information operators and curvature

The contraction rate theorems from Section 2.3 provide ‘global’ conditions on for-
ward maps G that ensure that posterior distributions …. � jDN / (and their means)
arising from Gaussian process priors concentrate on L2

�
-balls centred at the ground

truth �0. The radius of these balls was shown to shrink at rate N�a for some a > 0,
with N being the sample size, and a depending on the Sobolev regularity of the
prior …, on analytical properties of the map G, and on �0.

Now suppose one ‘zooms in’ to such a local neighbourhood of �0 of the posterior
measure, and that G admits a good (say quadratic) approximation by its linearisa-
tion operator (derivative) DG�0

at �0. In this case the posterior may start to display
some remarkable universality features which are the subject of the remainder of these
lecture notes. We will see that these features depend on the inverse problem only
via DG�0

and on an appropriate adjoint operator DG�
�0

, both to be defined carefully
below. In analogy to the notion of the ‘information matrix’ used in classical (semi-)
parametric statistics [126], one may call DG�

�0
DG�0

the information operator. Both
the information operator and DG�

�0
encode a degree of ‘local identifiability’ of the

statistical model near �0, and also quantify the ‘local curvature’ at �0 of the ‘asymp-
totic least squares fit functional’. In this chapter we will review and lay out some
of these ideas from semi-parametric statistics and then connect them to the high-
dimensional inverse problems/PDE settings relevant here.

3.1 Information geometry for Gaussian non-linear regression models

The idea to describe ‘information theoretic’ features of statistical models ¹P� W � 2‚º

by the derivative of the log-likelihood .d=d�/ log dP� at the ‘true value’ �0 is at
least hundred years old and was advocated perhaps most prominently by R. A. Fisher.
See [126] for an account of the classical theory, whose main ideas and terminology we
will follow here. In our non-linear regression model (1.10) these derivatives depend
on the inverse problem via the linearisation of the forward map GW‚ ! L2

�
.X; V /

from (1.8), where we recall that the domain‚ is assumed to be a (measurable) subset
of L2

�
.Z; W /.

The following condition stipulates the existence of a continuous derivative DG�0

of G at �0 in given directions h 2H , whereH is a linear tangent space of admissible
directions. When the parameter space ‚ is a linear space (as is relevant when using
Gaussian process priors), it is natural to choose‚DH , but see after Definition 3.1.2
for more discussion.
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Condition 3.1.1. Let �0 2 ‚ and let H � L1.Z; W / be a linear space such that
the paths ¹�0 C h; khk1 < �; h 2 H º; lie in ‚ for some � > 0. Suppose the map G

from (1.8) satisfies as khk1 ! 0,

kG.�0 C h/ � G.�0/ �DG�0
Œh�kL2

�
.X;V / � ��0

Œh� D o.khk1/ (3.1)

for some continuous linear operator

I�0
� DG�0

W .H; h � ; � iL2
�
.Z;W //! L2�.X; V /: (3.2)

Variations of the previous condition can be considered too but the current form
will be convenient for the PDE settings we have in mind.

By the Riesz representation theorem, the operator I�0
from (3.2) has a Hilbert

space adjoint operator

I��0
W L2�.X; V /! .H; h � ; � iL2

�
.Z;W // �

NH (3.3)

(with NH denoting Hilbert-space completion), for which

hI�0
h; giL2

�
D hh; I��0

giL2
�
; h 2 H;g 2 L2�:

This then leads to the following definition:

Definition 3.1.2. For a forward map G satisfying Condition 3.1.1 for tangent spaceH
and operator I� from (3.2), the information operator is defined as

I��0
I�0

W .H; h � ; � iL2
�
.Z;W //! .H; h � ; � iL2

�
.Z;W //:

Of course we can extend I�
�0

I�0
to all of NH by continuity. We note that at this

stage, the choice of ‚ is not just one of a natural domain for the map G, but also rep-
resents a commitment on the statistical model as it determines the (maximal) tangent
space H . For instance, if ‚ D H , the ‘complexity’ of the set H of paths near �0
is determined by the complexity of the parameter space ‚. In this case, restricting a
priori to a L2

�
-closed subspace‚0 �‚ changes the adjoint operator I�

�0
and then also

the information operator. But in our infinite-dimensional setting, L2
�
-dense subspaces

give rise to the same definition – for example, choosing‚DHˇ .Z/ or‚D L1.Z/

makes no difference as their completions for the L2
�
-norms are both L2

�
(when Z is a

bounded smooth domain in Rd and � is the Lebesgue measure, say).

3.1.1 The LAN expansion

A large class of ‘regular’ statistical models ¹P� W � 2‚º admit what is called a ‘locally
asymptotically normal’ (LAN) expansion of the logarithms of the likelihood ratios

log
dP

�0Ch=
p
N

dP�0

.DN / � N
�
�
1

2
khk2LAN; khk

2
LAN

�
; �0 2 ‚; (3.4)
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along local paths �0 C h=
p
N 2 ‚, h 2 H , assuming data DN � PN

�0
, and where

h � ; � iLAN defines an inner product on the tangent spaceH with ‘LAN-norm’ k � kLAN.
The distribution on the right-hand side is not just normal but perhaps more import-
antly also coincides with the distribution of the log-likelihood ratio (Radon–Nikodym
density)

log
dPh

dP0
.Z/ for Z � dP0; (3.5)

where dPh is the distribution of a Gaussian variable Z D h C W with unknown
mean ‘shift’ parameter h 2 H and W a centred Gaussian white noise process on
.H; h � ; � iLAN/. (We refer to [60] for the definition of such processes as well as to
the Cameron–Martin theorem required to show that the distribution of (3.5) indeed
equals the right-hand side on (3.4).) The gist of Le Cam theory [82,126,129] is that in
LAN settings the asymptotic inference problem in the model ¹P� W � 2‚º can locally
near �0 be regarded as the much simpler one of inferring the shift h from a Gaussian
observation Z � dPh.

For the Gaussian regression model (1.9), such a LAN expansion holds as soon as
the forward map G satisfies some natural conditions.

Theorem 3.1.3. Suppose that Condition 3.1.1 holds for some �0 2 ‚, and fix any
h 2 H � L1.Z/. Assume further that for some constant C D CG;h;� ,

kG.�0 C sh/ � G.�0/k1 � C jsj for all jsj small enough: (3.6)

Then the log-likelihood ratio process in the model (1.9) with marginal densities given
in (1.10) satisfies, as N ! 1, the asymptotic expansion

log
dPN

�0Ch=
p
N

dPN
�0

.DN / D WN .h/ �
1

2
kI�0

Œh�k2
L2

�
.X;V /

C oPN
�0

.1/ (3.7)

for random variables

WN � �
1

p
N

NX
iD1

hI�0
Œh�.Xi /; "i iV

d
�! N.0; kI�0

Œh�k2
L2

�
.X;V /

/; (3.8)

where
d
�! denotes convergence in distribution (under PN

�0
) of real random variables.

In particular, the model satisfies the LAN-approximation (3.4):

log
dPN

�0Ch=
p
N

dPN
�0

.DN /
d
�! N

�
�
1

2
kI�0

Œh�k2
L2

�
.X;V /

; kI�0
Œh�k2

L2
�
.X;V /

�
(3.9)

as N ! 1.
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Proof. We recall the notation (1.13) so that `N .�/ equals log dPN
�

up to universal
additive constants. Then under PN

�0
we have

`N .�0/ � `N

�
�0 C

h
p
N

�
D �

1

2

NX
iD1

�
jYi � G.�0/.Xi /j

2
V �

ˇ̌̌
Yi � G

�
�0 C

h
p
N

�
.Xi /

ˇ̌̌2
V

�
D �

1

2

NX
iD1

�
j"i j

2
V �

ˇ̌̌
G.�0/.Xi / � G

�
�0 C

h
p
N

�
.Xi /C "i

ˇ̌̌2
V

�
D

NX
iD1

D
"i ;G.�0/.Xi / � G

�
�0 C

h
p
N

�
.Xi /

E
V

C
1

2

NX
iD1

ˇ̌̌
G.�0/.Xi / � G

�
�0 C

h
p
N

�
.Xi /

ˇ̌̌2
V
� I C II:

We can write

I D
1

p
N

NX
iD1

h"i ;DG�0
Œh�.Xi /iV

C

NX
iD1

D
"i ;G.�0/.Xi / � G

�
�0 C

h
p
N

�
.Xi / �DG�0

h h
p
N

i
.Xi /

E
V
:

The first summand amounts to the term WN in (3.7), and (3.8) then follows from
I�0
Œh� 2 L2

�
.X; V / and the central limit theorem. Now, by independence and Condi-

tion 3.1.1, the last summand has variance bounded by the second moment

NE�

ˇ̌̌
G.�0/.Xi /�G

�
�0C

h
p
N

�
.Xi /�DG�0

h h
p
N

i
.Xi /

ˇ̌̌2
V
DN�2�0

h h
p
N

i
D o.1/;

hence, by Markov’s inequality, it is oPN
�0
.1/ and negligible in the asymptotic distribu-

tion. For term II, we first centre at its E� expectation

1

2

NX
iD1

�ˇ̌̌
G.�0/.Xi /�G

�
�0C

h
p
N

�
.Xi /

ˇ̌̌2
V
�E�

ˇ̌̌
G.�0/.Xi /�G

�
�0C

h
p
N

�
.Xi /

ˇ̌̌2
V

�
C
N

2

G.�0/ � G
�
�0 C

h
p
N

�2
L2.X/

: (3.10)

For the first term we can bound the variance of the summands

Zi D
ˇ̌̌
G.�0/.Xi / � G

�
�0 C

h
p
N

�
.Xi /

ˇ̌̌2
V
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via the local Lipschitz property (3.6) as

EZ2i �

G.�0/ � G
�
�0 C

h
p
N

�4
1

.
1

N 2
;

so that by independence and Chebyshev’s inequality Var.
PN
iD1Zi=2/ . NN�2 ! 0

for fixed h and hence
P
i Zi=2 D oPN

�0
.1/ is asymptotically negligible. We finally

note thatG��0 C h
p
N

�
� G.�0/ �DG�0

h h
p
N

i
CDG�0

h h
p
N

i
k
2
L2.X/

D

DG�0

h h
p
N

i2
L2.X/

C
2

p
N

D
DG�0

Œh�;G
�
�0 C

h
p
N

�
� G.�0/ �DG�0

h h
p
N

iE
L2.X/

C

G�� C
h

p
N

�
� G.�0/ �DG�0

h h
p
N

i2
L2.X/

D
1

N
kDG�0

Œh�k2
L2.X/

C o
� 1
N

�
;

where we have used Condition 3.1.1. Therefore the second term in (3.10) features the
second term required in the right-hand side of (3.7) plus asymptotically negligible
terms, completing the proof of (3.9).

3.1.2 Cramer–Rao bounds and inverse information

We can analyse finer properties of inference problems with infinite-dimensional para-
meter spaces‚ by studying linear functionals h�; iL2

�
; � 2‚;where runs through

a collection of ‘test functions’. Following standard ideas from functional analysis, we
can ‘learn’ various properties of an infinite-dimensional problem by understanding
sufficiently large collections of such one-dimensional subproblems. In this section
we use ideas from semi-parametric statistics to derive what ‘optimal’ procedures can
attain in the LAN model from Theorem 3.1.3 in dependence of analytical properties
of the test function  and the operator I�0

. These ideas set the stage for studying
universal Gaussian approximations to Bayesian posterior measures in Chapter 4.

3.1.2.1 The local asymptotic minimax bound for linear functionals. For H the
tangent space from Condition 3.1.1, suppose for now that a linear functional ‰ W

‚! R can be represented as

‰.h/ D h Q �0
; I�0

hiL2
�

for all h 2 H , and for some Q �0
2 L2�.X; V /: (3.11)

Notice that by the Cauchy–Schwarz inequality such ‰ is continuous on H for the
LAN-norm kI�0

. �/kL2
�

. Whenever such Q �0
exists, we can take it to belong to the
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closure IH of the linear space

IH D ¹w D I�0
.h/ W h 2 H º

in L2
�

, by orthogonal projection onto IH if necessary. Assuming (3.11) and the LAN
expansion from Theorem 3.1.3, the following is a classical result from mathematical
statistics [126, 129]. We assume that I�0

is injective but this is not necessary (see
Exercise 3.4.1).

Theorem 3.1.4. Consider data .Yi ; Xi /NiD1 in the model (1.9), where G satisfies the
hypotheses of Theorem 3.1.3 with tangent space H . Suppose that I�0

WH ! L2
�

is
injective and that the functional‰W‚! R satisfies (3.11). Then the local asymptotic
minimax risk for estimating ‰ at �0 is lower bounded as

lim inf
N!1

inf
N N W.V�X/N !R

sup
h2H

khk
L2

�

�1=
p
N

NEN�0Ch
. N N �‰.�0C h//2 � k Q �0

k
2

L2
�

: (3.12)

Proof. The result follows from [129, Theorem 3.11.5] applied to the LAN model
from Theorem 3.1.3. In the former theorem we choose quadratic loss `D . �/2, Banach
space B D R (so existence of a tight Gaussian limit is implied by the finiteness of
k Q �0

kL2
�

) and with Hilbert space norm k � k D kI�0
. �/kL2

�
on the tangent space H ,

noting also that the map ‰ satisfies, by (3.11) and the Cauchy–Schwarz inequality,

j‰.h/j � k Q �0
kL2

�
khk;

and it is hence continuous from H ! B.

In particular, for functionals ‰ as in (3.11), there is hope for the existence of
efficient

p
N -consistent estimators that attain this lower bound. Let us shed some

more light on the condition (3.11). If ‰ is of the more natural form

‰.�/ D h�;  iL2
�

for some  2 L2� ; (3.13)

then (3.11) can be rewritten as requiring that

 D I��0

Q �0
for some Q �0

2 L2�; (3.14)

in other words, that  lies in the range R.I�
�
/ of the adjoint operator I�

�0
. This is

related to the local identifiability of our model via the standard Hilbert space identity
(? denoting orthogonal complement)

ker.I�0
/ D R.I��0

/?; (3.15)

so it requires, in particular, that  does not lie in the kernel of I�0
(acting on L2� ). But

note that unless the range of I��0
is closed, even if  … ker.I�0

/, so that  2 R.I�
�0
/,

it does not need to belong to R.I�
�0
/.
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A sufficient (but not necessary) condition for (3.14) is that  lies in the range of
the information operator I�

�0
I�0

. Indeed if N 2 H solves the information equation

I��0
I�0

N D  (3.16)

for the given  , then we can use Q �0
D I�0

N 2 L2
�

in (3.11). We will turn to this
issue again in Section 4.1.

3.1.2.2 The information number and its inverse. When (3.11) holds, the lower
bound in Theorem 3.1.4 has variational characterisation

k Q �0
k
2

L2
�

D sup
0¤wDI�0

.h/; h2H

h Q �0
; wi2

L2
�

hw;wiL2
�

: (3.17)

Indeed, the Cauchy–Schwarz inequality gives one side of the inequality and the con-
verse follows from taking a sequence w 2 IH approaching Q �0

2 IH .
If the target of inference is a functional of the form‰.�/D h�; iL2 from (3.13),

then the characterisation (3.17) can be related to the efficient information number
i�0;H; for (unbiased) estimation of‰ over the sub-models ¹�0C sh W jsj< �;h 2H º

appearing in the classical Cramér–Rao theorem: We first set

i�0;h; WD

kI�0
hk2
L2

�

h ; hi2
L2

�

; h 2 H;

and define

i�0;H; � inf
h2H; h ;hi

L2
�

¤0

kI�0
hk2
L2

�

h ; hi2
L2

�

: (3.18)

Next, if the range condition (3.14) holds, then we can rewrite the denominator as
hI�
�0

Q �0
; hi2L2

�
D h Q �0

; I�0
hi2L2

�
. Also (3.15) implies that  is then necessarily ortho-

gonal on the kernel of I�0
and we deduce

k Q �0
k
2

L2
�

D sup
h2H; I�0

h¤0

h Q �0
; I�0

hi2
L2

�

hI�0
h; I�0

hiL2
�

D i�1�0;H; 
: (3.19)

3.1.2.3 Non-existence of the inverse information. When the information number
i�0;H; is non-zero so that the quantity (3.19) is finite, the lower bound from The-
orem 3.1.4 can often be ‘matched’ by non-parametric Bayesian methods by (i) solving
the information equation (3.16) and by (ii) making the techniques underlying the
proof of Theorem 3.1.3 quantitative and ‘uniform’ in relevant classes of alternatives h
– this will be the content of Section 4.1.
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In contrast, if the lower bound in Theorem 3.1.4 is infinite, this introduces funda-
mental limitations to the proof methods arising from LAN expansions. Specifically,
when considering inference on functionals ‰ from (3.13), the following theorem
shows that the adjoint range condition (3.14) is necessary for the existence of a
non-zero information number (3.18), and for the possibility of locally uniformly
p
N -consistent estimation of the scalar parameter ‰.�/. This will become relevant

in Chapter 4, too.

Theorem 3.1.5. Consider data .Yi ; Xi /NiD1 in the model (1.9), where G satisfies the
hypotheses of Theorem 3.1.3 with tangent space H and adjoint score operator I�

�0

from (3.3). Consider a functional ‰.�/ D h�;  iL2
�

for some  2 L2
�

for which

 … R.I��0
/ WD

®
h D I��0

g for some g 2 L2�.X; V /
¯
: (3.20)

Then the efficient information number from (3.18) equals zero, i�0;H; D 0, and

lim inf
N!1

inf
N N W.V�X/N !R

sup
h2H

khk
L2

�

�1=
p
N

NEN�0Ch
. N N �‰.�0 C h//2 D 1: (3.21)

Proof. That i�0;H; D 0 follows from a functional analytic argument showing that
the ratio in (3.18) necessarily vanishes if (3.20) holds – see Theorem B.4.1 in the
appendix for the proof.

Then assuming i�0;H; D 0, we augment the observation space to include meas-
urements .Zi ; Yi ; Xi /NiD1 � NPN

�0
, where the

Zi
i:i:d:
� N.h�0;  iL2

�
; �2/

are independent of the .Yi ; Xi /’s, and where �2 > 0 is known but arbitrary. The
new statistical model ¹ NPN

�
W � 2 ‚º again verifies the LAN approximation (3.4) with

‘augmented’ LAN norm

khk2LAN D kNI�0
hk2
L2

�

D kI�0
hk2
L2

�

C ��2
h ; hi2

L2
�

; h 2 H; (3.22)

as follows from Theorem 3.1.3, a standard tensorisation argument for the LAN prop-
erty in independent sample spaces, and the fact that a N .h�0;  iL2 ; �2/ model has
LAN ‘norm’ ��2h ; hi2

L2 , by a simple direct calculation with Gaussian densities.
The new efficient information from (3.18) for estimating ‰.�/ from the augmented
data (and with identical tangent space) is now of the form

Ni�0;H; D inf
h

kI�0
hk2
L2

�

C ��2h ; hi2
L2

�

h ; hi2
L2

�

D i�0;H; C ��2
D ��2 > 0;

where we have used the fact that i�0;H; D 0.
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To proceed we note that the linear functional ‰. �/ is continuous on H for the
augmented LAN-norm (3.22) so that we can invoke the Riesz representation theorem
on NH (or, if NI�0

is not injective on NH , on the quotient space of NH for the kernel of
NI�0

) to the effect that

‰.h/ D hNI�0
Qh; NI�0

hiL2
�
; h 2 H; for some Q �0

� NI�0
Qh 2 . NIH /:

In particular, ‰ now verifies (3.11) in the augmented setting and one then shows (see
Exercise 3.4.2) that mutatis mutandis, (3.12) and (3.19) hold in the augmented model
as well, with linearisation operator NI�0

and tangent space H . In particular,

lim inf
N!1

inf
N N W.R�V�X/N !R

sup
h2H

khk
L2

�

�1=
p
N

NEN�0Ch
. N N �‰.�0 C h//2 � Ni�1�0;H; 

D �2

for estimators N based on the more informative data. The asymptotic local minimax
risk in (3.21) exceeds the quantity in the last display, and letting �2 !1 implies the
result.

3.2 Gradient stability, local convexity, and concentration

In this section we look at another aspect that is determined by the linearisation oper-
ator DG�0

D I�0
of G at the ground truth �0 – namely the local curvature of the

log-likelihood function `N .�/ from (1.13) featuring in the expression of the pos-
terior measure (1.12). We will show that under certain conditions on DG�0

, the ‘least
squares fit’ �`N .�/ is locally convex near the ground truth �0 with high PN

�0
-proba-

bility. This implies that the posterior measure …. � jDN / arising from Gaussian pri-
ors will be locally log-concave in that region, which will be exploited further in
Chapter 5.

3.2.1 Convexity of �`N and the gradient of G

We introduce finite-dimensional spaces

RD ' span¹ej W 1 � j � Dº � ED � ‚; (3.23)

arising from a set of orthonormal basis functions ej 2 L2
�
.Z; W / used to ‘discret-

ise’ the ambient linear parameter space ‚ � L2
�
. We denote the Euclidean norm

on ED ' RD by k � kED
. A prototypical example pursued below is to take the

eigenfunctions of the Dirichlet Laplacian � on a bounded smooth domain Z as in
Exercise 2.4.3 from earlier. While D is finite, we think of it as ‘high-dimensional’,
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since lettingD!1 will reduce the approximation error. The gradient vectors rG.�/

of G. �/.x/WED ! R, x 2 X; are now defined via partial derivatives

@

@�j
G.�/ D

@

@tj
G

� DX
jD1

tj ej

�
; with tj D h�; ej iL2

�
; (3.24)

where � D
PD
jD1 tj ej 2 ED .

In view of the non-linearity of G, the ‘least squares fit’ �`N .�/ D �
PN
iD1 `i .�/

from (1.13) is neither globally nor locally convex for the given observation vector.
Indeed, assuming G is sufficiently smooth, the empirical Hessian of �`N .�/ equals
the sum of all

�r
2`i .�/ D ŒrG.�/.Xi /�ŒrG.�/.Xi /�

T
C ŒG.�/.Xi / � Yi �Œr

2G.�/.Xi /�: (3.25)

Quadratic forms of the last expression may have an arbitrary sign, different for dis-
tinct � , and so the Hessian matrix is not necessarily positive semi-definite. But if
we assume for the moment that �0 2 ED (later we will consider its projection �0;D
onto ED) and take E�0

expectations under the model equation (1.9) in the last iden-
tity, we see that the second term in (3.25) vanishes at � D �0, and that hence for any
v 2 ED ' RD ,

vTŒ�E�0
r
2`i .�0/�v D krG.�0/

Tvk2
L2

�

:

We deduce that if the gradient rG.�/ satisfies the ‘gradient stability’ estimate

krG.�0/
Tvk2

L2
�

& kvk2ED
; (3.26)

then on average the negative log-likelihood function has a positive definite Hessian
at �0, and we expect this bound to extend (by continuity) to �E�0

r2`.�/ at least for �
in a neighbourhood of �0. We can then use tools from high-dimensional probability
to deduce that the discretely sampled functions `N concentrate around their statistical
means sufficiently well to inherit the local curvature.

The hypothesis (3.26) is a quantitative injectivity condition on the linearisation
operatorDG�0

from Condition 3.1.1 expressed in terms of its action on the discretisa-
tion spaceED . Under Condition 3.1.1 withH �ED , the requirement (3.26) becomes

hrG.�0/
Tv;rG.�0/

TviL2
�
D hDG�0

Œv�;DG�0
Œv�iL2

�
D hv;DG�

�0
DG�0

Œv�iL2
�
;

and therefore amounts to a lower bound on the minimal eigenvalue of the matrix
rG.�0/rG.�0/

T arising from the L2
�
-action of the information operator I�

�0
I�0

from
(3.1.2) on the finite-dimensional subspace ED . Such a result is implied in particular
by an infinite-dimensional stability estimate

kDG�0
Œh�kL2

�
D kI�0

Œh�kL2
�

& khkC for h 2 H; (3.27)
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for an appropriate k � kC norm that is ‘compatible’ with the ED scale. When ED is
the eigen-basis of the Dirichlet Laplacian we will verify this condition for our model
PDEs – see Theorem 5.3.2 for Darcy’s problem and (3.48) as well as Exercise 5.4.5
for the Schrödinger equation.

3.2.2 A concentration result for the empirical Hessian

We will require ‘local’ conditions near a fixed �0 2 ‚ � L2
�
.Z; W /, in fact near its

L2
�
-orthonormal projection �0;D onto ED . For radius r > 0 to be chosen, set

B WD
®
� 2 ED W k� � �0;DkED

< r
¯
; (3.28)

where we write k � kED
' k � kRD for the L2

�
-norm on ED in this subsection.

The following local regularity condition on the map G is satisfied, for instance, as
soon as G is C 3 on B with local C 3-norm constants growing at most polynomially
in dimensionD. To formulate it let us define the following local C 2;1-norm for maps
F WB ! V , F.�/ D .F1.�/; : : : ; FdV

.�//,

kF kC2;1.B;V / WD max
1�k�dV

°
kFkk1 C krFkkL1.B;RD/ C kr

2FkkL1.B;RD�D/

C sup
�;� 02B;�¤� 0

jr2Fk.�/ � r2Fk.�
0/jop

k� � � 0kED

±
;

where k � kL1.B;U / are the supremum norms of maps defined on B taking values in
a normed vector space U , the space RD�D is equipped with the usual operator norm
j � jop, and r D r� and r2 denote the gradient and ‘Hessian’ operator, respectively,
arising via (3.24).

Condition 3.2.1 (Local regularity). Let B be given in (3.28) for some r > 0, and
suppose that for all x 2 X, the map � 7! G.�/.x/ from (1.8) is in C 2;1.B; V / and
satisfies supx2X kG. �/.x/kC2;1.B;V / � c2D

�2 for some c2 � 1 and �2 � 0.

For the next condition let us define

`.�; .Y;X// WD �
1

2
jY � G.�/.X/j2V ; � 2 ‚; (3.29)

which equals `N from (1.13) for a single ‘generic’ observation .Y; X/ from model
(1.9). Regarding `. � ; .Y; X// as a real-valued map defined on ED , Condition 3.2.1
and the chain rule imply that the gradient vector r`.�; .Y; X// and Hessian mat-
rix r2`.�; .Y; X// with respect to � 2 ED exist for every .Y; X/. In particular, the
D �D matrix E�0

Œ�r2`.�; .Y;X//� is symmetric and �min.A/ will denote the smal-
lest eigenvalue of a symmetric matrix A.
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Condition 3.2.2 (Local average curvature). Let B be given in (3.28) for some r > 0.
Assume that for some c0 > 0; c1 � 1, �0; �1 � 0 and all D 2 N,

inf
�2B

�min
�
E�0

Œ�r2`.�; .Y;X//�
�
� c0D

��0 (3.30)

and

sup
�2B

�
jE�0

`.�; .Y;X//j C kE�0
Œr`.�; .Y;X//�kRD

C kE�0
Œr2`.�; .Y;X//�kop

�
� c1D

�1 : (3.31)

As discussed in the preceding subsection, the verification of (3.30) for B a neigh-
bourhood of �0;D can be reduced to the condition (3.26) combined with Lipschitz
continuity of the Hessian with respect to the � -variable. Condition (3.31) is implied
by Condition 3.2.1 for �1 D �2 but we still record it separately to permit a potentially
better constant �1 < �2.

The following theorem is the main result of this subsection. It is based on tools
from high-dimensional probability. The constraint r � 1 is not necessary but conveni-
ent to permit a simple expression in (3.32) for the concentration exponent RN , and
also natural for the applications we have in mind. A more detailed version of this
result can be found in [101].

Theorem 3.2.3. Let `N W ED ! R be given by (1.13). Suppose Conditions 3.2.1
and 3.2.2 are satisfied for B from (3.28) and some r � 1. There exists a constant
C D C.c0; c1; c2/ > 0 such that if

RN WD CND�2�0�4�2 ; (3.32)

then for any D;N � 1 satisfying D � RN , we have, for constants c; c0 depending
only on dV ,

PN�0

�
inf
�2B

�minŒ�r
2`N .�/� <

c0

2
ND��0

�
� ce�RN ; (3.33)

as well as

PN�0

�
sup
�2B

�
j`N .�/j C kr`N .�/kRD C kr

2`N .�/kop
�
> N.5c1D

�1 C 1/
�

� c0.e�RN C e�N=8/: (3.34)

Proof. It suffices to prove the assertion for RN � 1. We also restrict to the case
V D W D R relevant in these notes – considering general vector-spaces V; W of
fixed finite dimension is only notationally different (e.g., [23, Lemma 5.6]).

For the proof we require some more notation: For x 2 X, we write shorthand
Gx.�/ WDG.�/.x/ andZ WD.Y;X/�P�0

. Throughout,PN WDN�1
PN
iD1 ıZi

denotes
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the empirical measure induced by Zi � .Yi ; Xi /
N
iD1, which acts linearly on measur-

able functions hWR � X ! R via

PN .h/ D

Z
R�X

h dPN D
1

N

NX
iD1

h.Zi /:

The following standard identities follow from the chain rule and will be used re-
peatedly in the proofs below – recall that r and r2 act on the � -variable in ED:

�`.�;Z/ D
1

2
ŒY � GX .�/�2 D

1

2
ŒGX .�0/C " � GX .�/�2;

�r`.�;Z/ D ŒGX .�/ � Y �rGX .�/;

�r
2`.�;Z/ D rGX .�/rGX .�/T C ŒGX .�/ � Y �r2GX .�/;

�E�0
Œ`.�;Z/� D

1

2
C
1

2
EX ŒGX .�0/ � GX .�/�2:

(3.35)

When no confusion can arise, we will suppress the second argumentZ and write `.�/
for `.�;Z/. We also set Ǹ

N WD `N =N .
By Condition 3.2.1, the matrix �r2 ǸN .�/ is symmetric and by a standard in-

equality for eigenvalues due to Weyl and Condition 3.2.2, we have for any � 2 B

that

�minŒ�r
2 Ǹ
N .�/� � �min.E�0

Œ�r2`.�/�/ � kr
2 Ǹ
N .�/ �E�0

Œr2`.�/�kop

� c0D
��0 � kr

2 Ǹ
N .�/ �E�0

Œr2`.�/�kop:

Hence we deduce

PN�0

�
inf
�2B

�minŒ�r
2`N .�;Z/� <

Nc0D
��0

2

�
� PN�0

�
kr

2 Ǹ
N .�/ �E�0

Œr2`.�/�kop �
c0D

��0

2
for some � 2 B

�
� PN�0

�
sup
�2B

sup
vWkvkRD�1

jvT.r2 ǸN .�/ �E�0
Œr2`.�/�/vj �

c0D
��0

2

�
: (3.36)

The next step is to reduce the supremum over ¹v W kvkRD � 1º to a suitable
finite maximum over grid points vi by a contraction argument (commonly used in
high-dimensional probability, e.g., [131]). For � > 0, let N.�/ denote the minimal
number of balls of k � kRD�radius � required to cover ¹v W kvkRD � 1º, and let vi ,
kvikRD � 1, be the centre points of a minimal covering. Thus for any v 2 RD , there
exists an index i such that kv � vikRD � �. Hence, writing shorthand

M� D r
2 Ǹ
N .�/ �E�0

Œr2`.�/�; � 2 B;
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we have by the Cauchy–Schwarz inequality and the symmetry of the matrix M� ,

vTM�v D vT
iM�vi C .v � vi /

TM�v C vT
iM� .v � vi /

� vT
iM�vi C kv � vikRDkM�vkRD C kv � vikRDkM�vikRD

� vT
iM�vi C 2� sup

vWkvkRD�1

vTM�v:

Choosing � D 1=4 and taking suprema it follows that for any � 2 B,

sup
vWkvkRD�1

vTM�v � 2 max
iD1;:::;N.1=4/

vT
iM�vi :

Since the covering .vi / is independent of � , we can further estimate the right-hand
side of (3.36) by a union bound to the effect that

PN�0

�
sup
�2B

sup
vWkvkRD�1

jvTM�vj �
c0D

��0

2

�
� N

�1
4

�
� sup
vWkvkRD�1

PN�0

�
sup
�2B

jvTM�vj �
c0D

��0

4

�
� N

�1
4

�
� sup
vWkvkRD�1

h
PN�0

�
sup
�2B

jPN .gv;� � gv;�0;D
/j �

c0D
��0

8

�
C PN�0

�
jPN .gv;�0;D

/j �
c0D

��0

8

�i
; (3.37)

where we have defined

gv;� . �/ WD vT
�
r
2`.�; �/ �E�0

Œr2`.�/�
�
v; v 2 RD:

and where we recall that �0;D is the centre-point of the set B from (3.28). For the rest
of the proof, we fix any v 2 RD with kvkRD � 1. Next, we use (3.35) to decompose
the ‘uncentred’ part of gv;� as

�vT
r
2`.�;Z/v

D vT
�
rGX .�/rGX .�/T C ŒGX .�/ � GX .�0/�r

2GX .�/
�
v � "vT

r
2GX .�/v

DW QgI
v;� .X/C "gII

v;� .X/;

such that
gv;� .z/ D gI

v;� .x/C "gII
v;� .x/;

where we have defined the centred version of QgI
v;�

as

gI
v;� .x/ D QgI

v;� .x/ �E�0
Œ QgI
v;� .X/�; x 2 X:
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We can therefore bound the right-hand side of (3.37) by

N
�1
4

�
� sup
vWkvkRD�1

�
PN�0

�
sup
�2B

ˇ̌̌ 1
N

NX
iD1

.gI
v;� � g

I
v;�0;D

/.Xi /
ˇ̌̌
�
c0D

��0

16

�
C PN�0

�ˇ̌̌ 1
N

NX
iD1

gI
v;�0;D

.Xi /
ˇ̌̌
�
c0D

��0

16

�
C PN�0

�
sup
�2B

ˇ̌̌ 1
N

NX
iD1

"i .g
II
v;� � g

II
v;�0;D

/.Xi /
ˇ̌̌
�
c0D

��0

16

�
C PN�0

�ˇ̌̌ 1
N

NX
iD1

"ig
II
v;�0;D

.Xi /
ˇ̌̌
�
c0D

��0

16

��
DW N

�1
4

�
� ŒI C II C III C IV�:

We now use empirical process techniques (Lemma B.2.1 and also Hoeffding’s in-
equality) to bound the preceding probabilities.

Terms I and II. In order to apply Lemma B.2.1 to term I, we require some prepar-
ations. By the definition of QgI

v;�
and of the operator norm k � kop, using the elementary

identity vT.aaT � bbT/v D vT.a C b/.a � b/Tv for any v; a; b 2 RD , we have that
for any �; N� 2 B,

k QgI
v;� � QgI

v; N�
k1 �

�rG.�/rG.�/T C ŒG.�/ � G.�0/�r
2G.�/

�
�
�
rG. N�/rG. N�/T C ŒG. N�/ � G.�0/�r

2G. N�/
�
L1.X;RD�D/

�
ŒrG.�/ � rG. N�/�ŒrG.�/CrG. N�/�T


L1.X;RD�D/

C
ŒG.�/ � G. N�/�r2G.�/


L1.X;RD�D/

C
ŒG. N�/ � G.�0/�Œr

2G.�/ � r
2G. N�/�


L1.X;RD�D/

� 2CG;Dj� � N� jED
; (3.38)

where Condition 3.2.1 furnishes the Lipschitz constant

CG;D WD c22D
2�2 : (3.39)

The hypothesis r � 1 also implies that the QgI
v;�

� QgI
v; N�

are uniformly bounded by
4CG;D . We then introduce the rescaled function class

hI
� WD

gI
v;�

� gI
v;�0;D

16CG;D

; H I
D ¹hI

� W � 2 Bº;

which has envelope and variance proxy bounded as

sup
�2B

khI
�k1 �

1

4
� U; sup

�2B

.E�0
ŒhI
� .X/

2�/1=2 �
1

4
� �:
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Next, if

d22 .�;
N�/ D E�0

Œ.hI
� .X/ � h

I
N�
.X//2�; d1.�; N�/ D khI

� � h
I
N�
k1 for �; N� 2 B;

then using (3.38) we have that

d2.�; N�/ � d1.�; N�/ � j� � N� jED
for all �; N� 2 B:

Thus for any � 2 .0; 1/, using [60, Proposition 4.3.34], we obtain that

N.H I; d2; �/ � N.H I; d1; �/ � N.B; j � jED
; �/ �

�3
�

�D
:

For any A � 2 we haveZ 1

0

log
�A
x

�
dx D log.A/C 1;

Z 1

0

r
log

�A
x

�
dx �

2 logA
2 logA � 1

p
log.A/

(see [60, p. 190] for the latter standard inequality), and hence, using A D 3, we can
respectively bound the L1 and L2 metric entropy integrals of H I by

J1.H
I/ D

Z 4U

0

logN.H I; d1; �/ d� . D;

J2.H
I/ �

Z 4�

0

p
logN.H I; d2; �/ d� .

p
D:

Now, an application of Lemma B.2.1 implies that for any x � 1 and some universal
constant L0 > 0, we have that

PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hI
� .Xi /

ˇ̌̌
� L0

hp
D C

p
x C

D C x
p
N

i�
� 2e�x : (3.40)

We also have by the definition of gI
v;�0;D

that

kgI
v;�0;D

k1 � 2k QgI
v;�0;D

k1 � 2CG;D;

with CG;D from (3.39), and hence, by Hoeffding’s inequality [60, Theorem 3.1.2],

II � 2 exp
�
�
N.c0D

��0/2

512C 2G;D

�
: (3.41)

Thus, from (3.39), D � RN and choosing x D 4RN , we have

L0
hp
D C

p
x C

D C x
p
N

i
�
c0D

��0
p
N

256CG;D

; 4RN �
N.c0D

��0/2

512C 2G;D
;

whenever C > 0 in (3.32) is small enough. Therefore, combining (3.40) and (3.41),
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and using the definitions of the term I and of hI
�
, we obtain

IICI� 2e�4RN CPN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hI
� .Xi /

ˇ̌̌
�
c0D

��0
p
N

256CG;D

�
� 4e�4RN : (3.42)

Terms III and IV. Let us now treat the empirical process indexed by the functions
¹gII
v;�

W � 2 Bº. Since kvkRD � 1, we have for cG;D D
p
CG;D D c2D

�2 and any
�; N� 2 B,

kgII
v;� � g

II
v; N�

k1 � kr
2G.�/ � r

2G. N�/kL1.X;RD�D/ � cG;Dj� � N� jED
� cG;D;

using also r � 1 to obtain the envelope bound in the last inequality. Now the rescaled
function class

hII
� WD

gII
v;�

� gII
v;�0;D

4cG;D
; H II

D ¹hII
� W � 2 Bº;

admits envelopes

sup
�2B

khII
v;�k1 �

1

4
� U; sup

�2B

.E�0
ŒhII
v;� .X/

2�/1=2 �
1

4
� �;

and defining

d22 .�;
N�/ WDE�0

Œ.hII
v;� .X/� h

II
v; N�
.X//2�; d1.�; N�/D khII

v;� � h
II
v; N�

k1; �; N� 2 B;

we have
d2.�; N�/ � d1.�; N�/ � j� � N� jED

for all �; N� 2 B:

Therefore, just as with the entropy integral bounds obtained for term I above, we have
N.H II; d2; �/ � .3=�/D and thus, by Lemma B.2.1,

PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

"ih
II
� .Xi /

ˇ̌̌
� L0

hp
D C

p
x C

D C x
p
N

i�
� 2e�x for x � 1:

Moreover, by the hypotheses, kgII
v;�

k1 � cG;D , and hence, invoking the Bernstein
inequality (B.4) with U D � � cG;D , we obtain that

PN�0

�ˇ̌̌ 1
p
N

NX
iD1

"ig
II
v;�.Xi /

ˇ̌̌
� cG;D

�p
2x C

x

3
p
N

��
� 2e�x for x > 0:

Choosing x D 4RN in the preceding displays, we obtain that for C > 0 small enough
in (3.32), any D � RN , and by similar calculations as before (3.42),

III C IV � PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

"ih
II
� .Xi /

ˇ̌̌
�
c0D

��0
p
N

96m2

�
C PN�0

�ˇ̌̌ 1
p
N

NX
iD1

"ig
II
v;�.Xi /

ˇ̌̌
�
c0D

��0
p
N

16

�
� 4e�4RN : (3.43)
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Combining the terms. By combining the bounds (3.36), (3.37), (3.42), (3.43) and
using thatN.1=4/ � 9D � e3D (cf. [60, Proposition 4.3.34]), we obtain forD � RN

and our choice of RN with C small enough, the final bound

PN�0

�
inf
�2B

�min.�r
2`N .�;Z// <

Nc0D
��0

2

�
� N

�1
4

�
� .I C II C III C IV/

� 8e�RN ;

completing the proof of (3.33). The bound (3.34) is proved in a similar (in fact sim-
pler) way and left to Exercise 3.4.3.

3.3 Information operators for elliptic PDEs

We now return to the model examples with forward maps (2.5), (2.8) arising from
the PDE (1.2) with elliptic operator Lf�

from (1.4), (1.3), respectively. For both
PDEs we will derive the linearisation I� from Condition 3.1.1, its adjoint for nat-
ural infinite-dimensional tangent spaces H , and the resulting information operator
from Definition 3.1.2. Recall that for these examples we take V DW D R and � D �

equal to Lebesgue measure on the bounded smooth domain X D Z in the general
setting of the preceding subsection.

The main idea behind checking Condition 3.1.1 is to write

G.�0 C h/ � G.�0/ �DG�0
Œh�; h 2 H;

as the solution of a particular inhomogeneous elliptic PDE for appropriate choice of
DG�0

, and to use regularity estimates for the solution operators L�1
f�

to verify (3.1).

3.3.1 Schrödinger equation

For the forward map G.�/D u� from (2.5) arising with the Schrödinger operator Lf�

from (1.4), let us verify Condition 3.1.1 with ‚ D H D H �.X/, � > d=2; and

I� Œh� � DG� Œh� D L�1
f�
Œu�e

�h�; h 2 H; (3.44)

where L�1
f�

is the inverse Schrödinger operator for Dirichlet boundary conditions
(given in (A.10) for  D 1=2, V D f� ). We see from (A.12), (A.26), (A.4) that
h 7! I� .h/ is a bounded and continuous operator on L2

�
for every fixed � . To check

that I� is the linearisation G at a point � 2 ‚, consider a perturbation � C h in any
direction h in the tangent space H . Then on X,

Lf�Ch
Œu�Ch � u� � I� Œh�� D 0C .Lf�

� Lf�Ch
/Œu� C I� Œh�� � Lf�

ŒI� Œh��

D .f�Ch � f� /u� C .f�Ch � f� /I� Œh� � u�e
�h

D .e�Ch � e� � e�h/u� � .e
�Ch

� e� /I� Œh� � R.h/;
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while at the boundary @X we necessarily have u�Ch � u� � I� Œh� D 0. Hence for
every h 2 H ,

G.� C h/ � G.�/ �DG� Œh� D u�Ch � u� � I� Œh� D L�1
f�Ch

ŒR.h/�:

Now using the PDE estimates (A.12), (A.26) both with constant c depending only
on X, and standard properties of the exponential map for bounded � , k�k1 . k�kH�

(in view of (A.4)), we see

kG.� C h/�G.�/�DG� Œh�kL2 D kL�1
f�Ch

ŒR.h/�kL2 . kR.h/kL2

. k.e�Ch�e��e�h/u�kL2 Ck.e�Ch�e� /I� Œh�kL2

. khk21 C khk1kI� Œh�kL2 . khk21:

Summarising what precedes we have proved the following:

Theorem 3.3.1. Let ‚ D H �.X/ for some � > d=2. The forward map G from (2.5)
satisfies Condition 3.1.1 for any � D �0 2‚, tangent spaceH DH �.X/, operator I�
from (3.44) and �� .h/�Ckhk21 with some constantC that depends only on � and X.

In fact, for the forward map G from (2.5), it can be shown that it verifies (3.1) with
weaker norms than k � k1 measuring the size of the perturbation h (see, e.g., [93]),
but for the present purposes the above proposition is sufficient.

If we choose as tangent space H D H �.X/ or just H D H
�
c .X/, then its com-

pletion in L2.X/ equals NH D L2.X/ itself, and the adjoint operator of I� then takes
a particularly simple form

I��g D u�e
�L�1
f�
Œg�: (3.45)

Indeed, using that L�1
f�

is self-adjoint for the L2
�
.X/-inner product (cf. (A.10)),

hI� Œh�; giL2 D hL�1
f�
Œu�e

�h�; giL2 D hh; u�e
�L�1
f�
Œg�iL2 D hh; I��giL2 :

One shows further that the information operator I�
�
I� arising from (2.5) as in Defini-

tion 3.1.2 is a self-adjoint and compact operator on L2 (see Exercise 3.4.4).

3.3.2 Diffusion equation

In the following theorem L�1
f�

denotes the inverse of the divergence form operator Lf�

from (1.3) for Dirichlet boundary conditions – see (A.10) (with  D f� and V D 0).

Theorem 3.3.2. Let‚DHˇ .X/, ˇ > 1C d=2: The forward map G.�/D u� D uf�

from (2.8) satisfies Condition 3.1.1 for any � D �0 2 ‚, tangent spaceH DHˇ .X/,
operator

I� .h/ � DG� Œh� D �L�1
f�
Œr � .e�hruf�

/�; h 2 H; (3.46)

and �� .h/ � Ckhk21 for some constant C D C.X; fmin; �/.
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Proof. Fix � 2 ‚, let h 2 H be arbitrary, and write u� for uf�
in this proof. We first

observe that

Lf�Ch
.u�Ch � u� � I� .h//

D g � .Lf�Ch
� Lf�

/.u� C I� .h// � Lf�
.u� C I� .h//

D �
�
r � .e�Ch � e� /r.u� C I� .h//

�
Cr � .e�hru� /

D �r � ..e�Ch � e� � e�h/ru� / � r � ..e�Ch � e� /rI� .h//

� R1.h/CR2.h/;

as well as u�Ch � u� � I� .h/ D 0 on @X. Therefore, we can write

kG.� C h/ � G.�/ �DG� Œh�kL2 D ku�Ch � u� � I� Œh�kL2

D kL�1
f�Ch

ŒR1.h/CR2.h/�kL2

� kL�1
f�Ch

ŒR1.h/�kL2 C kL�1
f�Ch

ŒR2.h/�kL2 :

We now show that the right-hand side isO.khk21/. For the first term we have from the
regularity estimate (A.32), with  D f� , V D 0 and Lipschitz constant NcD Nc.X;fmin/,
as well as the divergence theorem (A.7),

kL�1
f�Ch

ŒR1.h/�kL2 � Nckr � ..e�Ch � e� � e�h/ru� /k.H1
0
/�

. k.e�Ch � e� � e�h/ru�kL2 . khk21:

using also that u� 2 H 1 under the maintained hypotheses (e.g., Proposition A.5.2).
For the second term we have similarly, using (A.32) and (A.8) this time,

kL�1
f�Ch

ŒR2.h/�kL2 . kr � ..e�Ch � e� /rI� .h//k.H1
0
/�

. khk1krL�1
f�
Œr � .e�hru� /�kL2

. khk1kr � .e�hru� /k.H1
0
/�

. khk21ku�kH1 . khk21:

The last two inequalities also imply the continuity of I� as an operator on L2, com-
pleting the proof.

Just as with the Schrödinger equation, if we take the tangent space H D Hˇ , or
just Hˇ

c , then its closure NH for the L2-norm equals all of L2 and the adjoint in (3.3)
is computed for the standard L2-inner product.

Proposition 3.3.3. In the setting of Theorem 3.3.2, the adjoint I�
�
WL2

�
.X/! L2

�
.X/

of I� WL
2
�
.X/! L2

�
.X/ is given by

I�� Œg� D e�ru� � rL�1
f�
Œg� for g 2 L2�.X/:
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Proof. Since I� from (3.46) defines a bounded linear operator on the Hilbert space
L2
�
.X/, a unique adjoint operator I �

�
exists by the Riesz representation theorem. Let

us first show that

hh; .I �� � I�� /giL2 D 0 for all h; g 2 C1
0 .X/: (3.47)

Indeed, since L�1
f�

from (A.10) is self-adjoint on L2
�

and maps into H 1
0 .X/, we can

apply Theorem 3.3.2 and the divergence theorem (A.7) with vector field e�hru� to
deduce

hh; I �� giL2.X/ D hI�h; giL2.X/ D �hL�1
f�
Œr � .e�hru� /�; giL2.X/

D �

Z
X

Œr � .e�hru� /�L
�1
f�
Œg� d�

D

Z
X

he�ru� � rL�1
f�
Œg� d� D hh; I��giL2.X/;

so that (3.47) follows. Since C1
0 .X/ is dense in L2

�
.X/ and since I �

�
; I�
�

are con-
tinuous on L2

�
.X/ (by construction in the former case and by (A.13) and Proposi-

tion A.5.2 in the latter case), the identity (3.47) extends to all g 2 L2
�
.X/ and hence

I �
�
D I�

�
, as desired.

From the previous two results one can define the information operator I�
�
I� acting

continuously (in fact compactly, see Exercise 3.4.4) on L2.

3.3.3 Injectivity and local identifiability

As mentioned at the outset of this chapter, the operators I�0
; I�
�0
; I�
�0

I�0
encode local

identifiability properties of a statistical model ¹dP� W � 2 ‚º at �0 2 ‚. In particular,
Theorem 3.1.5 implies that

p
N -consistent inference on functionals h�;  iL2 at � is

a fortiori only possible if I� is injective along tangent space directions  : If  is to
lie in the range R.I�

�
/ of the adjoint of I�

�
, then it cannot lie in the kernel of I� in

view of (3.15). So it is natural to investigate the injectivity properties of I� first, and
in doing that we can also shed some light on the basic requirement (3.27) necessary
to verify the local curvature hypothesis underpinning Theorem 3.2.3.

3.3.3.1 Schrödinger equation. Let us start again with the example of the Schrö-
dinger equation. We show that the operator I� given in Theorem 3.3.1 is injective on
all of L2.X/: We have from (3.44) and Proposition A.5.1 (with  D 1=2, V D f� )
that

kI�hkL2 D kL�1
f�
Œu�e

�h�kL2 & ku�e
�hk.H2

0
/� (3.48)

for any h 2 L2
�
.X/. Under the hypotheses of Theorem 3.3.1, the function u�e� is

bounded away from zero throughout X and contained in H 2.X/ (cf. (A.25) and
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Proposition A.5.2). Thus for any N' 2 C1
c .X/ the function ' D N'=.e�u� / belongs to

H 2
0 .X/ and hence (3.48) implies that

R
N'hD 0 for any such N' whenever I�hD 0. But

this implies h D 0 almost everywhere on X and hence that I� is injective on L2.X/.
What precedes implies as well that the information operator arising from I� is

injective on L2.X/. Indeed, if I�
�
I�h D 0, then

0 D hh; I�� I�hiL2 D kI�hk
2
L2 ; (3.49)

and thus I�hD 0. We further notice that (3.48) verifies (3.27) for k � kC D k � k.H2
0
/� ,

which readily gives a recipe to check the local curvature condition (3.26) if we can
adapt the basisED to the dual norm .H 2

0 /
�. This will be pursued further in Chapter 5.

3.3.3.2 Diffusion equation. For the divergence form equation, the injectivity of I�
on L2.X/ is a more subtle question. For the operator I� from Theorem 3.3.2 we can
use Proposition A.5.1 (with  D f� , V D 0) to obtain

kI�hkL2 & kr � .e�hruf�
/k.H2

0
/� ; h 2 L2:

Hence if I�h D 0, then by testing against all smooth ' 2 C1
c � H 2

0 , we can deduce
that also r � .e�hruf�

/ D 0. Whether this implies that h vanishes depends on the
precise form of the PDE (1.2).

If we impose the natural hypothesis (2.15) from earlier ensuring injectivity of the
non-linear map G, then Lemma 2.1.6 does imply that I� (and as in (3.49) also I�

�
I� )

are injective on the space H 1
0 .X/. A slight modification of this argument combined

with Lemma 2.1.6 will allow us to verify the curvature Condition (3.26) for appropri-
ate choice of ED � H 1

0 as we will see in Theorem 5.3.2 below.
But on the other hand, Exercise 3.4.5 gives an example where I� does satisfy

(2.15) but is not injective on all of L2.X/. This leads to information-theoretic obs-
tructions in view of Theorem 3.1.5 and since the kernel in (3.15) is calculated on
L2.X/ and not on H 1

0 .X/ – see Section 4.2 for more on this.
In some situations, however, I� can be injective on all of L2.X/, as in the follow-

ing model example for the standard Laplacian � D 0 (and fmin D 0 in slight abuse of
notation), which will also be of interest again in Section 4.2.

Proposition 3.3.4. Let X equal to the unit disk in R2 centred at .0;0/ and let I� be as
in Theorem 3.3.2, where G from (2.8) arises with source g D 2 and boundary values
h D .j � j2

R2 � 1/=2 .D 0 on @X/. Then for fmin D 0; � D 0, the map I0WL2.X/!
L2.X/ is injective.

Proof. Suppose I0.f / D 0 for f 2 L2.X/. Then for any g 2 C1.X/, we have, by
Proposition 3.3.3,

0 D hI0f; giL2.X/ D hf; I�0giL2.X/ D hf;XL�1
1 Œg�iL2.X/;
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with vector field

X D ru1 � r. �/ D x1@x1 C x2@x2; .x1; x2/ 2 X:

Choosing g D � Ng for any smooth Ng of compact support, we deduce thatZ
X

X. Ng/fd� D 0 for all Ng 2 C1
c .X/; (3.50)

and we now show that this implies f D 0. A somewhat informal dynamical argument
would say that (3.50) asserts that fd� is an invariant density under the flow of X .
Since the flow of X in backward time has a sink at the origin, the density can only be
supported at .x1; x2/ D 0 and thus f D 0.

One can give a distributional argument as follows. Suppose we consider polar
coordinates .r; #/ 2 .0; 1/ � S1 and functions Ng of the form �.r/ .#/, where � 2

C1
0 .0; 1/ and  2 C1.S1/. In polar coordinates, X D r@r and hence we may write

(3.50) as Z 1

0

�
r2
� Z 2�

0

f .r; #/ .#/ d#
�
@r�

�
dr D 0: (3.51)

By Fubini’s theorem, for each  we have an integrable function

F .r/ WD

Z 2�

0

f .r; #/ .#/ d#;

and thus r2F defines an integrable function on .0; 1/ whose distributional derivative
satisfies @r.r2F /D 0 by virtue of (3.51). Thus r2F D c (using that a distribution
on .0; 1/ with zero derivative must be a constant). Now consider  2 C1.S1/ also
as a function in L2.X/ and compute the pairing

.f;  /L2.X/ D

Z 1

0

rF .r/ dr D c 

Z 1

0

r�1 dr D ˙1;

unless c D 0. Thus f D 0.

By perturbation and the Morse lemma, one can show further that the preceding
injectivity result extends at least to I� for an appropriate neighbourhood of � ’s near
the standard Laplacian � D 0, see Exercise 3.4.6.

3.4 Notes

3.4.1 Exercises

Exercise 3.4.1. Show that Theorem 3.1.4 remains valid if I� is not injective by
repeating its proof on the quotient space of QH for the kernel of I� .



Information operators and curvature 64

Exercise 3.4.2. Show that Theorem 3.1.4 and (3.19) remain valid in the augmented
model from the proof of Theorem 3.1.5. [Hint: Proceed as in the proof of The-
orem 3.1.4 but apply [129, Theorem 3.11.5] with the LAN expansion of the aug-
mented model.]

Exercise 3.4.3. Provide a proof of (3.34). [Follow the proof of (3.33) in Lemma 3.2.3,
or see [101, Lemma 3.4].]

Exercise 3.4.4. Show that the information operators I�
�
I� from Definition 3.1.2 aris-

ing from I� given in Theorems 3.3.1 and 3.3.2, respectively, are compact operators
on L2

�
.X/.

Exercise 3.4.5. Consider G; h; g as in Proposition 3.3.4 but now with X a smooth
bounded domain in R2 that is separated away from the origin. Show that ru1 does
not vanish on X and hence satisfies (2.15), but that I0 is not injective on L2

�
.X/.

[Hint: See [95, Section 3.4.1].]

Exercise 3.4.6. Show that Proposition 3.3.4 extends to all � such that k�kHˇ < �

for ˇ > 1 C d=2 and � > 0 small enough. [Hint: Show first by perturbation that
kuf�

� u1kC1 ! 0 as �! 0 and that hence ru� can only vanish at a single point
for � sufficiently small. Then repeat the proof of Proposition 3.3.4.]

3.4.2 Remarks and comments

The results from Section 3.1 constitute by now classical material from semi-para-
metric statistics, we refer to [125, 126] where these ideas are laid out in general
likelihood models of which (1.9) is just a special case. The preceding references
develop a formal ‘score operator calculus’ in general statistical models that are ‘dif-
ferentiable in quadratic mean (DQM)’, which for our (1.9) leads initially to slightly
different expressions for I� involving a further ‘projection’ step onto the regression
residuals Y � G.�/.X/ D ". This is easily reconciled with the form of I� given
here as discussed in [95]. Since the LAN property in Theorem 3.1.3 with LAN
norm kI�0

. �/kL2 can be proved directly in our Gaussian regression model, we can
avoid introducing the DQM property altogether. This expedites the proofs of Theor-
ems 3.1.4 and 3.1.5, but we again refer to [95] for a discussion of how the model (1.9)
does fit into the abstract framework from [125, 126].

The connection between local average curvature of the log-likelihood function
and the information matrix is well known in ‘parametric’ finite-dimensional stat-
istical models – the idea to exploit stability estimates (3.27) in conjunction with
high-dimensional concentration of measure arguments in Theorem 3.2.3 has been
developed in this form in [101], see also [23].

Obtaining the linearisation of the non-linear forward maps (2.5) and (2.8) via
arguments such as those given in Section 3.3 is a basic application of perturbative
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methods for inhomogeneous linear PDEs. The current proofs are taken from [93],
[91], [95] where these problems where apparently first investigated in the setting
of LAN expansions and information operators, with no claim of priority. Propos-
ition 3.3.4 is taken from [95]. The techniques for the Schrödinger equation again
extend to more complex inverse problems where a base differential operator D is per-
turbed by some potential, see, e.g., [91], [23] for the case where D is the geodesic
vector field on the unit disk related to (1.1).





Chapter 4

Bernstein–von Mises theorems

A classical result of mathematical statistics due to Laplace, Bernstein, von Mises, Le
Cam and van der Vaart gives general conditions under which posterior distributions
…. � jDN / on parameter spaces‚ of fixed finite dimension are asymptotically approx-
imated by a normal distribution centred at an efficient estimator (say the maximum
likelihood estimator, or the posterior mean) and with ‘inverse information covariance
matrix’, see [82, 126]. This phenomenon occurs for general priors and likelihood
models and can hence be understood as an expression of a ‘universality’ principle
that posterior measures necessarily resemble the shape of Gaussians at least for large
sample sizes. While this can be observed empirically in real data, the mathematical
results substantiating it are called Bernstein–von Mises (BvM) theorems (to be distin-
guished from ‘Laplace approximations’ discussed in the next chapter). A main appeal
of rigorous such theorems is that they provide objective statistical guarantees for pos-
terior credible sets and hence for the Bayesian approach to uncertainty quantification
(UQ) and the construction of ‘error bars’ for algorithmic outputs – see Section 4.1.3
for more on this.

While the BvM theorem is well understood in ‘parametric’ finite-dimensional
models, obtaining high- or infinite-dimensional versions of it poses fundamental chal-
lenges. Already in basic conjugate Gaussian sequence space models examples for the
invalidity of a Bernstein–von Mises approximation can be given, see [38, 53, 83] and
also [71] for high-dimensional regression. However, following ideas from Le Cam
theory and semi-parametric statistics, [28, 29, 31] developed techniques that allow
to obtain BvM type results also in infinite-dimensional models, at least in ‘weak
enough topologies’. In this chapter we lay out some main ideas of this approach
in the Gaussian regression model (1.9) and in the context of PDE inverse problems.
Roughly speaking the goal is to describe conditions such that the ‘cylindrical’ laws
of posterior measures characterised by all one-dimensional statistics h�;  iL2 for
a convergence-determining class of smooth test functions  are approximated by
an infinite-dimensional Gaussian measure with a covariance structure that is infor-
mation-theoretically optimal (in the sense of Theorem 3.1.4). (This convergence can
be upgraded to be ‘uniform’ in  at the expense of technicalities that we wish to
avoid here, but see after the proof of Theorem 4.2.1 for discussion.) The new ana-
lytical issue that arises is the inversion of the information operator appearing in the
information equation (3.16). We will show that a semi-parametric BvM theorem can
be proved when sufficiently regular solutions to the information equation exist. This
in turn leads to new PDE questions of its own and we spell out what can happen for
our two model examples with the Schrödinger and divergence form equations (2.5)
and (2.8).
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4.1 Gaussian asymptotics for cylindrical laws

In this section we will show that if we can find sufficiently regular solutions to the
‘information equation’ from (3.16) for any given test function  2 ‚, then as N !

1, a Gaussian approximation for the one-dimensional posterior statistics h�;  iL2 ,
� �…. � j.Yi ;Xi /

N
iD1/; holds true under some natural additional quantitative assump-

tions on the forward map G and the Gaussian process prior ….
Colloquially, one says that ‘random via the data’ probability measures �N �

�N j.Yi ; Xi /
N
iD1 converge weakly in probability to a limiting normal distribution �.

To make mathematical sense of this, one takes a metric dweak for weak convergence of
probability measures on the underlying space (see [46]) and shows the convergence
to zero in PN

�0
-probability of the real random variable dweak.�N ;�/. For random vari-

ablesZN ��N ,Z ��, we equivalently say that ‘ZN
d
�!Z converges in distribution

in PN
�0

-probability’ if

dweak.�N ; �/
PN

�0
��! 0 as N ! 1; (4.1)

in the remainder of this section.

4.1.1 Asymptotic normality of linear functionals of the posterior

We consider again the general Gaussian regression model (1.9) with linear parameter
space‚�L2

�
.Z;W /, where Z is a bounded domain in Rd with smooth boundary. We

enforce on the forward map GW‚! L2
�
.X; V / the Conditions 2.1.1 and 2.1.4 from

earlier. We also suppose the linearisation Condition 3.1.1 holds for a linear operator
I�0

and with tangent space H D ‚.
To simplify some proofs we slightly strengthen the forward regularity hypotheses

to a L1-Lipschitz property.

Condition 4.1.1. For all M and �1; �2 2 ‚ such that k�ikR � M , there exists a
constant L such that

kG.�1/ � G.�2/k1 � Lk�1 � �2k1:

Moreover, the linear operator I�0
is continuous from .‚; k � k1/ to L1.X; V /.

This condition can be verified along similar lines as in Propositions 2.1.2 and
2.1.3, involving a few extra technicalities. For G arising with the Schrödinger equa-
tion, see Exercise 4.3.1.

When considering inference on linear functionals h ;�iL2.Z/ of � , we require the
existence of sufficiently regular solutions of the information equation (3.16) arising
from the ‘information’ operator I�

�0
I�0

from Definition 3.1.2 with ‚ D H . Formally
we assume the following:
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Condition 4.1.2. Given  2 ‚, suppose that there exists N D N �0
2 ‚ such that

I�
�0

I�0
N D  , that is, hI�

�0
I�0

N �  ; hiL2
�
.Z;W / D 0 for all h 2 ‚.

As prior … D …N we take a (rescaled) Gaussian probability measure on ‚ from
Theorem 2.2.2. Next for the ‘regularisation sets’ ‚N from that theorem, the proofs
that follow require an initial posterior contraction rate NıN in k � k1-norm rather than
just the L2

�
-norm. If the regularisation space R satisfies R �Hˇ for some ˇ > d=2,

then such a (not necessarily sharp) contraction rate can be obtained by interpolation
and the Sobolev imbedding.

Proposition 4.1.3. Suppose G;…0;…N ;R; �0; ıN are as in Theorem 2.2.2 with regu-
larisation space R continuously embedded into Hˇ .Z/ for some ˇ > d=2. Suppose
further that Condition 2.1.4 holds for such R and some � > 0. Define

‚N;M;1 D
®
� 2 ‚ W k�kR �M; k� � �0k1 �M NıN

¯
; (4.2)

where M is a fixed constant and

NıN D ı
�.ˇ�ˇ 0/=ˇ
N ; any ˇ0

2 .d=2; ˇ/: (4.3)

Then for all b > 0, we can choose M large enough such that as N ! 1,

PN�0

�
…N .� 2 ‚N;M;1jDN / � 1 � e�bNı

2
N

�
! 0:

Proof. By the Sobolev imbedding (A.4) and interpolation (A.5) we have

k� � �0k1 . k� � �0kHˇ . k� � �0k
#
L2k� � �0k

1�#
Hˇ ;

where # D .ˇ � ˇ0/=ˇ. By hypothesis on R, the norms k� � �0kHˇ are bounded
by M C k�0kR < 1, so the limit (2.26) from Theorem 2.3.1 implies the desired
result.

The regularisation set ‚N;M;1 will play a quantitative role in the proofs to fol-
low. It permits control of the non-linearity of the log-likelihood function (1.13), the
discretisation errors arising from statistical sampling, and – as will be relevant –
the sensitivity of …N with respect to small perturbations in N -directions. To this
end, let JN be an upper bound for the following (‘Dudley’-type) integral of the
Kolmogorov metric entropy of ‚N;M;1:

JN .s; t/ �

Z s

0

q
log 2N.‚N;M;1; k � k1; t�/ d�; s; t > 0; (4.4)

where N.‚N;M;1; k � k1; �/ denotes the minimal number of k � k1-norm balls of
radius � required to cover the set ‚N;M;1.

Condition 4.1.4. Assume
p
Nı2N ! 0 and that for NıN as in (4.3),

p
N Nı2N JN .1;

Nı2N /! 0 as N ! 1. (4.5)
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Further suppose that N �0
from Condition 4.1.2 belongs to H \ R and let ��0

be the
error term from Condition 3.1.1. For �N a sequence such that for all N large enough
and all t 2 R fixed,

�N � sup
�2‚N;M;1

��0

h
� � �0 �

t
p
N

N �0

i
;

assume that as N ! 1,

max
�
N.�2N C �N NıN /;

p
NJN .�N ; 1/;

NıN
p

logN J2N .�N ; 1/

�2N

�
! 0: (4.6)

When the approximation in Condition 3.1.1 is quadratic (��0
.h/ D O.khk21/),

then (4.5) and (4.6) reduce to the much simpler conditions N Nı3N ! 0, ˇ > 2d; in
light of R � Hˇ .Z/; see the proof of Theorem 4.2.1 below.

Our first theorem concerns an asymptotic approximation of the induced laws of
the posterior distribution of h ; �iL2 by a Gaussian distribution centred at

O‰N D h ; �0iL2
�
.Z/ C

1

N

NX
iD1

hI�0
N �0
.Xi /; "i iV : (4.7)

We recall that the next limit is to be understood in the sense of (4.1).

Theorem 4.1.5. Suppose …N ; �0 are as in Proposition 4.1.3 and that the forward
map G satisfies Conditions 2.1.1, 2.1.4, 3.1.1 with H D ‚ and 4.1.1. Assume further
that  2‚ is such that Condition 4.1.2 holds for some N �0

for which Condition 4.1.4
can be verified. Let � � …. � j.Yi ; Xi /

N
iD1/ be a posterior draw. Then we have, as

N ! 1 and in PN
�0

-probability,

p
N.h�;  iL2

�
.Z/ �

O‰N /j.Yi ; Xi /
N
iD1

d
�! N.0; kI�0

N �0
k
2

L2
�
.X;V /

/:

Proof. The plan is to prove convergence of the moment generating functions (Laplace
transforms) of

p
N.h�; iL2.Z/ �

O‰N /j.Yi ;Xi /
N
iD1 which implies weak convergence

by standard arguments. We recall the notationDN WD .Yi ;Xi /
N
iD1 for the data vector.

We will also write shorthand N D N �0
in this proof. The proof is split into four

separate steps.

4.1.1.1 Localisation of the posterior measure. By Condition 4.1.4 the function N 

from Condition 4.1.2 defines an element of the RKHS HN D
p
NıNH of …N with

RKHS norm
k � kHN

D
p
NıN k � kH :

If � � …N , then by the definition of the RKHS, the random variable h�; N iHN
has a

N.0; k N k2
HN

/ distribution. Hence if we define

TN D

°
� 2 ‚ W

jh�; N iHN
j

k N kHN

>
p
B
p
NıN

±
for B > 0;
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then the tail inequality for standard normal random variables implies that ….TN / �
e�BNı

2
N . So, by Theorem 2.2.2 (and the remark at the beginning of its proof), and for

‚N;M;1 from Proposition 4.1.3, if we set

N‚N WD ‚N;M;1 \ T cN ; then …. N‚cN jDN / D OPN
�0

.e�bNı
2
N / D oPN

�0

.1/ (4.8)

for any b > 0 and asN !1, as long as we chooseM;B large enough. In the proofs
that follow we consider � �…

N‚N . � jDN /, where the posterior (1.12) is taken to arise
from prior probability measure

…
N‚N �

…. � \ N‚N /

…. N‚N /

equal to … restricted to N‚N from (4.2) and renormalised. Standard arguments (Exer-
cise 4.3.2) then imply, for k � kTV the total variation distance on probability measures
on ‚, that as N ! 1,

k…. � jDN / �…
N‚N . � jDN /kTV � 2…. N‚cN jDN /

PN
�0

��! 0; (4.9)

and as a consequence for any metric dweak for weak convergence also

dweak.…. � jDN /;…
N‚N . � jDN //

P 2
�0
N

����! 0:

It hence suffices to prove Theorem 4.1.5 for … N‚N . � jDN / instead of …. � jDN /.

4.1.1.2 Perturbation of the posterior Laplace transform.

Proposition 4.1.6. For �;  2 ‚ and N D N �0
from Condition 4.1.2, define

�.t/ D � � t
N �0
p
N

for t 2 R:

Let O‰N be as in (4.7), N‚N as in (4.8), and `N as in (1.13). Then we have for every
fixed t 2 R and a sequence RN D oPN

�0

.1/ as N ! 1,

E…
N‚N

�
exp

®
t
p
N.h�;  iL2.Z/ �

O‰N /
¯
jDN

�
D e

t2

2 kI�0
N k2

L2.X/ �

R
N‚N
e`N .�.t//d….�/R

N‚N
e`N .�/d….�/

� eRN :

Proof. For WN as in (3.8) with h D N , the posterior Laplace transform equals

E…
N‚N

�
e
t
p
N.h�; i

L2.Z/
� O‰N /jDN

�
D

R
N‚N
e
t
p
N h���0; i

L2.Z/
�tWN C`N .�/�`N .�.t//C`N .�.t//d….�/R

N‚N
e`N .�/d….�/
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The main step in the proof is a uniform in � 2 N‚N perturbation expansion of the
log-likelihood ratios under PN

�0
. We can write

`N .�/ � `N .�.t//

D �
1

2

NX
iD1

�
jYi � G.�/.Xi /j

2
V � jYi � G.�.t//.Xi /j

2
V

�
D �

1

2

NX
iD1

�
jG.�0/.Xi / � G.�/.Xi /C "i j

2
V � jG.�0/.Xi / � G.�.t//.Xi /C "i j

2
V

�
D �

NX
iD1

�
h"i ;G.�0/.Xi / � G.�/.Xi /iV � h"i ;G.�0/.Xi / � G.�.t//.Xi /iV

�
�
1

2

NX
iD1

�
jG.�0/.Xi / � G.�/.Xi /j

2
V � jG.�0/.Xi / � G.�.t//.Xi /j

2
V

�
� I C II:

About term I, we ‘linearise’ the map G at �0 in each inner product to obtain

I D
NX
iD1

h"i ;DG�0
.Xi /Œ� � �.t/�iV

C

NX
iD1

˝
"i ;G.�/.Xi / � G.�0/.Xi / �DG�0

.Xi /Œ� � �0�
˛
V

�

NX
iD1

˝
"i ;G.�.t//.Xi / � G.�0/.Xi / �DG�0

.Xi /Œ�.t/ � �0�
˛
V
;

which we write as

t
p
N

NX
iD1

h"i ;DG�0
.Xi /Œ N �iV CR.0/.�/ �R.t/.�/ D tWN CR.0/.�/ �R.t/.�/;

noting that �.0/ D � and where the ‘remainder empirical processes’ are given by

R.t/ �

NX
iD1

˝
"i ;G.�.t//.Xi / � G.�0/.Xi / �DG�0

.Xi /Œ�.t/ � �0�
˛
V
:

We show in Lemma 4.1.7 below that for all t 2 R fixed,

sup
�2‚N;M;1

jR.t/.�/j D oPN
�0

.1/; (4.10)

so that these terms form a part of the sequence RN .
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For term II, with E� denoting expectation under the Xi ’s only, we have

�
1

2

NX
iD1

�
jG.�0/.Xi / � G.�/.Xi /j

2
V �E�jG.�0/.Xi / � G.�/.Xi /j

2
V

� jG.�0/.Xi / � G.�.t//.Xi /j
2
V CE�jG.�0/.Xi / � G.�.t//.Xi /j

2
V

�
�
N

2
kG.�0/ � G.�/k2

L2.X/
C
N

2
kG.�0/ � G.�.t//k

2
L2.X/

:

The sums in the first two lines are empirical processes and are shown in Lemma 4.1.8
below to be oPN

�0
.1/ uniformly in � 2 ‚N;M;1 for every fixed t , and can thus also be

absorbed into RN .
For the terms in the last line of the last display, we can further decompose

kG.�0/ � G.�.t//k
2
L2.X/

D kG.�.t// � G.�0/ �DG�0
Œ�.t/ � �0�CDG�0

Œ�.t/ � �0�k
2
L2.X/

D kDG�0
Œ�.t/ � �0�k

2
L2.X/

C 2
˝
DG�0

Œ�.t/ � �0�;G.�.t// � G.�0/ �DG�0
Œ�.t/��0�

˛
L2.X/

C
G.�.t// � G.�0/ �DG�0

Œ�.t/ � �0�
2
L2.X/

;

including also the case � D �.0/ by convention for t D 0. Now using Conditions 3.1.1
and 4.1.4 and the Cauchy–Schwarz inequality, the last two remainder terms are boun-
ded by a constant multiple of

sup
�2‚N;M;1

�
�2�0
.�.t/ � �0/C k�.t/ � �0kL2��0

.�.t/ � �0/
�

. �2N C �N NıN D o
� 1
N

�
:

The remaining terms in the expansion are

N

2

�DG�0

h
� � �0 �

t
p
N

N 
i2
L2.X;V /

� kDG�0
Œ� � �0�k

2
L2.X;V /

�
D �t

p
N hDG�0

Œ� � �0�;DG�0
Œ N �iL2.X;V / C

t2

2
kDG�0

Œ N �
2
L2.X;V /

D �t
p
N h� � �0; I

�
�0

I�0
N iL2.Z;W / C

t2

2
kI�0

Œ N �
2
L2.X;V /

;

which, combined with Condition 4.1.2, the bounds from term I and the identity in the
first display in this proof, implies the result.

4.1.1.3 Stochastic bounds on remainder terms and discretisation error. The fol-
lowing two lemmas use tools from infinite-dimensional probability to bound the
collections of empirical processes appearing as remainder terms in the proof of Pro-
position 4.1.6. While that proposition considers localisation to the sets N‚N , the fol-
lowing bounds actually hold uniformly in the larger classes ‚N;M;1 from (4.2).
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Lemma 4.1.7. We have (4.10).

Proof. For t fixed, define new functions g� WX ! V as

g� D G.�.t//. �/ � G.�0/. �/ �DG�0
. �/Œ�.t/ � �0�:

Then the remainder term from (4.10), viewed as a stochastic process indexed by
� 2 ‚N;M;1, equals a centred (since E"i D 0) empirical process for the jointly
i.i.d. variables .Xi ; "i / of the form

jR.t/.�/j �
ˇ̌̌ NX
iD1

h"i ; g� .Xi /iV

ˇ̌̌
�

ˇ̌̌ pVX
jD1

NX
iD1

"i;jg�;j .Xi /
ˇ̌̌
�

pVX
jD1

ˇ̌̌ NX
iD1

"i;jg�;j .Xi /
ˇ̌̌
:

Here g�;j are the entries of the vector field g� 2 V , and the "i;j are all i.i.d. N.0; 1/
variables. We will now bound the supremum over ‚N;M;1 of the each of the last pV
summands by using a moment inequality for the empirical process ¹

PN
iD1 f� .Zi / W

f 2 F º, where for every 1 � j � p fixed (and with e denoting a real variable in this
proof in slight abuse of notation),

f� 2 F � Fj D
®
f� .z/ D eg�;j .x/ W � 2 ‚N;M;1

¯
; z D .e; x/ 2 R � X;

and Z1; : : : ; ZN are i.i.d. copies of the variables Z D ."; X/ � N.0; 1/ � � D P .
We will apply [60, Theorem 3.5.4] but to do so we need to calculate some pre-

liminary bounds. First, by independence of X; ", the ‘weak’ variances of F are of
order

sup
�2‚N;M;1

Ef 2� .Z/ D sup
�2‚N;M;1

Eg2�;j .X/ � sup
�2‚N;M;1

�2�0
.�.t/ � �0/ � �2N ;

by Conditions 3.1.1 and 4.1.4. Next, by Condition 4.1.1 and the definition of‚N;M;1,
we have

sup
�2‚N;M;1

kg�;j k1 . k�.t/ � �0k1 . NıN .1C k N k1/ . NıN :

As a consequence, the preceding empirical process has point-wise envelopes

sup
�2‚N;M;1

jf� .e; x/j . jej NıN � FN .e; x/ for all .e; x/ 2 R � X;

in particular, FN > 0 P -a.s. and

kFN k
2
L2.P /

WD

Z
R�X

F 2N .z/ dP.z/ . Nı2N ;

kFN k
2
L2.Q/

WD

Z
R�X

F 2N .z/ dQ.z/ '
Nı2N s

2
Q;

where, for any (discrete, finitely supported) probability measure Q on R � X, we
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have set s2Q WD
R

R�X
e2dQ.e; x/. Finally, we have again from Condition 4.1.1, for

any �; � 0 2 ‚ and some fixed constant c0, that

kf� � f� 0kL2.Q/ WD

sZ
R

Z
X

e2.g�;j .x/ � g� 0;j .x//2dQ.e; x/

� sQkg�;j � g� 0;j k1

� sQ.kG.�.t// � G.� 0.t//k1 C kI�0
Œ�.t/ � �

0
.t/�k1/

�
c0
NıN

kFN kL2.Q/k� � � 0k1:

We conclude that any NıN �=c0-covering of ‚N;M;1 for the norm k � k1 induces a
kFN kL2.Q/�-covering of F for the L2.Q/ norm, and so J.F ; F; s/ in [60, equa-
tion (3.169)] is bounded by a constant multiple of our JN .s; NıN / (using also [60,
Lemma 3.5.3 (a)]). With these preparations, we can now apply [60, Theorem 3.5.4]
where for our choice of envelope FN we can take kU kL2.P / in that theorem bounded
by a constant multiple of

p
logN NıN (using independence of X; " and also [60, Lem-

ma 2.3.3]). The upper bound (3.171) in [60] then implies that

E sup
�2‚N;M;1

ˇ̌̌ NX
iD1

f� .Zi /
ˇ̌̌

.
p
N max

h
NıN JN

��N
NıN
; NıN

�
;

p
logN Nı3N J

2
N .�N =

NıN ; NıN /
p
N�2N

i
;

which in turn, using the substitution NıN � D � in (4.4), is bounded by a constant
multiple of the maximum of the second and third terms appearing in (4.6). Hence
the remainder terms from (4.10) converge to zero in expectation, and then also in
probability (by Markov’s inequality). (Let us finally note that, strictly speaking, the
application of [60, Theorem 3.5.4] requires 0 2 F and F countable: If k�0kR < M ,
then g� D 0 for � D �0 � .t=

p
N/ N 2 ‚N;M;1 and N large enough, so 0 2 F .

Otherwise, we can recentre f� at f�� for some arbitrary �� and use a standard (one-
dimensional) moment bound forEj

PN
iD1 f��.Zi /j �

p
N�N ! 0. One then applies

the previous argument to the class F � f�� , so that the same overall bound holds
true also in this case. Finally, by continuity of � 7! g�;j on the totally bounded set
‚N;M;1, the supremum of the empirical process can be realised over a countable
dense subset of‚N;M;1, so the assumption that F be countable can be met, too.)

Lemma 4.1.8. We have, for any t 2 R, that

sup
�2‚N;M;1

ˇ̌̌ NX
iD1

�
jG.�0/.Xi / � G.�.t//.Xi /j

2
V

�E�jG.�0/.Xi / � G.�/.Xi /j
2
V

�ˇ̌̌
D oPN

�0

.1/:
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Proof. For the supremum of the empirical process ¹
PN
iD1.f .Xi /�Ef .Xi //Wf 2F º,

we will obtain a bound, this time with indexing class

F D
®
f� D jG.�0/. �/ � G.�.t//. �/j

2
V W � 2 ‚N;M;1

¯
:

Using Condition 4.1.1, the envelopes of F can be taken to be

sup
�2‚N;M;1

kG.�0/ � G.�.t//k
2
1 . sup

�2‚N;M;1

k�0 � �.t/k
2
1 . Nı2N � F;

and we also have, since kG.�/k1 � U for � 2 ‚N;M;1 by Condition 2.1.1, that

kf� � f� 0k1 . k� � � 0k1 for all �; � 0 2 ‚N;M;1:

This implies, similar to the proof in the previous lemma, that a c0 Nı2N �-covering of
‚N;M;1 for the k � k1-norm (and c0 a small but fixed constant) induces a kF kL2.Q/�-
covering of F for the L2.Q/-norm (Q any probability measure), and that the func-
tional J.F ; F; s/ in [60, equation (3.169)] is bounded by a constant multiple of our
J.s; Nı2N /. The convergence to zero required in the lemma now follows from [60, The-
orem 3.5.4], in fact Remark 3.5.5 after it, the requirement (4.5) from Condition 4.1.4,
and Markov’s inequality.

4.1.1.4 Gaussian change of variables. We now control the ratio of Gaussian integ-
rals appearing in Proposition 4.1.6.

Proposition 4.1.9. As N ! 1, we have for any fixed t 2 R thatR
N‚N
e`N .�.t//d….�/R

N‚N
e`N .�/d….�/

PN
�0

��! 1:

Proof. If we denote by …t the Gaussian law of �.t/ D � � .t=
p
N/ N , then the

Cameron–Martin theorem (e.g., [60, Theorem 2.6.13]) provides the formula for the
Radon–Nikodym density of

d…t

d…
.�/ D exp

° t
p
N

h�; N iHN
�
t2

2N
k N k2HN

±
; � � …; N 2 HN :

The ratio in the proposition thus equals

e
� t2

2N k N k2
HN

R
N‚N;t

e`N .#/e
tp
N

h#; N iHN d….#/R
N‚N
e`N .�/d….�/

; with N‚N;t D¹# D �.t/ W � 2 N‚N º:

Uniformly in � 2 T cN � N‚N , from (4.8) we have, as N ! 1, that

jt j
p
N

jh�; N iHN
j . ıN k N kHN

.
p
Nı2N k

N kH ! 0;
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by Condition 4.1.4, which also implies that .t2=N/k N k2
HN

D o.1/ since 1=
p
N D

o.ıN /. Now since

jt j
p
N

sup
#2 N‚N;t

jh#; N iHN
j �

jt j
p
N

sup
�2T c

N

jh�; N iHN
j C

t2

N
k N k2HN

;

we deduce from what precedes that the last ratio of integrals equals

eo.1/ �

R
N‚N;t

e`N .#/d….#/R
N‚N
e`N .�/d….�/

D eo.1/ �
…. N‚N;t jDN /

…. N‚N jDN /
:

The denominator converges to 1 in PN
�0

-probability by (4.8), and so does then the

numerator, using again (4.8) and that tk N k1=
p
N D o. NıN / and tk N kR=

p
N D o.1/

under the maintained assumptions.

Combining Propositions 4.1.6 and 4.1.9, we have for all t 2 R, as N ! 1,

E…
N‚N

�
exp¹t

p
N.h�;  iL2

�
.Z/ �

O‰N /ºjDN
�
! exp

° t2
2
kI�0

N k2
L2

�
.X/

±
(4.11)

in PN
�0

-probability, and therefore, using also (4.9), for � � …. � jDN /,
p
N.h�;  iL2

�
.Z/ �

O‰N /jDN
d
�! N.0; kI�0

N k2
L2

�
.X/
/; (4.12)

by the inPN
�0

-probability version of the usual implication that convergence of Laplace
transforms implies convergence in distribution (see Exercise 4.3.3). This completes
the proof of Theorem 4.1.5.

4.1.2 Asymptotic distribution of the posterior mean

To use an approximation as the one from Theorem 4.1.5 for applications to uncer-
tainty quantification (see Section 4.1.3), we need to choose a feasibly computable
centring statistic instead of the (infeasible) O‰N . A desirable choice, both for infer-
ence and computation via MCMC, is

h N�N ;  iL2
�
.Z;W /; where N�N D E…Œ� j.Yi ; Xi /

N
iD1�

is the mean of the posterior distribution. Under the maintained hypotheses, the Boch-
ner integral E…Œ� j.Yi ; Xi /NiD1� can be shown to exists for any given data vector
.Yi ; Xi /

N
iD1.

Theorem 4.1.10. In the setting of Theorem 4.1.5, if N�N DE…Œ� j.Yi ;Xi /
N
iD1� denotes

the posterior mean, then we have, as N ! 1,
p
N h� � N�N ;  iL2

�
.Z/j.Yi ; Xi /

N
iD1

d
�! N.0; kI�0

N �0
k
2

L2
�
.X;V /

/ in PN�0
-probability:



Bernstein–von Mises theorems 78

Moreover, as N ! 1, we also have
p
N h N�N � �0;  iL2

�
.Z;W /

d
�! N.0; kI�0

N �0
k
2

L2
�
.X;V /

/:

The proof consists of a ‘quantitative’ uniform integrability argument employ-
ing the following lemma which provides a stochastic bound on the posterior second
moments.

Lemma 4.1.11. Under the hypotheses of Theorem 4.1.10, we have

NE…
�
.h�;  iL2

�
.Z/ �

O‰N /
2
jDN

�
D OPN

�0

.1/:

Proof. The left-hand side in the last display is bounded by

2NE…
�
h� � �0;  i

2

L2
�
.Z/

jDN
�
C 2N. O‰N � h�0;  iL2

�
.Z//

2;

and in view of (4.7), the second term in the last decomposition is bounded in PN�0
-

probability by the central limit theorem applied to WN from (3.8) with h D N �0
(one

also applies the continuous mapping theorem for x 7! x2 and Prohorov’s theorem
[126] to deduce from convergence in distribution of NW 2

N that it is uniformly tight.)
It hence remains to bound the first term in the last decomposition. Define CN D

¹k� � �0k1 �M NıN º � ‚ forM to be chosen, and write the first quantity in the last
display as (two times)

NE…
�
h���0; i

2

L2
�
.Z/
1CN

jDN
�
CNE…

�
h���0; i

2

L2
�
.Z/
1C c

N
jDN

�
D ICII: (4.13)

To deal with term II, we apply the Cauchy–Schwarz inequality to obtain the bound

N
q
E…Œh� � �0;  i

4
L2.Z/

jDN �

q
….k� � �0k1 > M NıN jDN /;

and we now show that this term is bounded in PN
�0

-probability: Using Lemma 1.3.3
and the arguments from Step 2 in the proof of Theorem 2.2.2 to bound the probability
of the sets AN from (1.28), Markov’s inequality and EN

�0
e`N .�/�`N .�0/ D 1, as well

as Proposition 4.1.3 with M large enough so that b > AC 3, we obtain

PN�0

�
E…Œh� � �0;  i

4
jDN �….k� � �0k1 > M NıN jDN / > N

�2
�

� PN�0

�
E…Œh� � �0;  i

4
jDN �e

�bNı2
N > N�2

�
C o.1/

� PN�0

�R
‚
h� � �0;  i

4 e`N .�/�`N .�0/d….�/R
‚
e`N .�/�`N .�0/d….�/

> ebNı
2
NN�2; AN

�
C o.1/

� k k4
L2.Z/

e.AC2�b/Nı
2
NN 2

Z
‚

k� � �0k
4
L2.Z/

EN�0
e`N .�/�`N .�0/d….�/C o.1/

. N 2e�Nı
2
N C o.1/! 0
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as N ! 1, by hypothesis on ıN ; …N . Collecting what precedes implies that the
term II in (4.13) is indeed ONP�0

.1/.

The next step is to bound the term I in (4.13). Recalling that… N‚N Œ � jDN � denotes
the posterior distribution arising from prior restricted and renormalised to N‚N , we
decompose

NE…
�
h� � �0;  i

2
L2.Z/

1CN
jDN

�
D NE…

N‚N
�
h� � �0;  i

2
L2.Z/

1CN
jDN

�
CNE…

�
h� � �0;  i

2
L2.Z/

1CN
jDN

�
�NE…

N‚N
�
h� � �0;  i

2
L2.Z/

1CN
jDN

�
D AC B:

For term A, using x2 � 2ex , x � 0, the definition of O‰N from (4.7) and WN D

OPN
�0
.1/ with h D N �0

from (3.8), the limit (4.11) at t D 1 implies that for all N
large enough and some rN D oPN

�0

.1/,

A � 2eWN CrN e
1
2 kI�0

N k2

L2.X;V / ;

and hence this term is stochastically bounded.
Finally, by definition of the events CN , the term jBj can be written as

N
ˇ̌̌ Z
CN

h� � �0;  i
2
L2.Z/

Œd….� jDN / � d…
N‚N .� jDN /�

ˇ̌̌
�MN Nı2N k k

2
L1.Z/

k…. � jDN / �…
N‚N . � jDN /kTV

. N Nı2N….
N‚cN jDN / . N Nı2NOPN

�0

.e�bNı
2
N / D oPN

�0

.1/;

where we have used (4.9) and (4.8), completing the proof of the lemma.

Now to prove the theorem, note that by (4.12) and (4.1), for

ZnjDN �
p
N.h�;  iL2

�
.Z/ �

O‰N /jDN ; Z � N.0; kI�0
N k2
L2

�
.X/
/;

and dweak any metric for weak convergence of laws L. �/ on R, we have

dweak
�
L.ZN jDN /;L.Z/

� PN
�0

����!
N!1

0: (4.14)

The idea of the proof to follow is that the previous lemma implies (by uniform integ-
rability) convergence of moments in the last limit (4.14), and thus that, sinceEZ D 0,
the posterior mean equals O‰N up to a stochastic term of order o.1=

p
N/. However,

as the probability measures L.ZN jDN / to which this argument is applied are ran-
dom via the data DN , the proof requires some care. We will employ a contradiction
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argument: To prove Theorem 4.1.10, it suffices by Theorem 4.1.5, Slutsky’s lemma
and (3.8) with h D N �0

to prove that as N ! 1,
p
N
�
hE…Œ� jDN �;  iL2

�
.Z/ �

O‰N
� Pr
�! 0; (4.15)

where we write Pr for the probability measure PN
�0

on the underlying measurable
space .�;�/ WD ..V �X/N ;�/ supporting all data variables .DN ;N 2 N/. Suppose
the last limit does not hold true. Then there exists �0 2 � of positive probability
Pr.�0/ > � and �0 > 0 such that along a subsequence of N (still denoted by N ), we
have

j
p
N
�
hE…Œ� jDN .!/�;  iL2

�
.Z/ �

O‰N .!/
�
j � �0 > 0 for ! 2 �0: (4.16)

Now since convergence in Pr-probability implies Pr-almost sure convergence along a
subsequence, we can extract a further subsequence ofN such that (4.14) holds almost
surely, that is, on an event�0 � � such that Pr.�0/ D 1. For each fixed ! 2 �0, we
can use the Skorohod imbedding [46, Theorem 11.7.2] to construct (if necessary on a
new probability space) new real random variables QZN ; QZ such that their laws satisfy

L. QZN / D L.ZN jDN .!//; L. QZ/ D L.Z/; QZN
a.s.

����!
N!1

QZ;

and we also know by Lemma 4.1.11 that E QZ2N D EŒZ2N jDN .!/� D O.1/ for all
! 2 �0

0 � �0 of probability Pr.�0
0/ > 1 � � as close to one as desired. But this

implies that the . QZN W N 2 N/ are uniformly integrable real random variables so that
almost sure convergence implies convergence of first moments [46, Theorem 10.3.6],
that is,

EjZnjDN .!/ �Zj D Ej QZN � QZj
N!1
����! 0

for all ! 2 �0
0. In particular, using also Fubini’s theorem,

p
N
�
hE…Œ� jDN .!/�;  iL2

�
� O‰N .!/

�
D E…

�p
N
�
h�;  i � O‰N

�
jDN .!/

�
! EZ D 0

for ! 2�0
0. But if the last limit holds for all ! 2�0

0 with probability Pr.�0
0/ > 1� �

we have a contradiction to (4.16) (as then Pr.�/� Pr.�0/C Pr.�0
0/ > 1� � C � D 1),

completing the proof of (4.15) and thus of the theorem.

4.1.3 Applications to uncertainty quantification

Let us illustrate a statistical application of the preceding theorems to Bayesian uncer-
tainty quantification (UQ) for functionals h�;  iL2

�
.Z/: Consider a level 1 � � Bayes-

ian credible interval

CN D

°
v 2 R W jv � h N�;  iL2

�
.Z/j �

RN
p
N

±
; ….CN jDN / D 1 � �;
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where N� D E…Œ� jDN � is the posterior mean given the data DN D .Yi ; Xi /
N
iD1 and

0 < � < 1 a given coverage level. Construction of the interval CN requires MCMC
computation of that mean and of the quantiles RN of the posterior distribution, but
not of the asymptotic variance appearing in Theorem 4.1.10.

Now let Q.t/ D Pr.jZj � t /, t 2 R, where Z is the limiting normal distribution
occurring in Theorem 4.1.10. Assume that Z is not degenerate (i.e., of non-zero vari-
ance) so that Q is continuous and strictly increasing. Then by Theorem 4.1.10 and
the last part of Exercise 4.3.3 we see that

Q.RN / D Q.RN / �….CN jDN /C .1 � �/
PN

�0
��! 1 � �

as N ! 1, and since Q is invertible with continuous inverse, the continuous map-
ping theorem implies

RN

PN
�0

��! Q�1.1 � �/:

By Slutsky’s lemma and again Theorem 4.1.10, we then have as N ! 1,

Q�1.1 � �/

RN

p
N h N�N � �0;  iL2

�
.Z;W /

d
�! Z:

Next, let us compute the frequentist coverage probability of the credible setCN for the
true parameter �0. We have from the last limit and the continuous mapping theorem
for j � j that

PN�0
.h�0;  iL2

�
2 CN / D PN�0

.
p
N jh�0 � N�N ;  iL2

�
j � RN /

D PN�0

�Q�1.1 � �/

RN

p
N jh N�N � �0;  iL2

�
j � Q�1.1 � �/

�
! Q.Q�1.1 � �// D 1 � �;

showing that CN is indeed a precise asymptotic level 1� � confidence set of stochas-
tic diameter O.1=

p
N/. One can obtain ‘simultaneous’ versions of these results for

appropriate collections of  ’s too if an appropriate ‘uniform’ BvM theorem is at
hand, see [60, Theorem 7.3.23].

4.2 Solving information equations in PDE models

The new condition encountered in this chapter concerns the solvability of the inform-
ation equation (3.16). The corresponding Condition 4.1.2 does not only stipulate that
a solution N exists, but also that it has sufficient regularity to belong to the space ‚.
Whether this is possible or not is a priori not clear and depends on the particular
inverse problem via the information operator (cf. Definition 3.1.2) induced by G.
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For the PDE examples studied in these notes, our path reaches a perhaps sur-
prising fork at this point: We will show in this section that for the Schrödinger
model (2.5), the information operator is itself a composition of elliptic operators and
can be inverted on the space C1

c .X/ of smooth functions of compact support in X

(or in fact on appropriate Sobolev spaces). As a consequence, a Bernstein–von Mises
theorem can be proved for h�;  iL2 with � � …. � jDN / a posterior draw and for all
 2 C1

c .X/. These ideas extend to ‘perturbed’ differential operators D � f of the
form mentioned after (1.4) – see the notes to this chapter for more discussion. In con-
trast, for Darcy’s problem (2.8), we will show that the information equation can not be
solved for typical elements of C1

c .X/ (such as all positive smooth  ). In particular,
in view of Theorem 3.1.5, this implies that the Gaussian BvM-type approximations
predicted by Le Cam theory for posterior functionals h�;  i do in fact not hold true
for this PDE.

4.2.1 A Bernstein–von Mises theorem for the Schrödinger equation

We consider the Schrödinger forward map from (2.5) with potential f D f� D e� ,
� 2‚; and parameter space C1

c �‚ �H �.X/, � > d=2. The information operator
I�
�
I� is given by Theorem 3.3.1 and (3.44), (3.45). Now for 2C1

c .X/ and recalling
the Schrödinger operator Lf�

D
1
2
� � f� ; we can define

N �0
D

Lf�0
Lf�0

�
 

uf�0
f�0

�
uf�0

f�0

; (4.17)

where we recall that G.�0/ D uf�0
is bounded away from zero on X (since h �

hmin > 0 on X and using (A.25)). If we assume further that �0 2 C1.X/, then Pro-
position A.5.2 and (4.17) imply that N �0

2 C1
c .X/ 2 ‚.

Since L�1
f�0

is the inverse of Lf�0
for Dirichlet boundary conditions (cf. (1.6) and

(A.10)), we obtain from (3.44), (3.45) that

I��0
I�0

N �0
D I��0

h
L�1
f�0

Lf�0
Lf�0

h  

uf�0
f�0

ii
D uf�0

f�0
L�1
f�0

Lf�0

h  

uf�0
f�0

i
D  (4.18)

for any  2 C1
c .X/. That is, N D N �0

solves the information equation (3.16) for
such  , and Condition 4.1.2 is verified. In particular, .I�

�0
I�0
/�1 is then a proper

inverse on C1
c .X/. Collecting these findings we have effectively proved the follow-

ing Bernstein–von Mises theorem.
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Theorem 4.2.1. Consider a Gaussian prior …N from (2.18) with � D 0 and base
prior …0 as in Condition 2.2.1, where

C1
c � ‚; H � H˛.X/; R D H �.X/; � > ˛ C

d

2
;

and with ˛ satisfying
˛

2˛ C d

˛ � d

˛ C 2 � d=2
>
1

3
: (4.19)

Let � � …. � jDN /, where …. � jDN / is the posterior measure (1.12) on ‚ arising
from observationsDN D .Yi ;Xi /

N
iD1 in model (1.9) with G.�/ from (2.5). Denote the

posterior mean by N�N DE…Œ� jDN �, and let 2C1
c .X/. Assume �0 2C1.X/\H

is such that infx2X f�0
.x/ > fmin. Then we have

p
N h� � N�N ;  iL2

�
.X/jDN

d
�! N.0; �2.f�0

;  // in PN�0
-probability;

as N ! 1, and moreover that
p
N h N�N � �0;  iL2

�
.X/

d
�! N.0; �2.f�0

;  //;

where the asymptotic variance is given by

�2.f�0
;  / D

Lf�0

h  

uf�0
f�0

i2
L2

�
.X/
: (4.20)

Proof. We need to check the conditions from Theorem 4.1.5. Condition 2.1.1 was
checked for � D 0 in Proposition 2.1.2, while Condition 2.1.4 was checked with � D
�=.2 C �/ in Exercise 2.4.1. Condition 3.1.1 was verified in Theorem 3.3.1 while
Condition 4.1.1 follows from Exercise 4.3.1. Condition 4.1.2 was checked just before
the statement of the theorem. We can invoke Proposition 4.1.3 with ˇ D � , � D 0;

and verify Condition 4.1.4 as follows: The k � k1-covering numbers of a ˇ-Sobolev
ball in dimension d are of the order

logN.‚N;M;1; k � k1; �/ .
�1
�

�d=ˇ
; ˇ > 0;

see [60, equation (4.184)] for the case when the functions are defined over Œ0; 1�d , and
this bound applies to our setting by a standard extension argument (and regarding X

as a subset of Œ0; 1�d without loss of generality). Also for � 2 ‚N;M;1, we can take
��0
.� � �0 C .t=

p
N/ N �0

/ . Nı2N � �N : We first note that the quantity in (4.5) is
bounded by

p
N Nı2N

Z 1

0

. Nı2N �/
�d=.2ˇ/d� .

p
N Nı

2�d=ˇ
N ; (4.21)

since ˇ > d=2. We will eventually show that the last bound converges to zero as
N ! 1, which also implies N�2N . N Nı4N ! 0. The middle term in the maximum
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in (4.6) can similarly be bounded by

p
NJN .�N ; 1/ D

p
N

Z �N

0

��d=.2ˇ/d� .
p
N Nı

2�d=ˇ
N ;

and hence is of the same order as the one in (4.21). For the third member in the
maximum (4.6), by a similar calculation, we have

NıN
p

logN
�2N

J2N .�N ; 1/ .
p

logN Nı
1�2d=ˇ
N :

We can conclude from what precedes that it suffices to show that

max
�p
N Nı

2�d=ˇ
N ; N Nı3N ;

p
logN Nı

1�2d=ˇ
N

�
! 0 as N ! 1.

This requires ˇ > 2d and then simplifies to the basic requirement N Nı3N ! 0. Using
the convergence rate NıN provided by Proposition 4.1.3 and (4.19), Condition 4.1.4
is verified. The final result now follows from Theorems 4.1.5 and 4.1.10 and since,
arguing as in the first step in (4.18),

Q �0
D I�0

N �0
D Lf�0

h  

uf�0
e�0

i
: (4.22)

The proof is complete.

We note that the asymptotic variance in (4.20) is just the squared L2
�

-norm of Q �0

from (4.22), and hence precisely equals the lower bound from Theorem 3.1.4.
The previous result can in principle be made uniform in collections W of  ’s

that are bounded in suitable Sobolev norms. If we wish to obtain such uniformity to
hold for weak convergence (in PN

�0
-probability) of the posterior measure towards the

limiting centred Gaussian process .X. / W  2 W/ with covariance

EX. /X. 0/ D
D
Lf�0

h  

uf�0
f�0

i
;Lf�0

h  0

uf�0
f�0

iE
L2

�

;  ;  0
2 W; (4.23)

from (4.20), then this forces k kHˇ � C for some C > 0 and ˇ > 2 C d=2. The
reason is that otherwise the limiting process would not be a tight random variable,
so that by Prohorov’s theorem, laws cannot converge weakly towards it – see [93,
Proposition 6] for a proof of this fact, and the notes to this section for more on the
subject of ‘uniform in  ’ Bernstein–von Mises theorems.

4.2.2 Impossibility of the BvM-phenomenon for Darcy’s problem

We now show that for the forward map arising from the divergence form equa-
tion (2.8), even when considering the most regular parameter � � const corresponding
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to the standard Laplacian on a 2d -disk, the information equation (3.16) can in fact
not be solved for generic classes of smooth  ’s. The problem was already foreshad-
owed in the discussion before Proposition 2.1.5, only that now the Laplacian term that
helped crucially in (2.14) has disappeared – the vector field ru� then entirely determ-
ines the solvability of the relevant information equation, and the counter-examples
that follow exhibit that obstructions can arise from this in natural settings.

We will prove more than non-solvability of the information equation – we show
that even the range condition  2 R.I��0

/ is typically violated and that hence, in view
of Theorem 3.1.5,

p
N -consistent estimation of parameters h�;  i is not possible for

a large class of smooth  ’s. In particular, a fortiori, no semi-parametric Bernstein–
von Mises theorem can hold true, as this would entail the existence of an efficient
estimator (whose asymptotic distribution coincides with the centring O‰N from (4.7)).

4.2.2.1 The range of I�
�

and transport PDEs. We consider the forward map G

from (2.8) arising from solutions G.�/ D u� of the PDE (1.2) with divergence form
operator (1.3) for f D f� D fmin C e� , � 2 ‚ D H

ˇ
c .X/. From Proposition 3.3.3

the range of the adjoint operator is given by

R.I�� / D
®
 D e�ru� � rL�1

f�
Œg� for some g 2 L2�.X/

¯
:

The operator L�1
f�

maps L2
�
.X/ into H 2

0 .X/ D ¹y 2 H 2 W yj@X D 0º and hence if  
lies in the range of I�

�
, then the equation

ru� � ry D e�� on X;

y D 0 on @X;
(4.24)

necessarily has a solution y D y 2 H 2
0 . The existence of solutions to the transport

PDE (4.24) depends in a possibly intricate way on the compatibility of  with geo-
metric properties of the vector field ru� , which in turn is determined by the geometry
of the forward map G (via f; g; � ) in the base PDE (1.2).

We now illustrate the obstructions that can arise from the above transport problem
in the representative model case where Lf�

is the standard Laplacian �, i.e., � D 0,
fmin D 0, and with source g D 2, boundary values hD .j � j2

R2 � 1/=2. As underlying
domain, we choose either

(i) X equal to a unit disk in R2 separated away from the origin .0; 0/, or

(ii) X equal to the unit disk in R2 centred at .0; 0/.

We will refer to them as Example (i) and (ii), respectively, and note that the
injectivity of I� has already been studied in Exercise 3.4.5 and Proposition 3.3.4,
respectively. By a simple perturbation argument, the findings below extend to a neigh-
bourhood of � D 0, see Exercise 4.3.4.
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4.2.2.2 Example (i). In (i), the solution to (1.2) with f� D 1 equals u� D h and
hence ru� D x does not vanish on X for � D 0. The last property extends to any �
in a Hˇ -neighbourhood of the standard Laplacian � D 0 by Exercise 4.3.4.

The integral curves .t/ in X associated to the smooth vector field ru� ¤ 0 are
given near x 2 X as the unique solutions (e.g., [121, p. 9]) of the vector ODE

d

dt
D ru� ./; .0/ D x:

Since ru� does not vanish we obtain through each x 2 X a unique curve ..t/ W
0 � t � T / originating and terminating at the boundary @X, with finite ‘travel time’
T � T .X; cr/ <1. Along this curve the chain rule implies

d

dt
y..t// D

d.t/

dt
� ry..t// D .ru� � ry/..t// for 0 < t < T ;

and the PDE (4.24) reduces to the ODE

dy

dt
D  : (4.25)

Now suppose  2 R.I�
�
/. Then a solution y 2H 2

0 to (4.24) satisfying yj@X D 0must
exist. Such y then also solves the ODE (4.25) along each curve  , with initial and
terminal values y.0/ D y.T / D 0. By the fundamental theorem of calculus (and
uniqueness of solutions) this forcesZ T

0

 ..t// dt D 0 (4.26)

to vanish. In other words,  permits a solution y to (4.24) only if  integrates to
zero along each integral curve (orbit) induced by the vector field ru� . Now con-
sider any smooth (non-zero) nonnegative  2 C1

c .X/ � ‚, and take x 2 X such
that  � c > 0 near x. For  the integral curve passing through x, we then can-
not have (4.26) as the integrand never takes negative values while it is positive and
continuous near x. We conclude by way of contradiction that  … R.I�

�
/. Apply-

ing Theorem 3.1.5 with tangent space H D C1
c (and with its hypotheses verified in

Theorem 3.3.2 and Exercise 4.3.1), we have proved the following theorem.

Theorem 4.2.2. Consider estimation of the functional ‰.�/ D h�;  iL2.X/ from
data .Yi ; Xi /NiD1 drawn i.i.d. from PN

�
in the model (1.9) with forward map G from

(2.8) with fmin D 1, where g; h in (1.2) are chosen as in Proposition 3.3.4, with the
domain X separated away from the origin, and with tangent space H D H

ˇ
c .X/.

Suppose 0¤  2 C1
0 .X/ satisfies  � 0 on X. Then for � D 0 the efficient inform-

ation for estimating ‰.�/ satisfies

inf
h2H; hh; i

L2¤0

kI0hk2
L2

�

h ; hi2
L2

�

D 0: (4.27)
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In particular,

lim inf
N!1

inf
N N W.R�X/N !R

sup
� 02‚

k� 0k
L2

�

�1=
p
N

NEN� 0 .
N N �‰.� 0//2 D 1: (4.28)

The proof extends straightforwardly to a (fixed) neighbourhood of the Laplacian
� D 0 as the key property used in the previous proof (that ru� is a non-vanishing
vector field) extends by perturbation, see Exercise 4.3.4.

Let us notice that one can further show that (4.26) is also a sufficient condition
for  to lie in the range of I�

�
(provided  is smooth and with compact support in X).

As this condition strongly depends on � via the vector field ru� , it seems difficult to
describe any choices of  that lie in

T
�2‚R.I

�
�
/.

The problem in this example is that while I� is injective on H 1
0 � ‚, it is not

injective any longer on the L2-closure of ‚, which is the relevant issue for efficient
estimation of functionals h�;  i. The next counter-example is more subtle in this
regard, as I� is injective on all of L2 in this case (see Proposition 3.3.4).

4.2.2.3 Example (ii). We now consider the same setting as in Theorem 4.2.2 but
with X the unit disk centred at the origin, so that the vector field ru� D ru0 D x

has a critical point at the origin when � D 0 (again this property of an isolated zero
extends by perturbation to a neighbourhood of � , see Exercise 4.3.4).

We showed in Proposition 3.3.4 that for this example, the operator I� is injective
on all of L2.X/, and hence any  2 L2.X/ lies in the closure of the range of I�

�

(recalling the Hilbert space identityR.I�
�
/D ker.I� /?). Nevertheless, there are many

relevant  ’s that are not contained inR.I�
�
/ (before taking the closure). In the present

example, the gradient of u� vanishes and the integral curves  associated to ru� D

.x1; x2/ emanate along straight lines from .0; 0/ towards boundary points .z1; z2/ 2
@X, where necessarily y..z1; z2//D 0 if y is to solve (4.24). If we parameterise these
lines as ®

.z1e
t ; z2e

t / W �1 < t � 0
¯
;

then, as after (4.25), we see that if a solution y 2 H 2
0 to (4.24) exists, then  must

necessarily satisfyZ 0

�1

 .z1e
t ; z2e

t / dt D 0 � y.0/ D const for all .z1; z2/ 2 @X:

This again cannot happen, for example, for any non-negative non-zero  2 H that
vanishes along a given curve  (for instance, if it is zero in any given quadrant of X),
as this forces const D 0. Theorem 3.1.5 again as in the preceding theorem yields the
following:
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Theorem 4.2.3. Consider the setting of Theorem 4.2.2 but where now X is the unit
disk centred at .0; 0/, and where 0 �  2 C1

0 .X/,  ¤ 0; vanishes along some
straight ray from .0; 0/ to the boundary @X. Then (4.27) and (4.28) hold at � D 0.

Arguing as after Proposition 3.3.4, the result can be extended to any � near the
standard Laplacian by an application of the Morse lemma, see Exercise 4.3.4.

The last example reveals that it is the lack of a closed range of I�0
that creates

the obstruction for efficient inference here – in particular, the non-existence of
p
N -

consistent estimators for h�; i is not a consequence of the lack of injectivity of I� . In
the asymptotic setting of Le Cam theory we thus encounter fundamental limitations
unless the tangent spaceH is strongly constrained (to a closed proper subspace ofL2

�

such as ED from (5.3) for D fixed, cf. also the proof of Theorem 5.3.2 below). In the
next chapter we will provide some partial ‘non-asymptotic’ remedies for this issue.

4.3 Notes

4.3.1 Exercises

Exercise 4.3.1. Show that Condition 4.1.1 holds for the forward map (2.5) arising
with the Schrödinger equation. [Hint: Argue as in Proposition 2.1.2 and Theorem
3.3.1 but replace the L2-continuity estimates for L�1

f
by L1-Lipschitz estimates

from (A.27).] Show further that the inequality (3.6) is satisfied for the forward map
(2.8) with d � 3 and any h 2 C 1. [Hint: Adapt the estimate (2.10) via the Sobolev
imbedding H 2 � L1 and the elliptic regularity estimate (A.31).]

Exercise 4.3.2. Prove (4.9). [See [126, p. 142].]

Exercise 4.3.3. For �N ;� random probability measures on R defined on some prob-
ability space, suppose

R
R e

txd�N .x/ !
R

R e
txd�.x/ in probability for all t 2 R.

Show that dweak.�N ;�/! 0 in probability, and that the last limit also implies conver-
gence to zero of the Kolmogorov distance supx2R j�N ..�1;x�/��..�1;x�/j! 0.
[Hint: adapt the standard proof for non-random measures along almost surely conver-
gent subsequences; also see the appendix of [31].]

Exercise 4.3.4. Suppose k� � 1kHˇ < � for some ˇ > 1C d=2. Show that ku� �
u1k1 ! 0 as � ! 0. [Hint: By the usual perturbation argument and the Sobolev
imbedding,

ku� � u1kC1 . kV1Œr � Œ.� � 1/ru� ��kHb . k.� � 1/ru�kHb�1

. k� � 1kHb�1ku�kCb � k� � 1kHˇku�kHˇ < C�:�

Show further that if ru1 has exactly one isolated critical point in X, then so has u�
for such � and � small enough.
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4.3.2 Remarks and comments

The results from this chapter on Bernstein–von Mises theorems are taken from [91]
which build on earlier work in [93] as well as [89] and more generally with ideas
for ‘direct’ models going back to [28, 29, 31] – see also [96, 98, 111]. The essential
observation in [28,29] to avoid the negative results due to [53,71] was that in infinite-
dimensions, Bernstein–von Mises theorems only hold in a weak enough topology,
specifically weak enough such that the limiting Gaussian process is well defined,
cf. the discussion around (4.23). For inverse problems such ‘functional’ (uniform
in  ) results in negative order Sobolev-type spaces are obtained in [93] and [96, 98]
based on earlier work in direct models [29] (see also [27, 30, 32] for work in settings
not related to PDEs). The ‘smooth test function’ approach here with  2 C1

c allows
for reasonably short proofs if smooth solutions to the information equation (3.16)
exist (for smooth  ), as is the case in Theorem 4.2.1.

The counter-examples for solvability of the information equation in Darcy’s prob-
lem are due to [95]. They show that whether or not BvM theorems hold true depends
in a delicate way on the PDE driving the inverse problem even in settings where
ground truth and test function �0;  are both smooth (C1).

The invertibility of the information operator for the Schrödinger equation was
shown in [93] and this extends to other examples where a base differential operator
D is perturbed by some zero-order term (‘potential’). A more involved example for
which the theory of this chapter was shown to work in [91] are again the non-Abelian
X-ray transforms from (1.1): For these I�

�
I� also turns out to be elliptic [105] at least

in the interior of X. Dealing with boundary issues at @X is a non-trivial task but
the invertibilty of the information operator (with appropriate adjoint) was proved in
[88, 89, 91].

Generally, when the information operator is elliptic then I�
�

can be expected to
have closed range which allows the Le Cam machinery underlying the proof of The-
orem 4.1.5 to proceed, whereas in other settings (such as Darcy’s problem), the lack
of closedness of the information operator appears to be at the heart of the issues
pointed at here. These problems do not surface in the classical theory with fixed
finite-dimensional tangent spaces H , as the range of a linear operator is then always
closed and it suffices to prove injectivity of I� . In PDE inverse problems such a
finite-dimensional setting can mask many subtleties encountered in high- and infinite-
dimensions, see, e.g., [22] where it is shown that in the context of the Calderón
problem from Section 1.1.1, when restricting to a fixed finite-dimensional space of
piece-wise constant conductivities, a Bernstein–von Mises approximation does hold
true at rate 1=

p
N (even though the non-parametric convergence rates for Hölder

smooth conductivities are at best logarithmic [1]).





Chapter 5

Posteriors are probably log-concave

We now describe a distinct non-asymptotic perspective on the phenomenon that for
large sample sizes, posterior measures arising from Gaussian process priors may
resemble ‘bell-shaped’ or ‘normal-type’ distributions even in settings where G is non-
linear and ‚ is high-dimensional. We also investigate consequences of rigorous such
results on the possibility of efficient computation of posterior distributions by MCMC
methods.

We wish to remove some of the limitations of the Bernstein–von Mises type res-
ults from the previous chapter. Theorems 4.2.2 and 4.2.3 show that in natural infinite-
dimensional models‚ and representative PDE settings such as with Darcy’s problem,
smooth linear statistics of posterior measures may well not have an asymptotically
Gaussian distribution. And even in settings where the posterior has an asymptotically
normal distribution such as in the Schrödinger model considered in Theorem 4.2.1,
the limiting Gaussian process obtained along the ‘convergence determining class’ of
 2 C1

c .X/ has a covariance structure that prevents the posterior measure to con-
verge to its Gaussian limit except for in norms that are much weaker than L2-norms
– see the paragraph containing (4.23) for more discussion. So while such approxim-
ations are very exact and precise results, they hold only in possibly too restrictive
scenarios.

It pays off though to take a second look at the issue: In the ‘locally asymptotically
normal (LAN)’ world of Le Cam theory and semi-parametric statistics, one requires
injectivity of I� on all of L2

�
(see (3.15)) and needs exact solutions to the related

information equation (3.16). On the other hand, from a non-asymptotic point of view,
as discussed in Section 3.2, injectivity of I� on an appropriate high-dimensional
approximation space ED � ‚ is sufficient to obtain (average) local curvature of the
log-likelihood function `N and then also of the posterior distribution. In particular,
an inequality such as (3.27) is sufficient and no exact solution of the information
equation is required. This can make an essential difference as we illustrate in this
section with Darcy’s problem (where this issue was already partly foreshadowed in
Exercise 3.4.5 and the discussion preceding Proposition 3.3.4).

A classical way to take advantage of such local curvature of `N would be to
Taylor expand `N around an appropriate centring and to use the resulting quad-
ratic approximation to construct a Gaussian proxy measure for …. � jDN / – these
are called ‘Laplace approximations’ and will be discussed in more detail in Remark
5.1.4. We will take a different approach to this problem however and approximate the
posterior density from the larger (itself infinite-dimensional) class of ‘unimodal’ log-
concave distributions. These also explain the predicted ‘bell-shaped’ nature of pos-
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teriors but allow for faster approximation rates (measured in the relevant Wasserstein
distance on probability measures) than Laplace approximations. They are also natur-
ally compatible with gradient-based MCMC methods, as we will see. Indeed, if a suf-
ficiently good estimate of the centring is available, one can devise a Langevin MCMC
algorithm that samples from the log-concave proxy and the Wasserstein approxima-
tion Theorem 5.1.3 implies that such methods perform well also as samplers for the
actual posterior measure. In particular, computation of the posterior mean will be
shown to be possible in ‘polynomial run-time’ in relevant parameters. This holds
for ‘warm start’ MCMC methods – the question of initialisation is discussed in the
notes to this section. We also provide a result that illustrates why the problem of
computing target measures by ‘local’ MCMC methods that are initialised outside a
region of log-concavity is generally ‘exponentially hard’ in high-dimensional set-
tings without additional structural assumptions. The results in this chapter show how
one can leverage PDE structure and local log-concavity to break such computational
hardness barriers.

5.1 Wasserstein approximation of the posterior

The idea in this section is to exploit the ‘local curvature’ Theorem 3.2.3 and con-
traction rate theorems such as Theorem 2.3.1 to show that the posterior measure
from (1.12) is very well approximated by a log-concave (unimodal) distribution on
high-dimensional approximation spaces ED ' RD of ‚ that is concentrated near �0
(or rather its projection �0;D onto ED). This will be true on the ‘frequentist’ event
(subset of .V � X/N )

Econv WD

°
inf
�2B

�minŒ�r
2`N .�/� �

c0ND
��0

2

±
\

°
sup
�2B

�
j`N .�/jCkr`N .�/kRD Ckr

2`N .�/kop
�
� N.5c1D

�1 C1/
±
; (5.1)

whose probability was bounded in Theorem 3.2.3, and where we recall the set

B D Br D
®
� 2 ED W k� � �0;DkED

< r
¯

(5.2)

from (3.28) for some radius r to be specified as well as the finite-dimensional approx-
imation space ED � ‚ � L2.Z/ from (3.23). In fact, for conciseness in the proofs
that follow we will choose the eigenbasis of the Dirichlet Laplacian� on the bounded
smooth domain Z � Rd ; for eigen-pairs .�j ; ej / 2 .0;1/ �H 1

0 .Z/ of the operator
�L1;0 from (A.9), we take

ED D

°
# D

DX
jD1

tj ej ; tj D h#; ej iL2
�
.Z/

±
� ‚ WD QH˛.Z/ for D 2 N; (5.3)
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with the the generalised Sobolev scale QH˛.Z/ � H˛
0 .Z/ defined in (A.15) below.

While the results in this section do depend quantitatively on the action of the inform-
ation operator from Definition 3.1.2 on the discretisation space ED , generalisations
beyond the choice of the eigenfunctions of the Dirichlet Laplacian (e.g., to wavelet
bases on domains, or singular value decompositions of other operators with non-
standard boundary conditions) are within reach as long as condition (3.30) can be
checked. See the notes to this section for more discussion.

The finite-dimensional approximation of‚ can be modelled explicitly in a Bayes-
ian way by considering a ‘sieved’ prior truncated at some large enough D 2 N. For
ıN D N�˛=.2˛Cd/, consider a Gaussian probability measure …N D Law.�/ on ED
arising as

� D
1

p
NıN

DX
jD1

gj�
�˛=2
j ej for D � Nı2N and ˛ > 1C d=2; (5.4)

where the gj ’s are i.i.d. N.0; 1/. The posterior distribution from data in (1.9) then
arises as in (1.12) and the contraction rate of …N . � jDN / for general forward maps
was already studied in Exercise 2.4.3.

We will require the ‘average’ curvature and regularity of the log-likelihood func-
tion that underpins Theorem 3.2.3 from earlier to hold on a sufficiently large neigh-
bourhood of the projection �0;D of �0 onto ED

Condition 5.1.1. For R D‚D QH˛.Z/�H˛
0 .Z/ from (A.15) with ˛ > 1C d=2, let

G satisfy Condition 2.1.1 with � D 0 and Condition 2.1.4 for some 0 < �� 1. Suppose
further that Conditions 3.2.1 and 3.2.2 hold for some �0; �1; �2 > 0, c0; c1; c2 > 0; and
B; ED � ‚ as in (5.2), (5.3), respectively, and with a choice of radius r satisfying,
for ıN D N�˛=.2˛Cd/, that

r � .logN/ QıN ; where QıN � .logN/max.ı�N ;D
�0C�2ıN /: (5.5)

The radius r on which ‘average’ curvature of `N is required for the main The-
orem 5.1.3 below is thus determined by the ‘local’ and ‘global’ ill-posedness of
the map G, measured by the parameters �0 and �, respectively. In fact, under some-
what stronger hypotheses (and by more involved proofs than those that follow), the
term D�0C�2 can be replaced by the smaller term D�0=2 in (5.5), see the notes for
discussion.

Under the above conditions it was shown in Theorem 3.2.3 that the event Econv

from (5.1) hasPN
�0

-probability of order 1�O.exp¹�CND�2�0�4�2º/. In other words,
the negative log-likelihood �`N .�/ is strongly convex on B with high probability
as long as the model dimension is not too large (so that ND�2�0�4�2 ! 1). Note
that while one can choose D to diverge with N , the results in this section are ‘non-
asymptotic’ and hold for allD bounded by constants to be specified. In particular, the
notation DN remains reserved for the data vector (1.11).
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5.1.1 Construction of a log-concave surrogate posterior

Given a choice of r from Condition 5.1.1 and the projection �0;D of �0 onto ED , let
�init be any fixed vector in ED such that

k�init � �0;DkED
�

r
8
: (5.6)

For the purposes of log-concave approximation theorems one may take �init D �0;D
itself but since �0;D is unknown, for applications to bounds on mixing times of
‘feasible’ MCMC type algorithms, a separate ‘data-driven’ initialiser �init is typic-
ally required. See the notes to this section for more discussion.

We require two auxiliary functions, gr (with strongly convex tails) and ˛r (cut-
off function): For some smooth and symmetric (about 0) 'W R ! Œ0;1/ suppor-
ted in Œ�1; 1� and integrating to

R
R '.x/ dx D 1, let us define mollifiers 'h.x/ WD

h�1'.x=h/, h > 0. Then we define Qr; rWR ! R by

Qr.t/ WD

´
0 if t < 5r=8;
.t � 5r=8/2 if t � 5r=8;

r.t/ WD Œ'r=8 � Qr�.t/;

where � denotes convolution. Further, let ˛W Œ0;1/ ! Œ0; 1� be smooth and satisfy
˛.t/ D 1 for t 2 Œ0; 3=4� and ˛.t/ D 0 for t 2 Œ7=8;1/. We then define grWED !

Œ0;1/ and ˛rWED ! Œ0; 1� as

gr.�/ WD r.k� � �initkED
/; ˛r.�/ D ˛

�
k� � �initkED

r

�
: (5.7)

Now for `N as in (1.13) and K to be specified, define the ‘surrogate’ likelihood
function

Q̀
N .�/ D ˛r.�/`N .�/ �Kgr.�/; � 2 ED; (5.8)

which ‘convexifies’ �`N in the ‘tails’ as Proposition 5.1.2 shows. The proof is not
difficult but somewhat technical and relegated to Exercise 5.4.1.

Proposition 5.1.2. Let Q̀
N from (5.8) be defined for some constant K satisfying

K � CN.c1D
�1 C 1/ � .1C r�2/; (5.9)

with c1; �1 from Condition 5.1.1 and C > 1 depending only on the choice of the
function ˛ in (5.7). We then have

`N .�/ D Q̀
N .�/ for all � 2 ED such that k� � �0;DkED

�
3r
8
: (5.10)

Moreover, on the event Econv from (5.1) we have that Q̀N 2C 2.RD/ (where RD'ED)
and

inf
�2ED

�min.�r
2 Q̀
N .�// �

c0ND
��0

2
;
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as well as

kr Q̀
N .�/ � r Q̀

N . N�/kED
� 7Kk� � N�kED

for all �; N� 2 ED:

The resulting renormalised probability measure Q…. � j.Yi ; Xi /
N
iD1/ D

Q…. � jDN /

will be our ‘surrogate’ posterior distribution. In light of the preceding proposition, on
the high probability event Econv this measure has a log-concave probability density
on ED given by

Q�.� j.Yi ; Xi /
N
iD1/ D

e
Q̀
N .�/�.�/R

ED
e
Q̀
N .�/�.�/

; � 2 ED; (5.11)

where � is the probability density of the prior from (5.4).

5.1.2 The log-concave approximation theorem

The Wasserstein distance W2 between probability measures � and � on ED is

W 2
2 .�; �/ D inf

�

Z
ED�ED

j� � � 0j2ED
d�.�; � 0/; (5.12)

where the infimum is taken over all ‘couplings’ � of � and �, that is, probability
measures � on ED �ED whose marginals are � and �, respectively.

The following theorem establishes a quantitative bound on the log-concavity of
Q…. � jDN /, that the gradient of its log-density coincides with the gradient log-posterior

near �0;D (and hence induces the same Langevin dynamics there, as is relevant in
Section 5.2.1 to follow), and that, in particular, the posterior measure …. � jDN / is
well approximated in Wasserstein distance by Q…. � jDN /, with high probability under
the law PN

�0
of the data DN D .Yi ; Xi /

N
iD1. The ground truth �0 2 ‚ is assumed to

belong to the Sobolev scale QH˛.Z/ � ED from (A.15), and it is further assumed to
be well approximated by its L2-projection �0;D onto ED:

kG.�0/ � G.�0;D/kL2
�
�
ıN

2
: (5.13)

The latter condition can be checked easily using the L2-Lipschitz property of G from
Condition 2.1.1 combined with �0 2 QH˛.Z/, if either �0 is smooth and/or D is large
enough.

Theorem 5.1.3 (Log-concave Wasserstein approximation). Let the spaces ED and
prior … D…N ; ˛ be as in (5.3) and (5.4), respectively. Let the posterior distribution
…. � jDN / from (1.12) arise from data DN D .Yi ; Xi /

N
iD1 � PN

�
from (1.9) with for-

ward map G from (1.8) satisfying Condition 5.1.1 for some r � 1. Assume further that
D � A1N

d=.2˛Cd/ for some A1 <1 and that �0 2 QH˛.Z/ satisfies (5.13). Let the
surrogate posterior measure Q…. � jDN / be as in (5.11) for the given value of r and
any K � N.logN/D�1=r2.
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We then have the following:

(A) For all � 2 ¹� 2 ED W k� � �0;DkED
� 3r=8º we have Q̀

N .�/ D `N .�/ and

r log Q�. � jDN /.�/ D r log�. � jDN /.�/:

(B) On an event EN�.V�X/NofPN
�0

-probability at least 1�O.e�CND
�2�0�4�2 /

for some C > 0, the probability measure Q…. � jDN / is globally log-concave
on ED , specifically (with c0 from Condition 3.2.2)

inf
�2ED

�min.�r
2 log Q�.� jDN // �

c0

2
ND��0 ;

and r Q̀
N is globally Lipschitz on ED with Lipschitz constant 7K.

(C) On an event EN � .V � X/N of PN
�0

-probability at least 1 �O.e�bNı
2
N �

e�CND
�2�0�4�2 / for some b > 0; C > 0, we have the Wasserstein approx-

imation
W 2
2

�
…. � jDN /; Q…. � jDN /

�
� e�N

d=.2˛Cd/

:

The theorem and the constants implicit in the O-notation are ‘non-asymptotic’ in
the sense that whenever the hypotheses hold for pairs .D; N / 2 N2, then so do the
conclusions, (which are informative only when N ! 1).

Remark 5.1.4 (Laplace approximations). Let us remark that the log-concave approx-
imations provided by the previous theorem are qualitatively different from commonly
used ‘Laplace approximations’ for numerical integration of Gibbs measures (1.12).
In such approximations the posterior is replaced by the Gaussian measure centred at
a maximiser N� of `N with inverse covariance equal to the Hessian of `N at N� – see
[134] and also [14,66,87,115,117] for recent references. In other words one replaces
…. � jDN / by a measure with probability density

n.� jDN / / exp
°1
2
.� � N�N /

T
r
2`N . N�/.� � N�N /

±
�.�/; � 2 ED;

which on the high probability event Econv from (5.1) and for N� 2 B gives a well-
defined Gaussian approximation. Unlike in our log-concave approximation, the Hes-
sian of logn. � jDN / is constant in � . The numerical validity of such Laplace approx-
imations is related to the stochastic order of the higher order terms in the Taylor series
of `N about N� and cannot in general be expected to result in convergence rates that are
faster than algebraic in 1=N . The added flexibility of being able to approximate from
the (infinite-dimensional) class of log-concave measures instead of just from normal
distributions hence can lead to substantially faster approximation rates such as those
in Theorem 5.1.3 (C). Moreover, by virtue of Part (A), the gradient of the log posterior
remains the same in the region B where the bulk of the mass of …. � jDN / concen-
trates – the key statistical features of the posterior measure are hence not affected by
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the approximation. In contrast Laplace approximations do modify the posterior also
in the core region B.

5.1.2.1 Proof of Theorem 5.1.3. As mentioned at the outset of this section, there
are two main ideas underpinning the proof of this theorem: One is Theorem 3.2.3
which implies that `N and then also the posterior distribution are locally log-concave
near �0;D , with high probability. The second ingredient is that the posterior measure
is statistically consistent for �0 under PN

�0
(see Section 2.3, and Exercise 2.4.3 for

the particular prior employed) and hence, by (5.5), charges most of its mass precisely
to the neighbourhood of �0;D where …. � j.Yi ; Xi /NiD1/ is log-concave. In particular,
the surrogate posterior differs from the real posterior only in an area of insignificant
posterior mass, hence providing an accurate approximation. Making the last statement
quantitative in high dimensions is the main challenge in the proof.

Part (A) follows directly from (5.10) and the definition of Q�. � j.Yi ; Xi /
N
iD1/ in

(5.11). We next note that on the event Econv from (5.1) and for our choice of K we
can invoke Proposition 5.1.2 to verify the required gradient Lipschitz property in
Part (B) as well as

sup
�;#2RD ; k#kRDD1

#TŒr2 Q̀N .�/�# � �
c0

2
ND��0 : (5.14)

Part (B) of Theorem 5.1.3 now follows from Theorem 3.2.3 bounding the probability
of the event Econv (cf. also after Condition 5.1.1). The rest of the proof is concerned
with part (C), using Part (A) and (B) and without loss of generality for all N large
enough.

5.1.2.2 Decomposition of the Wasserstein distance. For this proof let us paramet-
erise the Euclidean balls

B.r/ D
®
� 2 ED W k� � �0;DkED

� r
¯

by their radius r > 0. By [132, Theorem 6.15] with x0 D �0;D ,

W 2
2 .

Q…. � jDN /;…. � jDN // � 2

Z
ED

k� � �0;Dk
2
ED

d j Q…. � jDN / �…. � jDN /j.�/:

This can be further bounded, form> 0 to be chosen and QıN from Condition 5.1.1, by

� 2m2 Qı2N

Z
B.mQıN /

d j…. � jDN / � Q…. � jDN /j.�/

C 2

Z
k���0;DkED

>mQıN

k� � �0;Dk
2
ED
d Q….� jDN /

C 2

Z
k���0;DkED

>mQıN

k� � �0;Dk
2
ED
d….� jDN / � I C II C III;

and we now bound I; II; III in separate steps.
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Term II. We write the surrogate posterior density (5.11) as

Q�.� jDN / D
e
Q̀
N .�/�Q̀

N .�0;D/�.�/R
ED

e
Q̀
N .�/�Q̀

N .�0;D/�.�/ d�
; � 2 ED:

Since ıN D o. QıN /, we have for r from Condition 5.1.1 and some c D c.L/ > 0 small
enough (with L D LG.1/ the local Lipschitz constant from (2.4)), the set inclusion

BN WD
®
k� � �0;DkED

� cıN
¯

�

°
k� � �0;DkED

�
3r
8

±
\

°
kG.�/ � G.�0/kL2

�
�
ıN

2

±
;

using also (5.13). In particular, `N .�/ D Q̀
N .�/ on BN (cf. (5.10)). Next note that

a version of Lemma 1.3.3 with `N .�0/ replaced by `N .�0;D/ is proved analogously,
using (5.13) to control projection terms. Applying the so modified lemma with � D

…. �/=….BN / as well as the small ball estimate given in Step 2 in the proof of The-
orem 2.2.2 (with �D 0 and adapted to the sieved case as in Exercise 2.4.3), we deduce
that for Nc D 2C A,Z

ED

e
Q̀
N .�/�Q̀

N .�0;D/ d….�/ �

Z
BN

e
Q̀
N .�/�Q̀

N .�0;D/ d….�/

D

Z
BN

e`N .�/�`N .�0;D/ d�.�/ �….BN /

� e�NcNı2
N (5.15)

on events AN of PN�0
-probability approaching one (in fact, of the required order 1 �

O.e�bNı
2
N /, if we increase Nc appropriately, see Exercise 5.4.2).

Then on the preceding events the term II can be bounded, using a second-order
Taylor expansion of Q̀

N .�/ around �0;D with N� lying on the line segment connecting �
and �0;D , asZ

k���0;DkED
>mQıN

k� � �0;Dk
2
ED

Q�.� jDN / d�

� e NcNı
2
N

Z
k���0;DkED

>mQıN

k� � �0;Dk
2
ED

e
Q̀
N .�/�Q̀

N .�0;D/�.�/ d�

D e NcNı
2
N

Z
k���0;DkED

>mQıN

k� � �0;Dk
2
ED

� er
Q̀
N .�0;D/

T.���0;D/C.���0;D/
Tr2 Q̀

N . N�/.���0;D/=2�.�/ d�:

For the first term in the exponent in the last integral we have (since Q̀
N D `N at �0;D),

using the Cauchy–Schwarz inequality,

jr Q̀
N .�0;D/

T.� � �0;D/j �
�
kr`N .�0;D/�E�0

r`N .�0;D/kRD

C kE�0
r`N .�0;D/kRD

�
k���0;DkED

: (5.16)
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In view of (3.35) and Condition 3.2.1 we can apply Bernstein’s inequality (B.4) to the
first summand to deduce

kr`N .�0;D/ �E�0
r`N .�0;D/k

2
RD . DN; (5.17)

with sufficiently high probability (see Exercise 5.4.2 for details). Likewise, E�0
-

integrating the identity (3.35) and using Conditions 3.2.1, (5.13), the second sum-
mand is of order

kE�0
r`N .�0;D/kRD . ND�2kG.�0;D/ � G.�0/kL2

�
. ND�2ıN :

Hence, using the hypothesis on D, the right-hand side in (5.16) is further upper
bounded by

.
p
DN CND�2ıN /k� � �0;DkED

. ND�2ıN k� � �0;DkED
:

Now by virtue of (5.14) the exponent in the integrand above (5.16) is bounded by�
NL

ND�2ıN

k� � �0;DkRD

�
c0

2
ND��0

�
k� � �0;Dk

2
ED

for some NL > 0. Then for m large enough and by definition of QıN from Condi-
tion 5.1.1, we can bound this further from above by

�
c0

4
ND��0k� � �0;Dk

2
ED

for � in the relevant domain of integration, so that the last displayed term above (5.16)
is bounded by

e NcNı
2
N e�

c0m2

4 ND��0 Qı2
NE…Œk� � �0;Dk

2
ED
�:

The second moments of the Gaussian measure …N are uniformly bounded, and
k�0;DkED

is uniformly bounded by a constant depending only on k�0kL2 . From Con-
dition 5.1.1 we conclude that the term II does not exceed e�Nı

2
N =4 with sufficiently

high probability.
Term III. We first note that from Exercise 2.4.3 and (5.13) we can prove (2.27)

and then (2.26) with �0;D replacing �0 there, that is, the posterior contracts about �0;D
just as about �0. This observation and (5.5) then imply that for every a > 0, we can
find m large enough such that

….k� � �0;DkED
> m QıN jDN / � e�aNı

2
N

on events � 0
N of sufficiently high PN

�0
-probability. We can further restrict to AN

on which the last inequality in (5.15) holds (see also Exercise 5.4.2). Then using
the Cauchy–Schwarz inequality, the identity EN

�0
e`N .�/�`N .�0/ D 1 as in (1.30) and
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Markov’s inequality, we have

PN�0

�
AN \ � 0

N ;

Z
k���0;DkED

>mQıN

k� � �0;Dk
2
ED
d…. � jDN / >

e�Nı
2
N

8

�
� PN�0

�
AN \ � 0

N ;

….k� � �0;DkED
> m QıN jDN /E

…Œk� � �0;Dk
4
ED

jDN � >
e�2Nı

2
N

64

�
� PN�0

�
� 0
N ; e

.2CNc�a/Nı2
N

Z
ED

k� � �0;Dk
4
ED
e`N .�/�`N .�0/d….�/ >

1

64

�
. e.2CNc�a/Nı2

N

Z
ED

.1C k�k4ED
/ d….�/ D O.e�bNı

2
N /

whenever m and then a are large enough, since … has uniformly bounded fourth
moments and since k�0;DkED

is uniformly bounded by a constant depending only
on k�0kL2 . This shows that term III is of the required order with sufficiently high
probability.

Term I. We have from Condition 5.1.1 that for fixedm>0 and allN large enough,

B.m QıN / �
°
� W k� � �0;DkED

�
3r
8

±
:

On the latter set, by (5.10), the probability measures Q…. � jDN / and…. � jDN / coincide
up to a normalising factor, and thus we can represent their Lebesgue densities as

Q�.� jDN / D pN�.� jDN / for � 2 B.m QıN /;

for some 0 < pN < 1. Moreover, by the preceding estimates for terms II and III
(which hold just as well without the integrating factors n.�/ WD k� � �0;Dk

2
RD , as

only E…n.�/ � const was used), we have

pN….B.m QıN /jDN / D Q….B.m QıN /jDN / � 1 �
e�Nı

2
N

8
) 1 �

e�Nı
2
N

8
� pN ;

p�1
N

Q….B.m QıN /jDN / D ….B.m QıN /jDN / � 1 �
e�Nı

2
N

8
) 1 �

e�Nı
2
N

8
�

1

pN

on events of sufficiently high PN
�0

-probability. On these events necessarily

pN 2

h
1 �

e�Nı
2
N

8
;
h
1 �

e�Nı
2
N

8

i�1i
;

and so for N large enough,Z
B.mQıN /

d j…. � jDN / � Q…. � jDN /j.�/ D j1 � pN j

Z
B.mQıN /

�.� jDN / d�

� j1 � pN j �
e�Nı

2
N

4
;
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which is obvious for pN � 1 as then j1 � pnj D 1 � pn and follows from the mean
value theorem applied to f .x/D .1� x/�1 near xD 0 also for pN > 1. Collecting all
the bounds we have shown that IC IIC III� e�Nı

2
N with the desiredPN

�0
-probability,

completing the proof of part (C) of Theorem 5.1.3.

5.2 Computational complexity of MCMC in high dimensions

5.2.1 Gradient methods for approximately log-concave posteriors

We now consider the problem of generating random samples from a high-dimensional
posterior measure

….BjDN / D

R
B
e`N .�/d….�/R

ED
e`N .�/d….�/

; B � ED measurable; (5.18)

arising from data (1.9) with log-likelihood function (1.13) and a general Gaussian
N.0;†/ prior… of density � on RD ' ED �‚. We specifically have the prior (5.4)
in mind where † D diag.�˛j W j � D/, but the results in this subsection hold for
general Gaussian priors with positive definite covariance matrix † 2 RD�D and do
not depend on the particular choice of ED from (5.3) either.

We use the stochastic gradient method (1.16) obtained from discretisation of the
D-dimensional Langevin diffusion (1.15) with drift vector field r. Q̀N C log�/ based
on the surrogate likelihood function Q̀

N from (5.8), centred at �init from (5.6). More

precisely, for stepsize  > 0 and auxiliary variables �k
i:i:d:
� N.0; ID�D/, define a

Markov chain

#0 D �init;

#kC1 D #k C Œr Q̀
N .#k/ �†

�1#k�C
p
2�kC1 for k D 0; 1; : : :

(5.19)

Probabilities and expectations with respect to the law of this Markov chain (ran-
dom only through the �k , conditional on the data DN ) will be denoted by P�init ;E�init

respectively. The invariant measure of the underlying continuous time Langevin dif-
fusion equals the surrogate posterior distribution Q…. � jDN / with density Q�. � jDN /

given in (5.11).
The idea of the above algorithm is that if we can initialise into the region B of

local average log-concavity from (5.2), then we can force the gradient method back
to B whenever it exists that region, by virtue of the dynamics of the ‘surrogate’ vector
field r Q̀

N (cf. Proposition 5.1.2). By construction, the dynamics of the above MCMC
scheme coincides exactly with the standard Langevin method targeting …. � jDN / in
the region B where the bulk of the posterior mass lies.

The mixing time of this Markov chain towards its (with high probability, log-
concave) surrogate target measure measured in Wasserstein distance can be controlled
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by high-dimensional Markov chain theory (see Appendix B.3), and Theorem 5.1.3
controls the approximation error induced by the surrogate approximation. Formally,
the results that follow will apply the results from Appendix B.3 on an intersection

E WD Econv \ Ewass.�/; (5.20)

of frequentist ‘high probability’ events (i.e., measurable subsets of .V � X/N ): First
we restrict to the ‘curvature’ event Econv from (5.1) controlled in Theorem 3.2.3 and
we further assume that the Wasserstein distanceW2 between Q…. � jDN / and…. � jDN /
can be bounded, specifically, for any � > 0, let us define the event

Ewass.�/ WD
°
W 2
2 .….�jDN /;

Q….�jDN // �
�

2

±
:

See Theorem 5.1.3 (C) for sufficient conditions for this to be the case with ‘small’ �
decaying exponentially in N .

Our first result consists of a global Wasserstein approximation of …. � jDN / by
the law L.#k/ on RD of the k-th iterate #k arising from (5.19). Note that the event E

from Theorem 3.2.3 on which it holds implicitly stipulates choices of the constants
�i , i D 0; 1; 2; describing analytical properties of the average log-likelihood function.

Theorem 5.2.1 (Wasserstein mixing time). Suppose that D; N 2 N are such that
D � RN with RN D CND�2�0�4�2 from (3.32) and let K be as in (5.9). Further, if
�min. �/ and �max. �/ define the smallest and largest eigenvalues of a symmetric matrix,
respectively, define the constants

m WD
Nc0D

��0

2
C �min.†

�1/; ƒ WD 7K C �max.†
�1/:

Then for any 0 <  � 1=ƒ and any � > 0, the algorithm .#k W k � 0/ from (5.19)
initialised at �init and satisfying (5.6) satisfies, on the event E from (5.20) and for all
k � 0,

W 2
2

�
L.#k/;….�jDN /

�
� �C b./C 4

�
�.†;R/C

D

m

��
1 �

m

2

�k
; (5.21)

where, for some universal constants c1; c2 > 0, any R � k�0;DkED
and �.†/ D

�max.†/=�min.†/,

b./ D c1

hDƒ2
m2

C
2Dƒ4

m3

i
; �.†;R/ D c2�.†/Œ1C r2 CR2�:

Proof. For any �; N� 2 ED , we have for the log-prior density that

kr log�.�/ � r log�. N�/kED
D k†�1.� � N�/kED

� �max.†
�1/k� � N�kED

;

�min.�r
2 log�.�// � �min.†

�1/;
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and for the likelihood surrogate Q̀
N , by Proposition 5.1.2, and on the event E from

(5.20), that

kr Q̀
N .�/ � r Q̀

N . N�/kED
� 7Kk� � N�kED

;

�min.�r
2 Q̀
N .�// �

Nc0D
��0

2
:

Combining the last two displays, and on the event E , we can verify Assumption B.3.1
for � log d Q…. � jDN / with constants

m D
Nc0D

��0

2
C �min.†

�1/; ƒ D 7K C �max.†
�1/:

We may thus apply Proposition B.3.2 to obtain

W 2
2 .L.#k/;…. � jDN // � 2W 2

2 .…. � jDN /;
Q…. � jDN //C 2W 2

2 .L.#k/;
Q…. � jDN //

� �C b./C 4
�
1 �

m

2

�kh
k�init � �maxk

2
ED

C
D

m

i
;

where �max denotes the unique maximiser of log d Q…. � jDN / over RD (which exists
on the event Econv, by virtue of strong concavity).

We conclude by an estimate for k�init � �maxkED
. One may expect this norm to

be small compared to r, but at this point a crude estimate will suffice. From (5.7) we
have for all k� � �initkED

� 2r that gr.�/ � .k� � �initkED
� r/2 � 1

4
k� � �initk

2
ED

.
Thus, for C from (5.9) and any � 2 ED satisfying

k� � �initk
2
ED

�
20

C
C 4r2;

and using also the upper bound for j`N .�/j in the definition of Econv, we obtain

� Q̀
N .�/ D Kgr.�/ � CN.c1D

�1 C 1/
�
1C

1

r2
�
�
k� � �initk

2
ED

4

�
C

4
N.c1D

�1 C 1/k� � �initk
2
ED

� 5N.c1D
�1 C 1/ � � Q̀

N .�init/:

This implies that necessarily the unique maximiser � Q̀ of the (on Econv) strongly con-
cave map Q̀

N over RD satisfies k� Q̀ � �initk
2
RD � 20=C C 4r2: Moreover, in view of

the definition of B, we have that

k�initkED
� k�init � �0;DkED

C k�0;DkED
� k�init � �0;DkED

CR � r CR;

which also allows us to deduce

k� Q̀kED
� k� Q̀ � �initkED

C k�initkED
�

r
20

C
C 3r CR:
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We further have that �T
max†

�1�max � �T
Q̀
†�1� Q̀ (otherwise �max would not maximise

log d Q…. � jDN /) and thus, for �.†/ the condition number of †,

k�maxk
2
ED

�
1

�min.†�1/
�T

max†
�1�max �

1

�min.†�1/
�T
Q̀
†�1� Q̀ � �.†/k� Q̀k

2
ED
:

Combining the preceding displays, the proof is now completed as follows:

k�max � �initk
2
ED

. k�maxk
2
ED

C k�initk
2
ED

. �.†/k� Q̀k
2
ED

C r2 CR2

. �.†/Œ1C r2 CR2�:

From the previous theorem and concentration inequalities for Markov chains one
can obtain the following bound on the computation of posterior statistics by ergodic
averages of #k collected after some burn-in time Jin 2 N. Specifically, if we define,
for any H WED ! R integrable with respect to …. � jDN /, the random variable

O�JJin
.H/ D

1

J

JinCJX
kDJinC1

H.#k/; (5.22)

we obtain the following non-asymptotic concentration bound, where kHkLip denotes
the Lipschitz constant sup�¤� 02ED

ŒjH.�/ �H.� 0/j=k� � � 0kED
� of H .

Theorem 5.2.2 (Lipschitz functionals). In the setting of the previous theorem, there
exist further constants c3; c4 > 0 such that for any � > 0, any burn-in period

Jin �
c3

m
� log

�
1C

1

�C b./
C �.†;R/C

D

m

�
; (5.23)

any J 2 N, any Lipschitz function H WRD ! R, any t �
p
8kHkLip

p
�C b./ and

on the event E from (5.20), we have

P�init

�
j O�JJin

.H/ �E…ŒH jDN �j � t
�
� 2 exp

�
�c4

t2m2J

kHk2Lip.1C 1=.mJ//

�
:

Proof. For any t � 0 and any Lipschitz function H WED ! R, we have

P�init

�
j O�JJin

.H/ �E…ŒH jDN �j � t
�

� P�init

�
j O�JJin

.H/ � E�init Œ O�
J
Jin
.H/�j � t � jE�init Œ O�

J
Jin
.H/� �E…ŒH jDN �j

�
: (5.24)

To further estimate the right-hand side, note that for c3 large enough and any k � Jin,
by (5.23) and Theorem 5.2.1, we have

W 2
2 .L.#k/;…. � jDN // � 2.�C b.//:
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Noting that (B.9) in fact holds for any probability measure � and thus in particular
for � D …. � jDN /, it follows that for any Lipschitz function H WED ! R,�

E�init Œ O�
J
Jin
.H/� �E…ŒH jDN �

�2
� 2kHk

2
Lip.�C b.//:

Thus if t � 0 satisfies our hypothesis, then applying Proposition B.3.3 to bothH and
�H yields that the right-hand side in (5.24) is further bounded by

P�init

�
j O�JJin

.H/ � E�init Œ O�
J
Jin
.H/�j �

t

2

�
� 2 exp

�
�c

t2m2J

kHk2Lip.1C 1=.mJ//

�
:

From the last theorem one can obtain as a direct consequence the following
guarantee for computation of the posterior mean E…Œ� jDN � by the ergodic average
accrued along the Markov chain.

Corollary 5.2.3. In the setting of Theorem 5.2.2, if we define the ergodic average

N�JJin
D
1

J

JinCJX
kDJinC1

#k;

then on the event E from (5.20) and for t �
p
8
p
�C b./, we have for some constant

c5 > 0 that

P�init

�
k N�JJin

�E…Œ� jDN �kED
� t

�
� 2D exp

�
�c5

t2m2J

D.1C 1=.mJ//

�
:

Proof. We first estimate the probability to be bounded by

P�init

�
k N�JJin

� E�init Œ
N�JJin
�kED

� t � kE�init Œ
N�JJin
� �E…Œ� jDN �kED

�
:

Next, for any k � 1, let �k denote an optimal coupling between L.#k/ and…. � jDN /
(cf. [132, Theorem 4.1]). Then by Jensen’s inequality and the definition of W2 from
(5.12),

E�init Œ
N�JJin
� �E…Œ� jDN �

2
ED

D

 1
J

JinCJX
kDJinC1

Z
ED�ED

.� � � 0/ d�k.�; �
0/
2
ED

D

DX
jD1

� 1
J

JinCJX
kDJinC1

Z
ED�ED

.�j � �
0
j / d�k.�; �

0/
�2

�
1

J

JinCJX
kDJinC1

Z
ED�ED

DX
jD1

.�j � �
0
j /
2 d�k.�; �

0/

D
1

J

JinCJX
kDJinC1

W 2
2 .L.#k/;…Œ � jDN �/:
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Thus we obtain from (5.21), (5.23) (as after (5.24)) that

kE�init Œ
N�JJin
� �E…Œ� jDN �kED

�
p
2
p
�C b./:

Now for any j D 1; : : : ; d , let us writeHj WED ! R, � 7! �j ; for the j -the coordinate
projection map, of Lipschitz constant 1. Then in the notation (5.22) we can write

Œ N�JJin
�j D O�JJin

.Hj / for j D 1; : : : ;D:

For t�
p
8.�C b.//, by applying Proposition B.3.3 as in the proof of Theorem 5.2.2

as well as a union bound gives

P�init

�
k N�JJin

�E…Œ� jDN �kED
� t

�
� P�init

�
k N�JJin

� E�init Œ
N�JJin
�kED

�
t

2

�
D P�init

� DX
jD1

�
O�JJin
.Hj / � E�init Œ O�

J
Jin
.Hj /�

�2
�
t2

4

�
�

DX
jD1

P�init

��
O�JJin
.Hj / � E�init Œ O�

J
Jin
.Hj /�

�2
�

t2

4D

�
� 2D exp

�
�c

t2m2J

DŒ1C 1=.mJ/�

�
:

The two previous results imply that one can compute the posterior mean (or pos-
terior functionals E…ŒH jDN � with kHkLip � 1) within precision " > 0 as long as
" & p

�. For instance, if  is chosen as

 ' min
°"2m2
Dƒ2

;
"m3=2

D1=2ƒ2

±
; (5.25)

then the overall number of required MCMC iterations Jin C J depends polynomially
on the quantities N;D;m�1; ƒ; "�1. When the latter three constants also exhibit at
most polynomial growth in N;D, we can deduce that polynomial-time computation
of such posterior characteristics is feasible, on the event E from (5.20) at computa-
tional cost

Jin C J D O.N b1Db2"�b3/ for some b1; b2; b3 > 0;

with P�init-probability as close to one as desired.

5.2.2 On failure of ‘cold start’ MCMC in high dimensions

In Section 5.3.2 to follow we will use the preceding theorems to show that properly
initialised Langevin-type MCMC methods can compute posterior characteristics in
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r

w
.r

/

t =2 t L

Figure 5.1. The graph of w.r/.

Darcy’s inverse problem in a run-time that scales at most polynomially in the key
parameters D;N and the desired precision level. This is a non-trivial result in view
of the widely accepted ‘folklore’ that sampling from high-dimensional target meas-
ures is ‘exponentially hard’ in absence of strong structural assumptions. For instance,
a Markov chain may require a long time to ‘escape’ from a local optimum of the
posterior density, and if such ‘energy wells’ have depth N , the algorithmic run-time
towards the invariant measure scales exponentially in N . Also, the mixing time of
Markov chains for convergence to equilibrium may scale exponentially in dimen-
sion D without further special assumptions.

In this subsection we give a concrete construction of such a ‘computational hard-
ness phenomenon’ in a context with Gaussian process priors and average ‘population’
log-likelihoods that are not globally log-concave. Specifically, we consider sampling
from a probability measure

d N….�/ / e�Nw.k�kRD /d….�/; � 2 RD; (5.26)

arising from a ‘radial’, expected log-likelihood `.�/DNE�0
`N .�/D�Nw.k�kRD /

with scalar function w to be specified below, and a centred Gaussian prior … D

Law.�/ on RD given by

� D .�j /
D
jD1; �j D j�˛=dgj for gj

i:i:d:
� N.0; 1/ and ˛ > d=2: (5.27)

In view of (A.14) this is akin to the prior used in (5.4) but without the N -dependent
‘rescaling’. The latter could be considered as well in the results that follow (by just
increasing the constant b to be introduced by .d=2/=.2˛ C d/ in the proofs). The
results presented further extend without difficulty (see [11]) to the ‘empirical’ ver-
sions `N replacing N`.�/ but to expedite proofs we consider the ‘average’ case only,
which is sufficient to illustrate the main ideas. We will also assume �0 D 0 so that the
prior is already centred at the true parameter.
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To construct w, let us set b D ˛=d � 1=2 > 0 for ˛ the regularity level from
(5.27). Then define (see Figure 5.1), for any r � 0,

w.r/ D 4.T r/21Œ0;t=2/.r/C
h
.T t/2 C T

�
r �

t

2

�i
1Œt=2;t/.r/

C

h
.T t/2 C

�T t
2

�
C �.r � t /

i
1Œt;L/.r/

C

h
.T t/2 C

�T t
2

�
C �.L � t /

i
1ŒL;1/.r/;

where, for any choice of � 2 .0; 1� and 0 < tb < 1=2, we set

t D tbN
�b; T D TbN

b; (5.28)

with Tb > 0 a fixed constant to be chosen, and arbitrary fixed L > t . Note that such w
is ‘unimodal’ around 0 and the resulting Gibbs measure N… is locally (but not globally)
log-concave near its unique maximum at � D 0; the density of N… is strictly decreasing
along each half-line departing from the origin.

The theorem that follows will imply that in high-dimensional models with D !

1, a badly initialised ‘local’ MCMC algorithm may never (in ‘finite time’) visit the
region where the target measure N… places the bulk of its mass, i.e., where it is statist-
ically informative in the sense that the ‘log-likelihood’ term `.�/ dominates the prior.
As a consequence the inference obtained is no better than a random number generator
that ignores the observed data. The hardness of sampling from N… arises here not from
a ‘well’ (local optimum) but from a combination of high dimensionality and lack of
‘signal in the tails’. We refer to [11] for a more detailed evaluation of these negat-
ive results. They showcase the need to exploit specific structure of non-linear models
when studying algorithms in high-dimensions (as we will do in Section 5.3).

To formulate the main result of this subsection, let us define balls

Br D
®
� 2 RD W k�kRD � r

¯
; r > 0;

centred at �0 D 0, as well as the annuli

‚r;" D
®
� 2 RD W k�kRD 2 .r; r C "/

¯
; " > 0: (5.29)

We consider MCMC methods given by Markov chains .#k W k 2 N/ that target
the probability measure N… from (5.26), more precisely, that have N… as their invariant
measure. We also assume that their dynamics are ‘local’ in the sense that the step-
sizes from #k to #kC1 at each iterate k cannot exceed a Euclidean distance �.

Theorem 5.2.4. Consider the probability measure N… from (5.26) with prior… on RD

from (5.27) for some ˛ > d=2 and w as in and before (5.28). Assume D=N ' � as
N !1 for some � > 0, and set b D ˛=d � 1=2 > 0. Then there exist fixed constants
sb 2 .tb; 1=2/ and Tb > 0 for which the following statements hold true:
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(i) We have N….BsbN�b / D 1 �O.e�N / as N ! 1.

(ii) There exists "; v > 0 depending on �; ˛; d such that for any Markov chain
.#k W k 2 N/ of step-size � 2 .0; sbN

�b/ and with invariant measure N…, we
can find an initialisation point #0 2 ‚N�b ;"N�b for which the hitting time
�Bs

for #k to reach BsbN�b is lower bounded as

�Bs
D inf

®
k W #k 2 BsbN�b

¯
� exp¹vDº;

with probability approaching one under the law of the Markov chain.

The proof will show that the result holds for #0 drawn at random from an abso-
lutely continuous distribution on ‚N�b ;"N�b , and then employs the probabilistic
method to deduce existence of a fixed ‘worst case’ initialiser.

The theorem is stated for Markov chains with ‘deterministic’ step-sizes, whereas
many concrete MCMC methods such as ULA have random step-sizes, that how-
ever do not exceed � with high probability under the randomisation scheme of the
algorithm. The previous theorem does extend to such settings, and in particular to
methods such as pCN, MALA – as is shown in [11] – but we will only prove the
above version here for simplicity. Note that while the step sizes have to be suffi-
ciently small, they are of polynomial order in 1=N , whereas the hitting time lower
bound scales exponentially in N ' D.

Theorem 5.2.4 does require non-degenerate asymptoticsD=N ' � > 0, to permit
‘volumetric’ arguments and ‘unimodal’ target measures N…. If in contrast N… has a
‘well’ (i.e., w has a local optimum away from 0), then the ideas underlying the proof
that follows can be adapted to give an exponential lower bound �Bs

� evN with high
probability also when D=N ! 0.

5.2.2.1 Proof of Theorem 5.2.4. We first show Part (ii), which relies on the follow-
ing ‘bottleneck’ argument for Markov chains, essentially due to [70]. The result is
general but we present it in our setting for .#k/ moving between annuli from (5.29)
and targeting N… from (5.26). Notice that we always have N….‚�;�/ > 0 in this case.

Proposition 5.2.5. Consider a Markov chain .#k W k 2 N/ on RD with invariant
measure N… and such that

N….‚s;�/

N….‚�;�/
� e��N (5.30)

for some �; � > 0 and 0 < s < �; � < � � s. Suppose #0 is started in ‚�;� , drawn
from the conditional distribution N…. � j‚�;�/, and denote by �s the hitting time of the
Markov chain onto ‚s;� , that is, the number �s of iterates required until #k visits the
set ‚s;� . Then

Pr.�s � K/ � Ke��N for all K > 0:
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Proof. The probability we wish to bound equals

Pr.#k 2 ‚s;� for some 1 � k � Kj#0 2 ‚�;�/

D
Pr.#0 2 ‚�;�; #k 2 ‚s;� for some 1 � k � K/

N….‚�;�/

�

P
k�K Pr.#k 2 ‚s;�/

N….‚�;�/
� K

N….‚s;�/

N….‚�;�/
� Ke��N ;

since the marginal distributions of #k are all N… when #0 � N….

The last proposition holds ‘on average’ for initialisers #0 � N…. � j‚�;�/. But since
Pr D E N…. � j‚�;�/

Pr#0
, where Pr#0

is the law of the Markov chain started at #0, the
hitting time inequality holds at least for one point in‚�;� , since we have inf#0

Pr#0
�

E N…. � j‚�;�/
Pr#0

(‘the probabilistic method’).

In our setting, � < sbN�b D s with tb < sb < 1=2, and we will apply Proposi-
tion 5.2.5 with � D N�b , � D "N�b . If we initialise at #0 2 ‚N�b ;"N�b , then under
our step-size condition the Markov chain needs to visit ‚sbN�b ;� in order to reach
BsbN�b . Therefore the hitting time for the ball BsbN�b is lower bounded by the hit-
ting time for the ‘intermediate’ set ‚sbN�b ;� , and Theorem 5.2.4 (ii) with v D �=2

will follow if we can verify (5.30) for these choices of s; �; � and some "; �. Taking
logarithms, the required inequality (5.30) becomes

1

N
log N….‚sbN�b ;�/ �

1

N
log N….‚N�b ;"N�b / � ��;

which in view of (5.26) and the choice of w from before (5.28) is implied by

1

N
log

….‚sbN�b ;�/

….‚N�b ;"N�b /
� �� � �N�b.1C " � sb/: (5.31)

Annuli farther away from the origin will have larger prior volume and in high dimen-
sionsD=N ! �. This induces a ‘free energy barrier’, permitting one to verify (5.31),
as we now show.

Lemma 5.2.6. For every sb > tb we can choose �;">0, depending only on sb;�;˛;d ,
such that (5.31) holds.

Proof. Lemma 5.2.7 and the hypotheses on � imply

….‚sbN�b ;�/ D …
�
k�kRD 2 .sbN

�b; sbN
�b

C �/
�

� ….k�kRD � 2sbN
�b/ � e�c0N.2sbC�

�˛=d .2sb/
��=2/��

:

To lower bound ….‚N�b ;.1C"/N�b /, we choose " large enough such that

Nc0.1C "/�� < c0.1C ��˛=d /�� ;
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so that for all N large enough,

…
�
k�kRD 2 .N�b; .1C "/N�b/

�
D ….k�kRD � .1C "/N�b/ �….k�kRD � N�b/

� e�Nc0.1C"/
��N

� e�c0.1C�
�˛=d /��N

� e�2 Nc0.1C"/
��N :

The required bound (5.31) will thus follow if

c0.2sb C ��˛=d .2sb/
��=2/�� � 2 Nc0.1C "/�� C � C �N�b.1C " � sb/: (5.32)

If we define � to equal to 1=2 of the left-hand side of the last display, then (5.32) will
follow for any sb � 1=2, � � 1 and the given �; ˛; d , by choosing " large enough and
whenever N is large enough.

To complete the proof of the theorem we now show Part (i) for some fixed choice
of tb < sb < 1=2 and Tb , let us write

G.A/ WD

Z
A

e�Nw.k�kRD /d….�/

for any measurable subset A of RD . Using Lemma 5.2.7, we have

1

N
log G.BtbN�b=2/ � �w

� tbN�b

2

�
� Nc0

� tb
2

���
as well as

1

N
log G.BcsbN�b / � �w.sbN

�b/C
1

N
log….BcsbN�b /:

Now ….BcsbN�b /! 1 by Lemma 5.2.7, and hence by the choice of w from before
(5.28),

1

N
log

G.BtbN�b=2/

G.BcsbN�b /
� �.Tbtb/

2
� c0

� tb
2

���
C

h
.Tbtb/

2
C

�Tbtb
2

�
C �N�b.sb � tb/

i
C
1

N
log….Bcs /

�
Tbtb

2
� c0

� tb
2

���
C o.1/;

as N ! 1. Now, for tb < sb fixed, we can choose Tb large enough such that the last
quantity exceeds 1. Therefore

G.BtbN�b=2/

G.BcsbN�b /
� eN � .1C o.1//:

For MN D ¹� W tbN
�b=2 < k�kRD � sbN

�bº this further implies

Z �
G.BtbN�b=2/C G.MN /

G.BcsbN�b /
� eN � .1C o.1//;
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and Part (i) then follows from this bound and

N….BsbN�b / D
G.BtbN�b=2/C G.MN /

G.BtbN�b=2/C G.MN /C G.BcsbN�b /

D
G.BtbN�b=2/C G.MN /

.G.BtbN�b=2/C G.MN //.1CZ�1/
D

1

1CZ�1
:

We conclude this section with the proof of the following key volumetric lemma on
the small-deviation landscape of ellipsoidally supported high-dimensional Gaussian
measures.

Lemma 5.2.7. Let … be the Gaussian prior on RD arising from (5.27). Fix z > 0

and � > 0, and set

b D
˛

d
�
1

2
; � D

1

b
D

2d

2˛ � d
:

Then if D=N ' � > 0, there exist constants Nc0 > c0 (depending on b; �) such that
for all N .� N0.z; b// large enough,

c0.z C ��˛=dz��=2/�� � �
1

N
log….k�kRD � zN�b/ � Nc0 z

�� : (5.33)

Proof. Consider first the ’untruncated prior’ (5.27) with series extending to infinity,
convergent almost surely in the space `2 with norm k�k2

`2
D

P1

jD1 �
2
j ; since ˛ >d=2.

Using Proposition A.3.1, Remark A.3.2 and Theorem B.1.1 with a D 2d=.2˛ � d/,
Banach space B D `2 and RKHS

H D h˛ WD

°
� W k�k2h˛ D

X
j

j 2˛=d�2j <1

±
;

we deduce the two-sided estimate

� log….k�k`2
� / ' �2d=.2˛�d/ D �� as  ! 0:

Here, restricting to  2 .0; 1/, the two-sided equivalence constants depend only on
˛; d . Setting

 D zN�b; z > 0;

and noting that b� D 1, we hence obtain that for some constants cl ; cu > 0,

e�clz
��N

� ….k�k`2
� zN�b/ � e�cuz

��N for any z > 0: (5.34)

For the projected prior on RD , we have, by set inclusion and projection,

….k�kRD � zN�b/ � ….k�kL2 � zN�b/;

and hence it only remains to show the first inequality in equation (5.33). The Gaussian
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isoperimetric theorem [60, Theorem 2.6.12] and (5.34) imply that for m � 4
p
cl

and some c > 0, we have (with ˆ denoting the cumulative distribution function
for N.0; 1/)

…
�
� D �1 C �2; k�1k`2

� zN�b; k�2kh˛ � mz��=2
p
N
�

� ˆ
�
ˆ�1.….¹� W k�k`2

� zN�b
º//Cmz��=2

p
N
�

� ˆ
�
�
p
2clz

��=2
p
N Cmz��=2

p
N
�
� 1 � e�cz

��N :

Then if the event in the last probability is denoted by I , we have

….k�DkRD � zN�b/ � ….k�DkRD � zN�b; I /C e�cz
��N :

On I , if D=N ! � > 0 and by the usual tail estimate for vectors �2 2 h˛ , we have
for some c0 > 0 the bound

k� � �Dk`2
� k�1k`2

C c0D�˛=dz��=2
p
N � zN�b

C c0��˛=dz��=2N�b;

so that for any z > 0,

….k�DkRD � zN�b/ � ….k�k`2
� zN�b

C k� � �Dk`2
; I /C e�cz

��N

� ….k�k`2
� .2z C c0��˛=dz��=2/N�b/C e�cz

��N

� e�cu.2zCc
0��˛=dz��=2/��N

C e�cz
��N ;

and hence the lemma follows by appropriate choice of c0 > 0.

5.3 Application to PDE models

We now explain how the ideas from this chapter apply to Darcy’s problem, that is,
the PDE (1.2) with diffusion operator Lf�

from (1.3) resulting in the forward map G

from (2.8). The theory for the Schrödinger equation is similar and discussed in the
notes (see also Exercise 5.4.5) along with further relevant examples.

We first need to derive some analytical properties of the forward map GW‚ !

L2
�
.X/ from (2.8) restricted to the finite-dimensional approximation space ED from

(5.3) arising as the eigen-spaces ED of the Dirichlet Laplacian on X. As ambient
parameter space ‚ we take QH˛.X/ � H˛

0 .X/ from (A.15) for some ˛ > 0 to be
specified – these spaces contain ED for all D.

The key result will be Theorem 5.3.2 which verifies the average local curvature
condition (3.30) for this forward map on ED . It is based on the ideas from Sec-
tion 3.2 and the observation that the stability condition (3.27) for DG� indeed holds
for � 2 ‚ by virtue of (a) the isomorphism properties of general elliptic operators
between Sobolev spaces and their characterisation in the basis spanning ED and
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(b) the stability Lemma 2.1.6. Note that all � 2 ED � QH˛.X/ vanish at the boundary
@X, as is required to apply Lemma 2.1.6. In the present context this is essential as
without this restriction DG� may fail to be injective (recall Exercise 3.4.5). Our con-
struction avoids the counter-examples from Section 4.2.2 – for the ‘non-asymptotic’
theorems here we never need to consider the L2-completion of our tangent (or para-
meter) space ‚, nor does the range of the adjoint of DG� play a role, as was the case
in the ‘asymptotic’ Theorems 3.1.5, 4.2.2 and 4.2.3.

5.3.1 Darcy’s problem on the eigen-spaces of the Laplacian

To check Conditions 3.2.1 and 3.2.2 we require bounds on the gradient and Hessian
of the real-valued map Gx.�/ � G.�/.x/ with respect to the variable � 2 ED ' RD

(for fixed x 2 X).
We have already computed theL2

�
-linearisationDG�0

of G at �0 in Theorem 3.3.2,
and the proof there can be upgraded to k � k1-differentiability if the perturbations h
are bounded in sufficiently strong Sobolev norms. We restrict to d � 3 for simpli-
city – this permits a straightforward application of the Sobolev imbedding theorem
H 2 � L1 from (A.4), removing some technicalities in the proof of the general case.

Proposition 5.3.1. Let d � 3. For G from (2.8) and DG� from (3.46), let �; h belong
to ‚ D QH˛ , ˛ > 1C d=2. Then we have, as khkH˛ ! 0, that

kG.� C h/ � G.�/ �DG� Œh�k1 D O.khk2H˛ /:

In particular, the map Gx D G. �/.x/WED ! R has gradient

vT
rGx.�/ D �L�1

f�
Œr � .e�vruf�

/�.x/ for x 2 X and v 2 ED;

where L�1
f�

is the inverse of the operator Lf�
from (1.3) for Dirichlet boundary con-

ditions (i.e., equal to L�1
;V given in (A.10) with  D f� , V D 0).

Proof. Arguing just as in the proof of Theorem 3.3.2 and using the Sobolev imbed-
ding H 2 � L1 with d � 3 (see (A.4)), we obtain

kG.� C h/ � G.�/ �DG� Œh�k1 . kL�1
f�Ch

ŒR1.h/�kH2 C kL�1
f�Ch

ŒR2.h/�kH2

. kR1.h/kL2 C kR2.h/kL2 ;

where we have used (A.31) and that f� ;f�Ch are bounded inC 1 again by the Sobolev
imbedding. The right-hand side is shown to be O.khk2

C1/ D O.khk2H˛ / by appro-
priate modifications of the arguments from the proof of Theorem 3.3.2, see Exer-
cise 5.4.3 for details. The formula for the gradient then follows directly since v 2

ED � H˛ .
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The previous proof can be iterated (using also the chain and product rule) to show
that Gx is in fact smooth on ED . One obtains the formula for ‘second derivatives’
D2G� acting as bilinear forms

D2G� Œv1; v2� D �L�1
f�
Œr � .e�v1v2ruf�

/�

C L�1
f�

�
r �

�
e�v1rL�1

f�
Œr � .e�v2ruf�

/�
��

C L�1
f�

�
r �

�
e�v2rL�1

f�
Œr � .e�v1ruf�

/�
��

for v1; v2 2 ED . In particular, for v 2 ED and x 2 X, we have

vT
r
2Gx.�/v D �L�1

f�
Œr � .e�v2ruf�

/�.x/

C 2L�1
f�

�
r �

�
e�vrL�1

f�
Œr � .e�vruf�

/�
��
.x/: (5.35)

The details are only of a technical nature and left to Exercise 5.4.3.

5.3.1.1 Average curvature for Darcy’s problem on ED . The following lemma
checks the local curvature hypothesis (3.30) for the forward map from (2.8) if the
natural ‘identifiability’ condition (2.15) is satisfied – cf. also (2.17) for sufficient con-
ditions on g; h ensuring (2.15). A result comparable to the next theorem holds for the
Schrödinger model (2.5) as well – see Exercise 5.4.5 – and also for other PDE models
discussed in the notes to this section.

To concentrate on the main ideas we assume that �0 is sufficiently regular in a
Sobolev sense and do not attempt to optimise the powers ofD in the choice of radius
r of Br or in (5.36). Neither do we make any claims about the optimality of the
hypothesis ˛ � 5.

Theorem 5.3.2. Let `.�/ D `.�; .Y;X// be as in (3.29) with GWED ! R from (2.8),
d � 3, with ED � ‚ as in (5.3) for ˛ � 5, and let Br be as in (5.2) with r D rD�w ,
where w D 8=d and r > 0. Suppose (2.15) holds for all � 2 Br. Let �0 2 QH 5.X/

satisfy k�0k QH5 � S for some S > 0. Then there exist constants 0 < rS � 1, c1; c2 > 0
such that if also kG.�0/� G.�0;D/kL2

�
� c1D

�w , then for allD 2 N and all r � rS ,

inf
�2Br

�min.E�0
Œ�r2`.�/�/ � c2D

�6=d : (5.36)

Proof. As a preliminary remark we record here that for � 2 Br, we have

k�kH5 . k�k QH5 � k�0;Dk QH5 C k� � �0;Dk QH5 � S CD5=d rD�w . 1; (5.37)

where we have used the estimate kvk QH5 . D5=dkvkED
for v 2 ED , valid by (A.14),

(A.15) below. By (A.4) this implies k�k1 is uniformly bounded. Hence, by the chain
rule, we can further restrict to f� D e� bounded inH 5 norm and by Proposition A.5.2
then also to uf�

bounded inH 6-norm. By the Sobolev imbedding (A.4) (with d � 3),
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this implies
kuf�

kC4 C kf�kC3 � kuf�
kH6 C kf�kH5 � B (5.38)

for a constant B that is uniform in Br. The preceding estimates will be used tacitly in
the proof.

We have from (3.35)

�r
2`.�/ D rGX .�/rGX .�/T � .Y � GX .�//r2GX .�/:

Using this, Proposition 5.3.1 and (5.35), we obtain that for any v 2 ED ,

vTE�0
Œ�r2`.�/�v D kL�1

f�
Œr � .e�vruf�

/�k2
L2

�

�
˝
G.�0/ � G.�/; 2L�1

f�

�
r �

�
e�vrL�1

f�
Œr � .e�vruf�

/�
��˛
L2

�

C
˝
G.�0/ � G.�/;L�1

f�
Œr � .e�v2ruf�

/�
˛
L2

�

DW I � II C III: (5.39)

We lower bound �min.E�0
Œ�r2`.�/�/ by lower bounding the last quantity by a con-

stant multiple times kvk2ED
for all v 2 ED such that kvkED

D 1.

(a) Lower bound for I. This is the key step. By the interpolation inequality (A.5)
for Sobolev norms, we have, for any 0 ¤ w 2 H 4.X/, that

kwkH2 . kwk
1=2

L2 kwk
1=2

H4 H) kwkL2 &
kwk2

H2

kwkH4

:

We also note that, by (A.15), (1.6), (A.18) and the remarks after (A.16), we have

kwkH2 ' kwk QH2 ' kLf�
wkL2 ; any w 2 H 2

0 .X/:

Applying what precedes to w D L�1
f�
Œr � .e�vruf�

/� 2 H 2
0 .X/ with v ¤ 0 gives,

using also Lemma 2.1.6 and Proposition A.5.3 with ˇ D 3,

kL�1
f�
Œr � .e�vruf�

/�kL2 &
kr � .e�vruf�

/k2
L2

kr � .e�vruf�
/kH2

&
e�2k�k1kvk2

L2

ke�kC3kuf�
kC4kvkH3

& D�3=d
kvkL2 ;

in view of the estimate kvkH3 . kvk QH3 . D3=dkvkL2 for v 2 ED � QH 3 � H 3,
valid by (A.15) and (A.14). In conclusion, we have proved that for all 0 ¤ v 2 ED ,

kL�1
f�
Œr � .e�vruf�

/�k2
L2

�

& D�6=d
kvk2ED

:

(b) Upper bounds for II, III. For � 2 Br, the Cauchy–Schwarz inequality and the
local ED ! L2

�
-Lipschitz property of G (Proposition 2.1.3 with � D 0 and (5.37))



Application to PDE models 117

imply that the terms II; III are both bounded by .Lr C c1/D
�w.i C ii/, and where i

is bounded byL�1
f�

�
r �

�
e�vrL�1

f�
Œr � .e�vruf�

/�
��

L2
�

. ke�vrL�1
f�
Œr � .e�vruf�

/�kL2
�

. kvk1kL�1
f�
Œr � .e�vruf�

/�kH1

. kvk1ke�vruf�
kL2

� kvk1kvkL2kf�k1kuf�
kC1

. D.1=2/C�
kvk2

L2

using (A.32), (A.8), the divergence theorem (A.7) as well as

kvk1 . kvkHd.1=2C�/ . D.1=2/C�
kvkL2 ; v 2 ED;

again by (A.15) and (A.14); while ii is bounded by

kL�1
f�
Œr � .e�v2ruf�

/�kL2
�

. ke�v2ruf�
kL2

� kf�k1kuf�
kC1kvk1kvkL2

�

. D.1=2/C�
kvk2

L2 ;

using similar arguments.
To conclude, since w D 8=d and d < 4, we obtain the overall bound

I � II C III � A1D
�6=d

kvk2ED
� A2.r C c1/D

�wD.1=2/C�
kvk2ED

�
A1

2
D�6=d

kvk2ED

for some constants A1; A2 > 0, all r; c1 small enough, and all 0 ¤ v 2 ED , proving
the theorem.

Using minor variations of the arguments from the preceding proof, one can verify
the second part of Condition 3.2.2.

Proposition 5.3.3. Under the hypotheses of Theorem 5.3.2, the bound (3.31) in Con-
dition 3.2.2 holds for �1 D 0.

Proof. We only consider the operator norm of the expected Hessian, the other terms
are of smaller order and bounded in a similar way. We can again use the decomposi-
tion (5.39) and the previous proof already showed that II C III . D�wD1=2C� . 1.
To upper bound I we use (A.32) and (5.38) and the divergence theorem to obtain

p
I � Nckr � .e�vruf�

/k.H1
0
/� � kf�k1kuf�

kC1kvkL2 � ckvkED
;

which after collecting terms implies the result.
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5.3.1.2 Verifying Condition 3.2.1. There are several terms to check when verifying
Condition 3.2.1, all following the same standard proof template. We encounter similar
terms as in the proof of Theorem 5.3.2, but now need to bound supremum norms
instead ofL2

�
-norms, or, by the Sobolev imbeddingH 2�L1 (d � 3), corresponding

H 2-norms.
For instance, for the gradient rGx.�/ from Proposition 5.3.1, we can use (A.31),

(5.37), (5.38) for � 2 Br as in Theorem 5.3.2, and (A.15), (A.14) to obtain

sup
x2X

jvT
rGx.�/j . kL�1

f�
Œr � .e�vruf�

/�kH2 . ke�vruf�
kH1

. kf�kC1kuf�
kC2kvkH1 . D1=d

kvkED
;

while the second term featuring in the Hessian from (5.35) is of the orderL�1
f�

�
r �

�
e�vrL�1

f�
Œr � .e�vruf�

/�
��

H2 . ke�vrL�1
f�
Œr � .e�vruf�

/�kH1

. k�k1kvkC1kL�1
f�
Œr � .e�vruf�

/�kH2

. kvkC1ke�vruf�
kH1

. kvkC1kvkH1kf�kC1kuf�
kC2

. kvkH3kvkH1 . D4=d
kvk2ED

;

where we have used the Sobolev imbedding H 3 � C 1 for d � 3 and again (5.37),
(5.38), (A.15), (A.14).

Repeating arguments of this kind one can verify Condition 3.2.1 for Darcy’s prob-
lem – the ‘critical’ term arises from the Lipschitz constant of the operator norms
of r2Gx , and the details of the proof of the following proposition are left to Exer-
cise 5.4.4.

Proposition 5.3.4. Under the hypotheses of Theorem 5.3.2, Condition 3.2.1 is satis-
fied for �2 D 7=d .

No claim is made about the optimality of our bound for �2 – we only wish to
exhibit its growth of a polynomial in D order to apply Theorem 5.1.3.

We have now everything at hand to apply Theorem 5.1.3 to Darcy’s problem. The
smoothness ˛ > 21 of the model required in the following theorems is not optimal
and arises as such because we have repeatedly opted for simpler proofs in the preced-
ing results. Specifically we have not appealed to ‘Schauder-theory’ for C ˛-regularity
of solutions to elliptic PDEs (e.g., [59, Section 6]) but only to Sobolev regularity
bounds via L2-energy estimates. When proofs require C ˛-bounds, the use of the
Sobolev imbedding then increases relevant constants. We did this to focus on the
main ideas rather than on technicalities. The resulting assumption on ˛ translates into
a growth hypothesis on the dimension D, and the theorems that follow should hence
be construed as holding in ‘moderately high-dimensional’ models – the precise value
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of ˛ is not of central importance. Sharper versions are possible (and discussed in the
notes) but do not impact the main insight drawn from the following theorem, that for
sufficiently regular models, a log-concave approximation theorem is true for Darcy’s
problem while the Bernstein–von Mises theorem fails for it.

Theorem 5.3.5. Suppose that �0 2 QH˛.X/ for ˛ > 21, d � 3; that (5.13) holds with
ıN D N�˛=.2˛Cd/, and that (2.15) is satisfied for all � 2 ‚� QH˛ . Then the forward
map G from (2.8) satisfies Condition 5.1.1 for rD rD�8=d and all small enough r > 0,
spaces ED from (5.3),

� D
˛ � 1

˛ C 1
; �0 D

6

d
; �1 D 0; �2 D

7

d

and some ci > 0, i D 0; 1; 2, as long as D � A1N
d=.2˛Cd/ for some A1 < 1. In

particular, the log-concave approximation from Theorem 5.1.3 holds true for the
chosen constants and the corresponding surrogate posterior from (5.11) and with
e�CND

�2�0�4�2
D o.1/.

Proof. Note that Propositions 2.1.3 and 2.1.7 with ˇ D ˛ apply to verify Condi-
tion 2.1.1 for �D1 (and then also �D0) and Condition 2.1.4 with �D .˛�1/=.˛C1/.
We take ˇ D ˛ here, permitted in view of Exercise 2.4.3 for this particular prior (5.4).
Conditions 3.2.1 and 3.2.2 were checked in the previous subsection, using also that
(5.13) verifies the bound on kG.�0/� G.�0;D/kL2 for some c1 and the choice ofD to
follow. Collecting the required bounds, we need D�w & D.6C7/=d ıN to verify (5.5),
which is satisfied for our choice of D;˛.

5.3.2 Polynomial time computation of the posterior mean

We can now combine the previous theorem with the computation time bounds from
Section 5.2.1 for gradient-based Langevin Markov chains. We only give a result for
the polynomial time computatibility of the posterior mean vector – versions of The-
orems 5.2.1 and 5.2.2 can be obtained as well. We consider a ‘warm start’ of the
algorithm, assuming an appropriate initialiser �init into the region Br exists. When
D � N a so that r ' N�Na for some a; Na > 0, it is itself a non-trivial task to find a
polynomial time initialiser – see the notes for discussion.

We recall that ‘polynomial run-time’ in the following theorem refers to the dimen-
sionD of the state space one is using, the ‘informativeness’N of the posterior surface
(5.18), as well as the desired precision level ". Computational complexity is measured
in terms of the number of required iterates of the MCMC scheme (5.19), including
the burn-in time. Any MCMC step requires the evaluation of the gradient r`N and
hence of G;rG, each amounting to the solution of an elliptic boundary value problem
in X � Rd (in the case of Darcy’s problem). Such an operation is feasible (in polyno-
mial time) by standard numerical PDE solvers, but we do not concern ourselves here
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with the computational cost of this operation in itself. The following theorem shows
that computational barriers in D;N such as those described in Section 5.2.2 can be
overcome for Darcy’s problem by ‘warm start’ gradient type MCMC methods.

Theorem 5.3.6. Suppose that data DN D .Yi ; Xi /
N
iD1 arise from (1.9) in Darcy’s

problem with forward map G from (2.8), d � 3, and such that (2.15) is satisfied for all
� 2‚� QH˛ , ˛ > 21. Consider the prior… onED �‚ given by (5.4) with dimension
D � A1N

d=.2˛Cd/ for some A1 > 0. Suppose that (5.13) holds for �0 2 ‚. Consider
the computation of the mean vector

E…Œ� jDN � D

Z
ED

�d….� jDN / d�

of the posterior distribution …. � jDN / from (5.18). For some arbitrary fixed P > 0,
let the precision level " satisfy " � N�P . For an initialiser �init satisfying k�init �

�0;DkED
� D�8=d=.8 logN/, let the MCMC average N�JJin

be as in Corollary 5.2.3
with  as in (5.25) and corresponding choices of m; ƒ in Theorem 5.2.1 provided
by Theorem 5.3.5. Then there exist positive constants a; b1; b2; b3 such that with
PN
�0

� P�init-probability at least 1 � eN
a
, N�JJin

�E…Œ� jDN �

ED

� ";

and with burn-in and run-times Jin; J of order at most polynomial order,

Jin C J D O.N b1Db2"�b3/: (5.40)

Proof. The result follows from Theorem 5.3.5 and Corollary 5.2.3 after bounding all
relevant constants as discussed after (5.25). Note that the constants involving eigen-
values of the prior inverse covariance†�1 for our choice†D diag.�˛j W j �D/ grow
at most polynomially in D in view of (A.14).

Note that the stepsizes  are of the form O.D�b4N�b5�b6/ for some bi > 0 in
the previous algorithm.

We can combine the previous computational result with the consistency The-
orem 2.3.3 for the posterior mean (or in fact Exercise 2.4.3) to further show that the
MCMC averages also recover the ground truth �0 generating the data, that is, with
PN
�0

� P�init-probability at least 1 � eN
a
, we have

k N�JJin
� �0kL2 � " whenever " & max.N�P ; ı

�
N /;

after a number J C Jin of iterates of the MCMC chain that grows at most polynomi-
ally in relevant quantites (cf. (5.40)). This shows that the ground truth diffusivity �0
in Darcy’s problem can be recovered by a constructive polynomial time MCMC
algorithm, assuming warm start initialisation as in (5.6) is possible.



Notes 121

5.4 Notes

5.4.1 Exercises

Exercise 5.4.1. Prove Proposition 5.1.2. [Hint: A proof of a more general result can
be found in [101, Proposition 3.6].]

Exercise 5.4.2. Show that the probability bound in Lemma 1.3.3 can be taken of
order 1 �O.e�bNı

2
N / for some b > 0 if K is chosen large enough. [Hint: Use (B.4)

or see [101, Lemma 4.15].] Further show that (5.17) holds.

Exercise 5.4.3. Complete the proof of Proposition 5.3.1 and show further that the
map � 7! Gx.�/ is C 3 on the set B D Br from Theorem 5.3.2. [See also [4].]

Exercise 5.4.4. Prove Proposition 5.3.4. [See also [4].]

Exercise 5.4.5. Prove an analogue of Theorem 5.3.2 for the forward map G from the
Schrödinger model (2.5), with w D 4=d and lower bound in (5.36) of oder c2D�4=d .
[Hint: Start from (3.48), or see [101, Lemma 4.7].]

5.4.2 Remarks and comments

The main ideas of this section were developed in the recent contribution [101] and
in the follow up paper [23], even though the particular proofs given here follow a
slightly different route inspired by the very recent article [4] which avoids the ana-
lysis of ‘MAP’ estimators from [23,101] at the expense of slightly stronger conditions
on the model parameters in Condition 5.1.1. The mixing time results from Sec-
tion 5.2.1 follow ideas from [39, 48, 49] for strongly log-concave targets (reviewed
in the appendix).

The results in [101] and [23] consider different PDEs than Darcy’s problem, spe-
cifically the Schrödinger equation from (2.5) and non-Abelian X-ray transforms from
(1.1), where results similar to Theorems 5.3.5 and 5.3.6 are obtained. In particular,
these references establish versions of the local average curvature Theorem 5.3.2 for
these PDEs (with appropriate choices of �0; r; ED). The underlying gradient stability
requirement seems more feasible to check than solving information equations (3.16),
as highlighted by Darcy’s problem. We also note that the choice of the discretisation
spaces ED needs to be adapted to the mapping properties of DG� and, for instance,
for X-ray transforms, an eigen-basis different from the standard Laplacian has to be
considered to adjust for boundary behaviour, see [23], building on ideas from [88,91].

As mentioned above, the proofs of the analogues of Theorem 5.1.3 in [23, 101]
are slightly different in that they require a separate convergence analysis of the MAP
estimator O�MAP (i.e., the maximiser of the posterior density of (5.18) over ED).
The benefit of this is that when dealing with term II in the decomposition of the
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Wasserstein distance in the proof of Theorem 5.1.3, one can expand the log-posterior
around the global maximum O�MAP (instead of �0;D), avoiding the gradient term in
(5.16). This allows to weaken the quantitative requirements in Condition 5.1.1 – spe-
cifically the factor D�0C�2 in the definition of QıN can be replaced by just D�0=2, see
[23, Condition 3.5] – but at the cost of introducing slightly stronger analytical condi-
tions on G required to obtain convergence rates for O�MAP. In this context [101] also
provide computational guarantees for optimisation based estimators and further cla-
rify that the unimodal ‘surrogate posterior’ actually has O�MAP as its mode, as one may
expect. While these stronger sets of conditions on G can often be checked for con-
crete PDEs, the proofs presented in the notes here are ‘entirely Bayesian’ and do not
require to set up the machinery fromM -estimation [124], [100] to study optimisation
based estimators.

Log-concave approximation theorems such as Theorem 5.1.3 provide a concep-
tual alternative to Bernstein–von Mises approximations studied in Section 4.1 and
also to Laplace approximations discussed in Remark 5.1.4. They are useful to estab-
lish computational guarantees for gradient-based MCMC methods as in Theorem
5.3.6 – a main challenge here is to show that the MCMC method requires at most
a polynomial run-time both in D and N simultaneously. Results that scale uniformly
in D (but exponentially in N ) can be obtained by infinite-dimensional Harris-type
theorems (see [65]) but these do not give polynomial time guarantees for ‘informat-
ive’ posteriors when N ! 1. See [101] for more discussion. We note also that log-
concave approximation theorems appear to fall short (at least in our current under-
standing) of providing statistical guarantees for posterior-based uncertainty quantific-
ation such as those given in Section 4.1.3. The reason for this is (a) that Theorem 5.1.3
is not compatible with the weak convergence arguments relevant in Section 4.1.3 (as
noN -independent limiting measure is provided), and (b) that as such the Wasserstein
distance does not dominate the Kolmogorov ‘quantile’ distance for general pairs of
N -dependent probability measures. Thus for purposes of uncertainty quantification,
the BvM theorems from Section 4.1 are currently still the only available results, des-
pite their limitations.

The results in Section 5.2.2 about hardness of local MCMC methods are partly
inspired by ideas from [15, 16] (see also [10]) laid out in very different high-dimen-
sional statistical physics models. Theorem 5.2.4 presented here is a simplified ‘aver-
age log-likelihood’ versions of one of the main results from [11], where also other
priors and random step size MCMC methods such as MALA and pCN are explicitly
considered.

We finally touch on the issue of initialisation in (5.6), specifically with an eye
on data-driven choices for �init as is relevant in Theorem 5.3.6 on the performance of
gradient MCMC. We are not aware of a general strategy for initialisation other than
perhaps in settings where the curvature hypothesis in Condition 3.2.2 holds on a fixed
ball B (of constant in D;N radius) when a standard grid-search can be used. For the
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Schrödinger equation, an ad hoc strategy for initialisation can be provided [101], but
for other PDEs this poses novel challenges that are not sufficiently well understood
at the time of this writing.





Appendix A

Analytical background

In this section, unless mentioned otherwise, X is always a bounded domain in Rd

with smooth boundary and the space L2 D L2.X/ D L2
�
.X/ denotes the standard

Hilbert space of square integrable functions on X with respect to Lebesgue meas-
ure �, with inner product h � ; � iL2 and norm k � kL2 D

p
h � ; � iL2 . The relation a . b

denotes an inequality a � Cb that holds up to fixed constants C > 0, and the corres-
ponding convention is used for &.

A.1 Sobolev and related spaces

We collect here without proofs some standard facts about Sobolev spaces that can be
found in any of the standard references on the subject, for instance, [86, Chapter 1],
[121, Chapter 4], [59, Chapter 7] or [2].

For a multi-index i D .i1; : : : ; id /, letDi denote the i -th (weak) partial derivative
operator of order ji j. Then for an integer ˛ � 0, the Sobolev spaces are

H˛.X/ WD
®
f 2 L2.X/ j for all ji j � ˛; Dif exists and Dif 2 L2.X/

¯
; (A.1)

normed by
kf k2H˛.X/ D

X
ji j�˛

kDif k2
L2.X/

:

For non-integer real values ˛ � 0, one can defineH˛.X/ by interpolation. For ˛ D 0

the convention H 0.X/ D L2.X/ will be used.
The space of bounded and continuous functions on X is denoted by C.X/,

equipped with the supremum norm k � k1. For � 2 N, the space of �-times differ-
entiable functions on X with (bounded) uniformly continuous derivatives is denoted
by C �.X/, with norm kf kC�.X/ D

P
ji j��kD

if k1. For � > 0, � … N, we say
f 2 C �.X/ if for all multi-indices ˇ with jˇj � b�c (the integer part of �), Dˇf

exists and is .� � b�c/-Hölder continuous. The norm on C �.X/ for such � is

kf kC�.X/ D

X
ˇ Wjˇ j�b�c

kDˇf k1 C

X
ˇ Wjˇ jDb�c

sup
x;y2X; x¤y

jDˇf .x/ �Dˇf .y/j

jx � yj��b�c
:

We also define the set of smooth functions as C1.X/ D
T
�>0 C

�.X/ and its sub-
space C1

c .X/ of functions compactly supported in X. All definitions so far make
sense for any open subset X � Rd .
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Now for X � Rd a bounded domain with smooth boundary @X, the comple-
tion of C1

c .X/ for the H˛-norm is denoted by H˛
c .X/, and this is a closed sub-

space of H˛.X/ (equal to H˛.X/ only if ˛ < 1=2). We also define the spaces
H˛
0 .X/; C

1
0 .X/ of elements of H˛.X/, C1.X/ that vanish at @X (in a trace

sense if necessary). We notice that H 1
0 .X/ D H 1

c .X/ but otherwise (˛ > 1) the
inclusion H˛

c .X/ � H˛
0 .X/ is strict as the former spaces require normal derivat-

ives up to order ˛ � 1=2 to vanish at @X. One also defines topological dual spaces
H�˛.X/ D .H˛

c .X//
� for ˛ � 0. For some results we also need Sobolev spaces

H˛.@X/ defined similarly on the closed ‘boundary-less’ manifold @X, as well as
C1.@X/ D

T
˛�0H

˛.@X/. See, e.g., [121, Chapter 4.3] for details.
All preceding spaces and norms can be defined for vector fields f WX ! Rd with

standard modification of the norms, by requiring each of the coordinate functions
fi . �/, i D 1; : : : ; d , to belong to the corresponding space of real-valued maps.

We will repeatedly use the standard multiplicative inequalities

kfgkH˛ . kf kH˛kgkH˛ ; ˛ > d=2; (A.2)

kfgkH˛ . kf kC˛kgkH˛ ; ˛ � 0; (A.3)

for all f;g in the appropriate function spaces. Also, for any ˛ > d=2 and 0 < � < ˛ �

d=2, the Sobolev embedding H˛ � C � holds, with corresponding norm estimates

kf k1 . kf kC� . kf kH˛ for all f 2 H˛: (A.4)

We also need the following interpolation inequality for Sobolev norms. For all
ˇ1; ˇ2 � 0 and � 2 Œ0; 1�,

kukH�ˇ1C.1��/ˇ2 . kuk�
Hˇ1

kuk1��
Hˇ2

for all u 2 Hˇ1 \Hˇ2 : (A.5)

A.2 Elliptic second-order differential operators

We now consider a second-order elliptic operator

L;V .u/ D r � .ru/ � V u; u 2 C1.X/;

where  WX ! Œmin;1/ is a diffusion coefficient bounded from below by a scalar
min > 0, V W X ! Œ0;1/ is a non-negative potential, and r � v D

Pd
jD1 @v=@vj

denotes the divergence of a vector field v 2 H 1.X/. We will assume throughout this
section that  2 Hˇ .X/ for some ˇ > 1C d=2 so that in particular  2 C �.X/ for
� > 1 by (A.4). We also assume that V 2 Hˇ�1.X/ � C ��1.X/. Weaker regularity
hypotheses on ;V are possible but we do not pursue those to facilitate the exposition.
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With this setup we can represent the divergence form operator Lf from (1.3) as
Lf;0 and the Schrödinger operator Lf from (1.4) as L1=2;f . The PDE (1.2) is thus a
special case of the more general PDE

L;V v D g on X;

v D h on @X;
(A.6)

whose solutions v we now study. We assume again that g; h are given smooth (C1-)
functions on X; @X, respectively.

For a smooth vector field vWX !Rd the divergence theorem (see [121, p. 143 Pro-
position 2.3] or [52, p. 714f]) implies that for any u 2 C1

0 .X/,Z
X

ur � v d� D �

Z
X

ru � v d�; (A.7)

and this extends to v 2 H 1.X/, u 2 H 1
0 .X/, by approximation.

Now using (A.7) and the Poincaré inequality (e.g., [121, p. 340]), for any u 2

H 1
0 .X/,

�hL;V u;uiL2.X/Dhru;ruiL2 ChV u;uiL2 � minkruk
2
L2 �C.min;X/kuk

2
H1 :

Using the dual characterisation of the norm of H�1.X/ D .H 1
0 .X//

� and testing
with � D �u, we deduce

kL;V ukH�1 D sup
k�k

H1
0

�1

hL;V u; �iL2 � C.min;X/kukH1 : (A.8)

Similar arguments imply a converse inequality of (A.8) and hence that L;V con-
tinuously maps H 1

0 .X/ into H�1.X/ with operator norm bounded by some D D

D.kk1; kV k1/. From this, one then deduces the following facts, see e.g., [121,
p. 355f]: the operator L;V realises an isomorphism of H 1

0 .X/ onto H�1.X/ with a
well-defined inverse L�1

;V of L;V that defines a compact negative self-adjoint oper-
ator on the Hilbert spaceL2

�
.X/, mapping intoH 1

0 .X/. Compactness and the spectral
theorem furnish us with eigen-pairs

.�j ; ej / D .�;V;j ; ej;;V / 2 .0;1/ �H 1
0 .X/; j 2 N; (A.9)

of �L;V that depend on ;V (suppressed in the notation unless necessary). In partic-
ular, the action of L;V on sufficiently regular elements of L2.X/ can be represented
as in (1.6), and for h D 0 and g 2 L2.X/, we can represent the unique solutions
v 2 H 1

0 .X/ of (A.6) as

v D L�1
;V Œg� D �

X
j

��1j ej hej ; giL2 : (A.10)
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Unique solutions v in H 1.X/ for (A.6) with h ¤ 0 can be constructed likewise (see
[59, Chapter 8] or arguing as in [121, p. 359f]), and for smooth g;h such v will belong
to a Sobolev space if ; V do: Theorems 8.12 and 8.13 in [59] imply that

v 2 H kC1.X/ if  2 H k.X/; V 2 H k�1.X/; k 2 N; (A.11)

and that this remains true as long as the source g belongs to H k�1 (rather than being
smooth).

We will show below (Proposition A.5.3) that L�1
;V is in fact a Lipschitz operator

between such Sobolev spaces but need to be careful to track the constants in depend-
ence on V; ; k. Some first Lipschitz estimates that are uniform in V;  already follow
from (A.8) with u D L�1

;V Œg�, specifically since

kukL2 � kukH1 � ckL;V ukH�1 � ckL;V ukL2 for u 2 H 1
0 ;

for some c D c.min;X/ <1, we see that for any g 2 L2,

kL�1
;V Œg�kL2 � ckgkL2 ; (A.12)

and we also have the stronger estimate

kL�1
;V Œg�kH1 � ckgkL2 : (A.13)

A.3 Orthonormal discretisation of L2 and metric entropy

A.3.1 The spectrally defined Sobolev-type spaces QH s

The spectral theorem furnishing the representation (A.10) in fact implies that ¹ej W

j 2 Nº is a complete h � ; � iL2-orthonormal basis of the Hilbert space L2 D L2
�
.X/.

Setting  D 1, V D 0, the well-known Weyl-asymptotics for the eigenfunctions of
the standard Laplacian �� D �L1;0 are

�j ' j 2=d as j ! 1; (A.14)

see [122], Corollary 8.3.5. For these eigen-pairs of �, new Sobolev-type spaces are
then defined as

QH s.X/ D
°
f W kf k2

QH s.X/
WD

X
j2N

�sj hf; ej i
2
L2 <1

±
; s 2 R; (A.15)

which carry a natural (Hilbert-space) inner product

hf; gi QH s D

X
j

�sj hf; ej iL2hg; ej iL2 :
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For s � 0, the above spaces consist of elements of L2.X/ but for s < 0, these are
generalised functions (in the Schwartz sense) and a basic sequence space duality
argument shows that

QH s.X/ D . QH�s.X//� for s < 0; (A.16)

we refer to [121, p. 473] for details.
One can define the QH s./ spaces also for the spectrum of the L;0-operators

instead of the standard Laplacian  D 1 – the sequence norms of these spaces QH s./,
s D 0; 1; 2; can all be shown to be equivalent with equivalence constants depending
only on U � kkC1 and min �  � max. Further properties of these spaces are
discussed after the next subsection.

A.3.2 The metric entropy bound in sequence space

A lemma used repeatedly in these notes is the following combinatorial result for the
metric complexity of balls in QH˛ spaces.

For a totally bounded subsetA of a metric space .X;dX /, the numberN.A;dX ; �/
denotes the minimal number of dX -balls of radius � > 0 required to cover A, and
logN.A; dX ; �/ is called the metric entropy of A. When dX arises from a norm k � k,
we just write N.A; k � k; �/ instead.

Proposition A.3.1. Let ˛ � 0 and �1 < k < ˛. Then the �-log-covering numbers
of the ball Qh˛.B/ of QH˛.X/-norm radius B for the QH k.X/-distance satisfy

logN. Qh˛.B/; k � k QHk ; �/ �
�AB
�

�d=.˛�k/
for 0 < � < AB; (A.17)

where A D A.d; ˛; k/ <1 is a fixed constant.

Proof. We first prove the case k D 0. A standard scaling argument for norms allows
to restrict to B D 1. Let us write fn D hf; eniL2 for the ‘Fourier’ coefficients of
f 2 L2.X/ in the basis en throughout the proof. We also note that (A.14) provides a
constant b1 > 0 such that b1j 2=d � �j for all j 2 N.

For any f contained in

Qh˛.1/ D
°
f W

X
n

�˛nf
2
n � 1

±
;

using (A.14) and Parseval’s identity, we can estimate the error of L2
�
-approximation

P2`0f of f from all frequencies up to the largest integer n < 2`0 , as

kf � P2`0f k
2

L2
�

D

X
n�2`0

f 2n �
˛
n�

�˛
n � b�˛1 2�2˛`0=d �

��
4

�2
;
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where we have chosen `0 as

`0 D
d

˛
log2

�4 � 2˛=dC1b�˛=21

�

�
The remaining indices n, 0 � n < 2`0 , are now decomposed into dyadic brackets

Nl D ¹n W 2l�1 � n � 2l � 1º; l D 1; : : : ; jNl j D 2l�1;

where by convention we set N0 D ¹0º. Thus, using again Parseval’s identity and the
preceding estimate, we can bound, for any f; g 2 Qh˛.1/,

kf � gkL2
�
�

s X
0�l�`0C1

X
n2Nl

��˛n �˛n.fn � gn/
2 C

2�

4

� 2˛=db
�˛=2
1

X
0�l�`0C1

2�l˛=d
sX
n2Nl

.�
˛=2
n fn � �

˛=2
n gn/2 C

�

2
:

Now by the definition of Qh˛.1/, for every l 2 N [ ¹0º the vectors ¹�˛=2n fn W n 2 Nlº,
¹�
˛=2
n gn W n 2 Nlº lie in the unit ball of a Euclidean space of dimension jNl j � 2l .

The Euclidean �0-covering numbers of such a unit ball Bl for the standard Euclidean
norm are

N.l/ � N.Bl ; k � kRjNl j ; �
0/ �

� 3
�0

�2l

for 0 < �0 < 1

(see, e.g., [60, Proposition 4.3.34]). By choosing radius �0
l
D 2l.˛=dC1/2�`0.˛=dC1/

coverings of Bl for each l centred at points .fn;l;i W n 2 Nl ; l � `0 C 1/, and setting
fn;l;i D 0 for n � 2`0C1, we obtain a covering�

Nf .i/ D ��˛=2n fn;l;i W i D 1; : : : ;
Y

0�l�`0C1

N.l/
�

of Qh˛.1/ of radius bounded by

kf � Nf .i/kL2
�
�
�

2
C 2˛=db

�˛=2
1

X
0�l�`0C1

2�l˛=d2l.˛=dC1/2�`0.˛=dC1/

�
�

2
C 2˛=dC2b

�˛=2
1 2�˛`0=d � �;

by choice of `0. We thus obtain, for some c0 D c0.˛; d/ > 0,

log2N. Qh
˛.1/; k � kL2

�
; �/ �

X
0�l�`0C1

log2N.l/

�

X
0�l�`0C1

2l
h

log2 3C .`0 � l/
�˛
d

C 1
�i

� c02`0 �

�A
�

�d=˛
;

so that (A.17) follows for k D 0.
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For �1 < k < ˛, if f; g 2 Qh˛.B/, we can write

kf � gk2
QHk

D

X
n

.fn�
k=2
n � gn�

k=2
n /2 D k Qf � Qgk2

L2 ;

where Qf ; Qg are defined via ‘Fourier coefficients’ �k=2n fn, �k=2n gn, n 2 N, which
belong to a bounded subset of QH˛�k . Hence a k � kL2-covering of ¹ Qf W f 2 Qh˛.B/º �
Qh˛�k.B/ induces a QH k-covering of h˛.B/, and the bound for k D 0 just established
applies with ˛ � k in place of ˛, completing the proof.

Remark A.3.2. One can show that the inequality (A.17) is optimal in the sense that
a corresponding lower bound holds with A replaced by some A0 > 0 depending only
on d; ˛; k, see [50, Chapter 3] for a proof.

A.3.3 Metric entropy estimates for standard Sobolev spaces

The spaces QH˛.X/ have to be understood relative to the ‘eigen-pairs’ .en; �n/ of the
Dirichlet Laplacian �� D L1;0 on X and (unlike on boundary-less manifolds) are
not equal to the standard spacesH˛.X/, due to the presence of a boundary. However,
arguing as in [121, Section 5.A], one shows the following facts: We have

QH˛.X/ D H˛
0 .X/; ˛ D 1; 2I QH˛.X/ � H˛

0 .X/; ˛ 2 N; (A.18)

and the k � kH˛ and k � k QH˛ -norms are Lipschitz equivalent on QH˛ . Moreover, any
f 2 H˛.X/ that is supported in some compact subset K � X belongs to QH˛.X/

with norm estimate kf k QH˛ � cKkf kH˛ . This is clear for ˛ D 1; 2 and extends
to ˛ 2 N by induction as QH˛.X/ is the image of H˛�2.X/ under an application
of L�1

1;0, cf. (A.28). It extends in fact also to ˛ < 0 in that any element of H˛.X/ WD

.H�˛
c .X//� that is compactly supported in X in the sense of Schwartz distributions

belongs to QH˛.X/, see [121, p. 474].
From what precedes and Proposition A.3.1, one can obtain the classicalL2-metric

entropy inequality for balls h˛.B/ of radius B in H˛.X/,

logN.h˛.B/; k � kL2.X/; �/ .
�B
�

�d=˛
; 0 < � < B; (A.19)

by an extension argument: Let Y � X be a bounded smooth domain in Rd such that
the closure of X is contained in the interior of Y. Elements f of H˛.X/ can be
regarded as restrictions of functions Nf WY ! R in H˛.Y/ that are compactly suppor-
ted in Y and for which

k Nf k QH˛.Y/ . k Nf kH˛.Y/ . kf kH˛.X/I

the second inequality follows from the usual extension theorem for Sobolev functions
(see [86, Section 1.8]) and by employing a ‘cut-off’ function in C1

c .Y/ that equals
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one identically on X. Thus an �-L2.Y/-covering of a sufficiently large ball in QH˛.Y/

induces a covering of a ball in H˛.X/ of L2.X/ radius

kf � gkL2.X/ � k Nf � NgkL2.Y/ � �;

and (A.19) then follows from Proposition A.3.1.
When covering a ball in H˛

c .X/, the previous extension argument can be refined
to cover a weaker class of norms (relevant in Condition 2.1.1). Elements f 2H˛

c .X/

vanish at @X in a sufficiently regular way that their extension Qf by zero outside of
X belongs to H˛.Y/ (see [86, Theorem 1.11.4]). If we consider the topological dual
space . QH �.X//� for � � 0, then

kf k.H�.X//� D sup
k�kH� .X/�1

ˇ̌̌ Z
X

�f
ˇ̌̌
� sup

k N�kH� .Y/�C

ˇ̌̌ Z
Y

N� Qf
ˇ̌̌
. k Qf k QH��.Y/; (A.20)

where the last supremum ranges over those N� which satisfy N� D � on X and are
compactly supported in Y, whence k N�k QH�.Y/ � C 0 for some C 0 > 0, and where the
last inequality follows from (A.16). We therefore deduce from Proposition A.3.1 that
a ball h˛c .B/ of radius B in H˛

c .X/ satisfies the metric entropy inequality

logN.h˛c .B/; k � k.H�.X//� ; �/ .
�B
�

�d=.˛C�/
; 0 < " < B: (A.21)

For 0 � � < 1=2, the last inequality holds for h˛.B/ � h˛c .B/ – the boundary con-
straint can be relaxed as we can then use Nf instead of Qf in (A.20) together with the
fact that zero extensions Q� of � 2H �.X/ belong toH �.Y/ and then also QH �.Y/ for
such � (see [86, Theorem 1.11.4]).

Results of the type given in this subsection for general function spaces can be
found in [50], but we prefer to give self-contained proofs of the precise bounds
required in our setting.

A.4 Feynman–Kac formulæ

Solutions v of elliptic PDEs (A.6) have probabilistic representations by virtue of
integrals against sample paths of diffusion processes, e.g., [13, 55]. For the applic-
ations of diffusion process techniques, it is convenient to ensure that C 2-solutions v
of (A.6) exist. In our setting where .; V / 2Hˇ �Hˇ�1 for some ˇ > 1C d=2; the
regularity result (A.11) with k D ˇ and the Sobolev imbedding (A.4) are sufficient to
ensure v 2 HˇC1 � C 2.

From the theory of stochastic differential equations (e.g., [13, p. 10], and noting
 2 Hˇ � C 1 so that also

p
 2 C 1 as  � min > 0), there exists a unique Markov

diffusion process .Xt W t � 0/ on Rd which has L;0 D r � .r/ as a generator,
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corresponding to path-wise solutions to the stochastic differential equation

dXt D r.Xt / dt C
p
2.Xt / dWt ; t � 0; (A.22)

where .Wt W t � 0/ is a d -dimensional Brownian motion. Then, by [55, p. 127 The-
orem 2.1], the C 2-solution v to the elliptic PDE (A.6) has representation

v.x/ D �Ex

h Z �X

0

g.Xt /e
�
R t

0 V.Xs/ds dt
i
CEx

�
h.X�X /e

�
R �X

0
V.Xs/ds

�
; (A.23)

for every x 2 X, whereEx is the expectation under the law of the process .Xt W t � 0/
solving (A.22) started at x with exit time �X from the domain X.

Lemma A.4.1. We have supx2X Ex �X � c for some c D c.X; min/.

Proof. Using [13, Section VII, Theorem 4.3] and [41, Corollary 3.2.8] for the precise
form of the constants, there exist non-negative transition densities p of .Xs W s � 0/

which satisfy the estimate

p .t; x; y/ � c1t
�d=2; t > 0; x; y 2 Rd ; (A.24)

with c1 depending only on the lower bound min �  . Then, arguing as in the proof
of [34, Theorem 1.17], with (A.24) replacing the standard heat kernel estimate for the
Brownian motion ( D 1=2) used in [34], we obtain the desired inequality.

From what precedes and Jensen’s inequality we deduce that if gD 0, h� hmin>0,
then, under the maintained assumptions, solutions v to (A.6) are bounded away from
zero,

inf
x2X

v.x/ � hmin e
�kV k1 supx E

x
 �X � hmin e

�ckV k1 > 0: (A.25)

In a similar vein, for non-negative potentials V � 0, the solutions v to (A.6) satisfy

kvk1 � kgk1 sup
x2X

Ex �X C khk1 � ckgk1 C khk1: (A.26)

In particular, the solution operator L�1
;V of (A.6) with Dirichlet boundary conditions

h D 0 is linear and Lipschitz for the k � k1-norm,

kL�1
;V Œg�k1 � ckgk1 for all g 2 C1.X/; (A.27)

with Lipschitz constant c from Lemma A.4.1, upgrading the L2- estimate (A.12) to
one for the uniform norm.

A.5 Elliptic regularity estimates

The Lipschitz estimates (A.12), (A.13), (A.27) for the elliptic solution operator L�1
;V

are remarkably ‘universal’ in the conductivity  and potential V in that they only
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depend on ; V via the lower bounds on these. However, from elliptic PDE theory
we expect the solution operator to be 2-smoothing in a natural Sobolev scale. The
constants in such stronger estimates depend on higher regularity of the coefficients
; V and require different proofs.

A starting point is the corresponding result for the standard Laplacian � D L1;0
which establishes a linear topological isomorphism

u 7! .�u; trŒu�/ W H kC1.X/! H k�1.X/ �H kC1=2.@X/; (A.28)

where X is a smooth bounded domain in Rd , tr D tr@X the boundary trace operator,
and integer k � 1. See [86, Theorem II.5.4] for a proof. The isomorphism furnishes
us with constants k1; k2 that depend only on k;X; d for which

k1k�ukHk�1 � kukHkC1 � k2k�ukHk�1 if u 2 H kC1
0 .X/; k 2 N: (A.29)

Now let us assume .; V / 2 Hˇ �Hˇ�1 for ˇ > 1C d=2 and write

�u D �1.L;V u � r � ruC V u/: (A.30)

Then for g 2 L2.X/, we have u D L�1
;V Œg� 2 H

2
0 .X/ in view of (A.11) with k D 1,

so the inequality (A.29) gives

kL�1
;V Œg�kH2 � k2k�L

�1
;V Œg�kL2 D k2k

�1.g � r � rL�1
;V Œg�C VL�1

;V Œg�/kL2

� k2
�1
min.kgkL2 C .kkC1 C kV k1/kL

�1
;V Œg�kH1/

� C.min; B/kgkL2 ; (A.31)

where we have used (A.13) in the last line, and where B is an upper bound for
max.kkC1 ; kV k1/.

The ‘dual’ version of the estimate (A.31) and its converse are as follows.

Proposition A.5.1. Suppose .; V / 2 Hˇ �Hˇ�1 for some ˇ > 1C d=2 and that
 � min > 0. Then we have for all g 2 L2.X/ that

c.B/kgk.H2
0
/� � kL�1

;V Œg�kL2 � C.B; min/kgk.H2
0
/� ;

where B is an upper bound for max.kkC1 ; kV k1/.

Proof. Representing the L2-norm by duality and using the self-adjointness of L�1
;V

as well as (A.31), we obtain

kL�1
;V Œg�kL2 D sup

k'k
L2�1

ˇ̌̌ Z
X

L�1
;V Œg�'

ˇ̌̌
D sup

k'k
L2�1

ˇ̌̌ Z
X

gL�1
;V Œ'�

ˇ̌̌
� C.min; B/ sup

'2H2
0
; k'k

H2�1

ˇ̌̌ Z
X

g'
ˇ̌̌

D C.min; B/kgk.H2
0
/� ;
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which completes the proof of the upper bound. For the lower bound, notice first
that by the divergence theorem (A.7) and the Cauchy–Schwarz inequality, for any
w 2 H 2

0 ,

kL;Vwk.H2
0
/� D sup

�2H2
0
Wk�k

H2�1

ˇ̌̌ Z
wL;V �

ˇ̌̌
� Nc.B/kwkL2 sup

�2H2
0
Wk�k

H2�1

�
k��kL2 C kr�kL2 C k�kL2

�
. Nc.B/kwkL2 :

Now in light of (A.31) we can insert w D L�1
;V Œg� 2 H

2
0 in the preceding inequality

which yields the desired lower bound.

It is sometimes convenient to remove the dependence of the constant on B in the
upper bound in the previous result, which is possible by considering slightly weaker
dual norms. Indeed, replacing (A.31) by (A.13) in the previous proof immediately
gives, for Nc D Nc.X; min/,

kL�1
;V Œg�kL2 � Nckgk.H1

0
/� : (A.32)

A general bound on the Sobolev regularity of solutions of the PDE (A.6) – quan-
tifying (A.11) – is now given in the following proposition. We remark that g 2 C1

can be relaxed to g 2 Hˇ�1 by simple adjustments to the proof.

Proposition A.5.2. Let ˇ > 1 C d=2. Suppose v D v;V is the unique solution of
(A.6) for  2 Hˇ .X/ such that  � min > 0, V 2 Hˇ�1.X/ such that V � 0,
and smooth g; h. Then v 2 HˇC1.X/ and for every B > 0, there exists a constant
C D C.ˇ; d;X; min; g; h; B/ > 0 such that

sup
kk

HˇCkV k
Hˇ�1�B

kv;V kHˇC1 � C <1: (A.33)

Proof. We know that v 2 HˇC1.X/ by (A.11) with k D ˇ and that

ck.h/ WD khkHkC1=2.@X/ <1

for all k since h is smooth. Then (A.28), (A.30) and the multiplicative inequality
(A.2) give

kvkHˇC1 . cˇ .h/C k�1.L;V v � r � rv C V v/kHˇ�1

. cˇ .h/C k�1kHˇ�1.kgkHˇ�1 C .kkHˇ C kV kHˇ�1/kvkHˇ /:

By the chain rule and (A.2), we can bound

sup
kk

Hˇ�B;kV k
Hˇ�1�B

max
�
k�1kHˇ�1 ; kkHˇ ; kV kHˇ�1

�
� C.B/ <1;
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and then using also the interpolation inequality (A.5), we obtain

kvkHˇC1 . cˇ .h/C kgkHˇ�1 C kvkHˇ

. cˇ .h/C kgkHˇ�1 C kvk
ˇ=.ˇC1/

HˇC1 kvk
1=.ˇC1/

L2 :

When kvkHˇC1 � 1, we use (A.26) to deduce

kvkHˇC1 . cˇ .h/C kgkHˇ�1 C kvk1=.ˇC1/1

. cˇ .h/C kgkHˇ�1 C .kgk1 C khk1/
1=.ˇC1/;

and when kvkHˇC1 � 1, then dividing both sides by kvk
ˇ=.ˇC1/

HˇC1 and using again
(A.26) yields

kvk
1=.ˇC1/

HˇC1 . cˇ .h/C kgkHˇ�1 C kvk1=.ˇC1/1

� cˇ .h/C kgkHˇ�1 C .kgk1 C khk1/
1=.ˇC1/:

Raising the last inequality to the power ˇ C 1 and taking maxima from the last two
inequalities implies (A.33).

Finally, we give an explicit Lipschitz estimate for the solution operator L�1
;V

between general Sobolev spaces.

Proposition A.5.3. Suppose 0 < min �  and that kkCˇ CkV kCˇ�1 �B for some
ˇ � 1. Then for some C D C.B; ˇ; d;X; min/, we have, for all g 2 Hˇ�1, that

kL�1
;V Œg�kHˇC1 � CkgkHˇ�1 :

Proof. By (A.11) we know that L�1
;V Œg� 2 H

ˇC1
0 . From (A.29) and (A.30), we see,

for any u 2 H
ˇC1
0 , that

kukHˇC1 � k2k�ukHˇ�1

� k�1minkCˇ�1kL;V ukHˇ�1 C kkCˇkukHˇ C kV kCˇ�1kukHˇ�1 :

By the hypotheses, k�1minkCˇ�1 CkkCˇ CkV kCˇ�1 is bounded by a fixed constant,
B 0 say. We will show that the previous inequality implies that

kukHˇC1 � CkL;V ukHˇ�1 for all u 2 H
ˇC1
0 ; (A.34)

which then also implies the proposition by taking u D L�1
;V Œg�. To prove (A.34)

suppose by way of contradiction that the inequality is not true. Then there exists a
sequence um 2H

ˇC1
0 such that kumkHˇC1 D 1 but kL;V umkHˇ�1 ! 0 asm!1.

By compactness of the imbedding HˇC1
0 � H

ˇ
0 � H 1

0 D H 1
c (the latter being a

Banach space), this sequence converges (if necessary by passing to a subsequence)
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to some u 2 H 1
0 satisfying L;V u D 0. The last but one displayed inequality implies

that the sequence um is Cauchy in HˇC1, and hence its limit u0 must also satisfy
ku0kHˇC1 D 1, in particular, u0 ¤ 0. But from the results from Appendix A.2, we
know that the unique solution inH 1

0 toL;V uD 0 equals u0 D 0, a contradiction.





Appendix B

Further auxiliary results

B.1 Results from Gaussian process theory

A Borel probability measure� on a separable Banach spaceB is called centred Gaus-
sian if the image measures � ıL�1 are mean zero normal distributions on R for all L
in the topological dual spaceB� ofB . A (Borel-) random variableX defined on some
probability space .�;A;Pr/ and taking values in a separable Banach space .B;k � kB/
is called centred Gaussian if its law �X D Pr ıX�1 defines a centred Gaussian prob-
ability measure on B .

A centred Gaussian process with index set T is a collection ¹X.t/ W t 2 T º of
random variables such that any finite selection ¹X.t1/; : : : ; X.td /º, ti 2 T , d 2 N, is
multivariate centred normal in Rd .

Any Gaussian random variable in a Banach space can be viewed as a Gaussian
process indexed by B�, and conversely often Gaussian processes can be realised as
B-valued random variables for appropriate B , e.g., the Brownian motion .X.t/ W t 2
Œ0; 1�/ is a Gaussian process which (by sample-path continuity) also defines a Gaus-
sian random variable in the space of continuous functions C.Œ0; 1�/. So the theories
of Gaussian measures and processes inform each other and tools from both fields are
useful when deployed appropriately. See [60, Section 2] for an account of the basic
theory and many references.

There are some classical results about properties of Gaussian measures and pro-
cesses, such as Fernique’s theorem, the Karhunen–Loève expansion, the Sudakov–
Cirelson and log-Sobolev inequalities, Borell’s isoperimetric inequality and the Cam-
eron–Martin theorem. The last two theorems involve the notion of a reproducing
kernel Hilbert space (RKHS) H of a Gaussian measure�whose inner product h � ; � iH

encodes the geometry of the covariance structure of Gaussian variables X � �. We
recall that H is a subspace of B that is compactly embedded in the sense that the
identity map

id W .H ; k � kH /! .B; k � kB/

is compact (in particular continuous). One can also define a ‘process-RKHS’ for
Gaussian processes (instead of measures), and when the law of the process defines
a Gaussian probability measure on B , these RKHS will coincide under mild regu-
larity conditions (e.g., [58, Lemma 11.14]). We will admit these facts and theorems
without stating them here, even though we will give precise references to the literature
when they are used in our proofs.

There are a couple of results on Gaussian measures that are not covered in [60,
Chapter 2] that we review here now.
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B.1.1 Small deviation estimates for Gaussian measures

The following theorem characterises the ‘small ball’ (or ‘small deviation’) asymp-
totics of a Gaussian measure � on a separable Banach space B quantified by the
function

�."/ D � log�.x 2 B W kxkB � "/ for " > 0;

in terms of the metric entropy function

H."/ D logN
�
¹x 2 B W kxkH � 1º; k � kB ; "

�
for " > 0;

which equals the logarithm of the minimal number ofB-balls of radius " > 0 required
to cover the (compact) unit ball of H � B .

Theorem B.1.1 (Kuelbs–Li–Linde). Let a > 0. Then as "! 0,

�."/ � "�a if and only if H."/ � "�2a=.2Ca/;

where � denotes two-sided inequalities up to multiplicative constants (that may de-
pend on B).

For a proof of this theorem, see [84, Theorem 1.2] with ˛ D a and ˇ D 0, with a
key earlier reference being [77]. A refinement of this result at the ‘log-scale’ (ˇ > 0
in [84, Theorem 1.2]) is possible but not required in the present context. We also refer
to [85] for more on the topic of small ball deviation estimates for Gaussian processes.

B.1.2 The Gaussian correlation inequality

A result in the theory of Gaussian processes that has been proved only recently is the
Gaussian correlation inequality (formerly conjecture!) – the original proof of Royen
is spelt out in [79].

Theorem B.1.2 (Gaussian correlation inequality). Let� be a centred Gaussian meas-
ure on a separable Banach space B and let C1; C2 be convex closed symmetric
subsets of B . Then

�.C1 \ C2/ � �.C1/�.C2/:

A proof for finite-dimensional Gaussian distributions (dim.B/ < 1) is given
in [79]. As the conclusion of the result does not depend on dim.B/, the Karhunen–
Loève theorem combined with a standard limiting argument extends the result to
infinite-dimensions, see [63, Appendix A.4] for details.

B.1.3 Whittle–Matérn-type Gaussian processes

We can construct a centred Gaussian processX D ¹X.z/; z 2 Zº indexed by an arbit-
rary subset Z � Rd by prescribing a positive definite function (covariance kernel)
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KWRd ! R such that EX.s/X.t/D K.s � t /, s; t 2 Z, see [60, Proposition 2.1.10].
One such choice (with j � j D

p
h � ; � iRd the Euclidean norm) is

K˛.x/ D

Z
Rd

eihx;�iRd d N�.�/; d N�.�/ D .1C j�j2/�˛ d�; x 2 Z;

whenever ˛ > d=2. That K˛ is positive definite is the easy part of ‘Bochner’s the-
orem’: For any finite collection ǰ 2 C, sj 2 Z, we haveX

k;j

ˇk ǰK˛.sk � sj / D

Z
Rd

X
k

ˇke
ihsk ;�iRd

X
j

ǰ e
ihsj ;�iRd d N�.�/

D

Z
Rd

ˇ̌̌X
j

ǰ e
ihsj ;�iRd

ˇ̌̌2
d N�.�/ � 0:

Such (stationary) Gaussian process priors are popular in numerical analysis, spa-
tial statistics and machine learning, and are sometimes called ‘Whittle–Matérn’ pro-
cesses. The following theorem permits their use in the setting of these notes.

Theorem B.1.3 (Existence of Whittle–Matérn prior measures). Let Z be a bounded
domain in Rd with smooth boundary. Then the law of the Gaussian process X D

¹X.z/; z 2 Zº with covariance function K˛ , ˛ > d=2; defines a centred Gaussian
probability measure �X on the Banach space Cu.Z/ of bounded uniformly continu-
ous function on Z with reproducing kernel Hilbert space H D H˛.Z/. We further
have �X .Hˇ .Z// D 1 for every 0 � ˇ < ˛ � d=2.

Proof. The process-RKHS H˛;Z of ¹X.z/ W z 2Zº can be characterised as the restric-
tion to Z of functions in

H N� D

°
g W Rd ! R Borel measurable W kgk2H N�

�

Z
Rd

j Ogj2d N� <1

±
;

with OgD
R

Rd e
ih � ;xi

Rd g.x/dx the Fourier transform of g, equipped with the quotient
norm

khkH˛;Z
D inf
g2H N�; gDh on Z

kgkH N�
;

see [58, Lemma 11.35] for a proof of this fact. Then, by, e.g., [86, Theorem 1.9.2]
and for Z a bounded smooth domain in Rd , the norm of H˛;Z is Lipschitz equivalent
to the classically defined Sobolev norm (cf. (A.1)) of H˛.Z/, and hence the process
RKHS of ¹X.z/; z 2 Zº coincides with H˛.Z/ for such Z.

The Gaussian process .X.z/ W z 2 Z/ has intrinsic covariance metric

dX .s; t/ D
p
E.X.s/ �X.t//2; s; t 2 Z;

satisfying for some 0 <  < ˛ � d=2 the estimate

d2X .s; t/ D EX2.s/CEX2.t/� 2EX.s/X.t/ D 2.K˛.0/�K˛.s � t // � cjs � t j
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because e�ih � ;�iRd is  -Hölder with Hölder constant j�j and since .1C j�j2/�˛j�j

is integrable on Rd . This implies (using, e.g., [60, Proposition 4.3.34]) that the boun-
ded subset Z of Rd can be covered by at most N.�/ D .A=�/2d= balls of dX -radius
� > 0. Since

p
logN.�/ is d�-integrable at zero, [60, Theorem 2.3.7] implies that

there exists a version of X that is uniformly continuous on Z for the dX and then also
the j � j-metric. By [60, Proposition 2.1.5], the law ofX then defines a Gaussian Borel
probability measure �X on the separable Banach space Cu.Z/ of bounded uniformly
continuous functions on Z, and the process RKHS H˛;Z of .X.z/ W z 2 Z/ co-incides
with the RKHS H of �X by virtue of [58, Lemma 11.14].

To see that�X .kXkHˇ <1/D 1whenever 0 < ˇ < ˛ � d=2, use the Karhunen–
Loéve theorem [60, Theorem 2.6.10] to represent X D

P
i gihi almost surely in

C.Z/, where the .hi / form an orthonormal basis of the RKHS H˛.Z/, and the gi are
iid standard normalN.0;1/ variables. The identity imbedding mapH˛.Z/!Hˇ .Z/

is Hilbert-Schmidt for any ˇ < ˛ � d=2, in particular,
1X
iD1

khik
2
Hˇ <1;

see [2, Theorem 6.61]. By the theory of radonifying maps this implies Pr.X 2Hˇ /D

1, see [130, Theorem 3.20 and Proposition 13.5].

We note that the previous proof shows that the theorem remains valid for arbitrary
open bounded subsets Z (possibly with irregular boundary) of Rd as long as H is
taken to equal the space H˛;Z introduced in the proof.

One can obtain stronger (than Hˇ ) almost sure Hölder regularity properties of
the random function z 7! X.z/ by more refined arguments (e.g., [58, Proposition I.4]
or [3, p. 22f]). In these notes we confine ourselves to work with Sobolev regularity –
this combines nicely with regularity estimates for elliptic PDEs used elsewhere and
also permits a ‘soft’ proof of path regularity using only the Karhunen–Loève theorem
and Hilbert–Schmidt embeddings.

The preceding arguments show that for any ˛ > d=2, we can find a Gaussian prior
… D �X that has H˛.Z/ as RKHS. In some of the results in these notes we wish to
enforce a certain boundary behaviour of the prior …. We can achieve this by taking
a cutoff-function � 2 C1.Z/ of compact support in Z and consider a new Gaussian
process .X�.z/ D X.z/�.z/ W z 2 Z/. The RKHS of this new process then equals

H� D ¹g D �h W h 2 H˛.Z/º � H˛
c .Z/

with norm k��1 � kH˛ . We can also take a different approach by starting with a Gaus-
sian series expansion

X.z/ D

1X
jD1

gj�
�˛=2
j ej .z/; z 2 Z; (B.1)
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of the eigenfunctions of the Dirichlet Laplacian L1;0 from (A.9). Their laws define
Gaussian probability measures on C.Z/ and as in [60, Example 2.6.15] one shows
that their RKHS are the closed subspaces QH˛.Z/ � H˛

0 .Z/ of H˛.Z/ from (A.15).

B.2 A concentration inequality for empirical processes

Inequalities for suprema of empirical process were used at several places in these
notes. These results have a long history (see [60, Chapter 3]) and are particularly well
developed for uniformly bounded variables. In the random design setting here, the
processes are often not uniformly bounded due to the presence of the Gaussian noise
variables "i . This can be dealt with as in the proof of Lemma 4.1.7 under integrability
conditions only on the ‘square-root’ metric entropy in (4.4). However, if one is willing
to work with stronger hypothesis of integrability of the metric entropy (without the
square-root), a more basic concentration argument is sometimes equally useful. The
following lemma is based on a chaining argument for stochastic processes with a
mixed tail (cf. [120, Theorem 2.2.28] and also [44, Theorem 3.5]). For us it will be
sufficient to control the ‘generic chaining’ functionals employed in these references
by suitable metric entropy integrals. For any (semi-)metric d on a metric space T ,
we denote by N D N.T; d; �/ the minimal cardinality of a covering of T by balls
with centres .ti W i D 1; : : : ; N / � T such that for all t 2 T , there exists i such that
d.t; ti / < �. Below we require the index set‚ to be countable (to avoid measurability
issues). Whenever we apply Lemma B.2.1 in these notes with an uncountable set ‚,
one can show that the supremum can be realised as one over a countable subset of it.

Lemma B.2.1. Let ‚ be a countable set. Suppose a class of real-valued measurable
functions

H D ¹h� W X ! R; � 2 ‚º

defined on a probability space .X;A;PX / is uniformly bounded by U � sup� kh�k1
and has variance envelope �2 � sup� E

Xh2
�
.X/, where X � PX . Define metric

entropy integrals

J2.H / D

Z 4�

0

p
logN.H ; d2; �/ d� for d2.�; � 0/ WD

q
EX Œh� .X/ � h� 0.X/�2;

J1.H / D

Z 4U

0

logN.H ; d1; �/ d� for d1.�; � 0/ WD kh� � h� 0k1:

For X1; : : : ;XN drawn i.i.d. from PX and "i
i:i:d:
� N.0; 1/ independent of all the Xi ’s,

consider empirical processes arising either as

ZN .�/ D
1

p
N

NX
iD1

h� .Xi /"i ; � 2 ‚;
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or as

ZN .�/ D
1

p
N

NX
iD1

.h� .Xi / �Eh� .X//; � 2 ‚:

We then have for some universal constant L > 0 and all x � 1,

Pr
�

sup
�2‚

jZN .�/j � L
h
J2.H /C �

p
x C

J1.H /C Ux
p
N

i�
� 2e�x :

Proof. We only prove the case where ZN .�/ D
P
i h� .Xi /"i=

p
N ; the simpler case

without Gaussian multipliers is proved in the same way. We will apply [44, The-
orem 3.5], whose condition (3.8) we need to verify. First, we note that for j�j <

1=kh� � h� 0k1, and E" denoting the expectation with respect to ",

E exp
®
�".h� � h� 0/.X/

¯
� 1C

1X
kD2

j�jkE"j"jkEX jh� � h� 0 j
k.X/

kŠ

� 1C �2EX Œh� .X/ � h� 0.X/�
2

1X
kD2

E"j"jk

kŠ

�
j�jkh� � h� 0k1

�k�2
� exp

° �2d22 .�; �
0/

1 � j�jd1.�; � 0/

±
; (B.2)

where we have used the basic fact E"j"jk=kŠ � 1. By the i.i.d. hypothesis we then
also have

E exp
®
�.ZN .�/ �ZN .�

0//
¯
� exp

° �2d22 .�; �
0/

1 � j�jd1.�; � 0/=
p
N

±
:

An application of the exponential Chebyshev inequality (and optimisation in �, as in
the proof of [60, Proposition 3.1.8]) then implies that condition (3.8) in [44] holds for
the stochastic processZN .�/with metrics Nd2D 2d2 and Nd1D d1=

p
N: In particular,

the Nd2-diameter �2.H / of H is at most 4� and the Nd1-diameter �1.H / of H is
bounded by 4U=

p
N . (These bounds are chosen so that they remain valid for the

process without Gaussian multipliers as well.) Theorem 3.5 in [44] now gives, for
some universal constant M , and any �� 2 ‚ that

Pr
�

sup
�2‚

jZN .�/ �ZN .��/j �M
�
2.H /C 1.H /C �

p
x C

Ux
p
N

��
� e�x;

where the ‘generic chaining’ functionals 1; 2 are upper bounded by the respect-
ive metric entropy integrals of the metric spaces .H ; Ndi /, i D 1; 2, up to universal
constants (see [44, estimate (2.3)]). For 1 also notice that a simple substitution
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�0 D �
p
N implies thatZ 4U=

p
N

0

logN.H ; Nd1; �/ d� D
1

p
N

Z 4U

0

logN.H ; d1; �
0/ d�0;

and we hence deduce that

Pr
�

sup
�2‚

jZN .�/ �ZN .��/j � NL
h
J2.H /C �

p
x C

J1.H /C Ux
p
N

i�
� e�x (B.3)

for some universal constant NL.
Now what precedes also implies the classical Bernstein inequality

Pr
�
jZN .�/j � �

p
2x C

Ux

3
p
N

�
� 2e�x for x > 0; (B.4)

for any fixed � 2 ‚, U � kh�k1 and �2 � EXh2
�
.X/, proved as (3.24) in [60],

using (B.2). Applying this with �� and using (B.3), the final result follows now from

Pr
�

sup
�2‚

jZN .�/j > 2�.x/
�

� Pr
�

sup
�2‚

jZN .�/ �ZN .��/j > �.x/
�
C Pr.jZN .��/j > �.x// � 2e�x;

for any x � 1, where �.x/ D NLŒJ2.H /C �
p
x C .J1.H /C Ux/=

p
N� and L �

2 NL > 0 is large enough.

B.3 Mixing time bounds for Langevin diffusions

In this section we collect some results about convergence guarantees for an Unadjus-
ted Langevin Algorithm (ULA) from (1.16) for sampling from strongly log-concave
target probability measures. Early results of this kind are due to [113] but the recent
focus has been on non-asymptotic results in high-dimensional settings, see [39, 48,
49]. Some of the ideas underpinning the fast mixing of ‘hypercontractive’ Langevin
diffusions (1.15) in high-dimensions go back a long way further, we mention [6],
[72], the recent monograph [7], and further references below.

Suppose that � is a Borel probability measure on RD which has a Lebesgue
density proportional to e�U for some potential U WRD ! R, specifically

�.B/ D

R
B
e�U.�/d�R

RD e�U.�/d�
; B � RD measurable: (B.5)

Following [49] (cf. H1 and H2 there) we will assume that the potential U has a ƒ-
Lipschitz gradient and is m-strongly convex, in particular, � is then log-concave.
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Assumption B.3.1. (1) The function U WRD ! R is continuously differentiable and
there exists a constant ƒ � 0 such that for all �; N� 2 RD ,

krU.�/ � rU. N�/kRD � ƒk� � N�kRD :

(2) There exists a constant 0 < m � ƒ such that for all �; N� 2 RD , we have

U. N�/ � U.�/C hrU.�/; N� � �iRD C
m

2
k� � N�k2RD :

Under Assumption B.3.1, the potentialU has a unique minimiser over RD , which
we shall denote by �U .

Now if .Lt W t � 0/ is theD-dimensional Langevin Markov diffusion process from
(1.15) with potential U satisfying Assumption B.3.1, and if P �init

t is its distribution
at time t when started at �init 2 RD , then one can show a mixing time inequality,
with W2 from (5.12) and ED D RD ,

W2.P
�init
t ; �/ � e�mt

h
k�init � �U kRD C

r
D

m

i
; (B.6)

which exhibits only a weak dependence on dimension D. A direct proof of (B.6)
based on coupling ideas [33] can be found in [49, Proposition 1]. A functional analytic
interpretation is that log-concave measures � satisfy a .1=m/-log-Sobolev inequality
[7, Proposition 5.7.1] and the resulting dimension-free mixing bound for the entropic
distance [7, p. 244] carries over to the W2-distance by the quadratic transportation
cost inequality of Otto–Villani [7, Theorem 9.6.1].

Now recall the Euler–Maruyama discretisation (1.16) of the Markov diffusion
process (1.15) giving rise to the discrete-time Markov chain .#k W k � 0/. We denote
by P�init ; E�init the law and expectation operator, respectively, of the Markov chain
.#k W k � 1/ when started at a deterministic point #0 D �init. We also write L.#k/

for the (marginal) distribution of the k-th iterate #k . The following result now gives
a ‘discrete’ analogue of (B.6).

Proposition B.3.2. Suppose that U satisfies Assumption B.3.1. Then we have for �
as in (B.5) that

W 2
2 .L.#k/; �/ � 2

�
1 �

m

2

�kh
k�init � �U k

2
RD C

D

m

i
C
b./

2
for k � 0; (B.7)

where

b./ D 36
Dƒ2

m2
C 12

2Dƒ4

m3
; (B.8)

Proof. The bound (B.7) follows from an application of [49, Theorem 5] with fixed
step size  > 0, where in our case, noting again that � 2 Œm; 2m�, the expression
u
.1/
n ./ is upper bounded by 2.1 � m=2/k and the expression u.2/n ./ is upper



A characterisation of vanishing efficient information 147

bounded by (using that  � min¹2=ƒ; 1=mº � min¹2=ƒ; 2=�º)

ƒ2D2.��1 C /
�
2C

ƒ2

m
C
ƒ22

6

� kX
iD1

�
1 �

�

2

�k�i
� ƒ2D2

�
��1 C 

��
2C

ƒ2

m
C
ƒ22

6

� 2
�

� ƒ2D
�
��2 C



�

��
6C

2ƒ2

m

�
� ƒ2Dm�2

�
18C

6ƒ2

m

�
;

which equals (B.8).

For any measurable function H WRD ! R and any Jin, J � 0, let us define the
average of H along an ULA trajectory after ‘burn-in’ period Jin by

O�JJin
.H/ D

1

J

JinCJX
kDJinC1

H.#k/:

Proposition B.3.3. Suppose that U satisfies Assumption B.3.1 and suppose  �

2=.mCƒ/. Then for all J; Jin � 1, x > 0 and any Lipschitz function H WRD ! R,
we have the concentration inequality

P�init

�
O�JJin

.H/ � E�init Œ O�
J
Jin
.H/� � x

�
� exp

�
�

Jx2m2

16kHk2Lip.1C 2=.mJ//

�
:

Moreover,

.E�init Œ O�
J
Jin
.H/� �E�H/

2
� kHk

2
Lip

1

J

JinCJX
kDJinC1

W 2
2 .L.#k/; �/: (B.9)

Proof. The first statement follows from [49, Theorem 17], by � D 2mƒ=.mCƒ/ 2

Œm;2m� and the fact that the constant vN;n./ from (28) of [49] can be upper bounded
by

1C
m�1 C 2=.mCƒ/

J
� 1C

2

mJ
:

The display (B.9) is derived in (27) of [49].

B.4 A characterisation of vanishing efficient information

The following theorem is due to [125].

Theorem B.4.1. In the setting of Theorem 3.1.5, assume that  satisfies (3.20). Then
i�;H; D 0.
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Proof. We prove the result for the case when the information operator I�
�
I� is com-

pact on the Hilbert space NH D .H; h � ; � iL2
�
/, relevant in the setting of inverse prob-

lems in these notes. (The general result is proved in [125, Theorem 4.1].)
Let us write I � I� , L2 D L2

�
.X/ in this proof, and let ker.I �I / D ¹h 2 NH W

I �Ih D 0º. If I �I is a compact operator on NH , then by the spectral theorem for
self-adjoint operators, there exists an orthonormal system of NH of eigenvectors ¹ek W

k 2 Nº spanning NH 	 ker.I �I / corresponding to eigenvalues �k > 0 so that

I �Iek D �kek and I �Ih D

X
k

�khh; ekiL2
�
ek for h 2 NH:

We can then define the usual square-root operator .I �I /1=2 by

.I �I /1=2h D

X
k

�
1=2

k
hh; ekiL2

�
ek; h 2 NH:

If we denote by P0 the L2
�
-projection onto ker.I �I /, then the range of .I �I /1=2

equals

R..I �I /1=2/ D
°
g 2 NH W P0.g/ D 0;

X
k

��1k hek; gi
2

L2
�

<1

±
: (B.10)

Indeed, using standard Hilbert space arguments, (a) since P0.ek/ D 0 for all k, for
any h 2 NH the element g D .I �I /1=2h belongs to the right-hand side in the last
display, and conversely (b) if g satisfies P0.g/ D 0 and

P
k �

�1
k

hek; gi
2

L2
�

<1, then
h D

P
k �

�1=2

k
hek; giek belongs to NH and .I �I /1=2h D g.

Next, [125, Lemma A.3] implies that R.I �/ D R..I �I /1=2/. Now suppose  2

NH is such that  … R.I �/ and hence  … R..I �I /1=2/. Then from (B.10), either
P0. / ¤ 0 or

P
k �

�1
k

hek;  i
2

L2
�

D 1 (or both). In the first case, let Nh D P0. / so

kI NhkL2 D kI.P0. //kL2 D hI �I.P0. //; P0. /iL2
�
D 0

but h ; NhiL2
�
D kP0 k

2
L2

�
D ı for some ı > 0. Since H is dense in NH , for any �,

0 < � < min.ı=.2k kL2
�
/; ı2=4/, we can find h 2 H such that kh � NhkL2

�
< � and,

by continuity, also kI.h � Nh/kL2 < �. Thenp
i�;h; D

kIhkL2

jh ; hiL2
�
j
� 2

�

ı
�

p
�:

We conclude that i�;H; < � in (3.18), so that the result follows since � was arbitrary.
In the second case we have

P
k �

�1
k

hek;  i
2

L2
�

D 1 and define

 N D

X
k�N

��1k ekhek;  iL2
�
; N 2 N;
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which defines an element of NH . By density we can choose hN 2 H such that khN �

 N kL2
�
< 1=k kL2

�
as well as kI.hN � N /kL2 < 1, for everyN fixed. Next observe

that

h ; N iL2
�
D

X
k�N

��1k hek;  i
2

L2
�

�MN ;

kI. N /k
2
L2 D hI �I. N /;  N iL2

�
D

X
k�N

��1k hek;  i
2

L2
�

DMN ;

and that MN ! 1 as N ! 1. Then by our choice of hN 2 H and if MN � 2, we
have, by the triangle inequality,

jh ; hN iL2
�
j � jh ; N iL2

�
j � jh ; N � hN iL2

�
j �MN � 1 �

MN

2
;

kI.hN /kL2 � kI. N /kL2 C kI.hN �  N /kL2 �
p
MN C 1 � 2

p
MN :

From this we conclude that the inverse of (3.18) satisfies

i�1�;H; �

h ; hN i
2

L2
�

kIhN k
2
L2

�
1

16

M 2
N

MN

�
MN

16
:

As N was arbitrary and MN
N!1
����! 1 we must have i�;H; D 0, as desired.
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 Bayesian Non-linear Statistical Inverse Problems

Bayesian methods based on Gaussian process priors are frequently used in statistical in-
verse problems arising with partial differential equations (PDEs). They can be implemented 
by Markov chain Monte Carlo (MCMC) algorithms. The underlying statistical models are 
naturally high- or infinite-dimensional and the present book presents a rigorous mathemati-
cal analysis of the statistical performance, and algorithmic complexity, of such methods in a 
natural setting of non-linear random design regression. 

Due to the non-linearity present in many of these inverse problems, natural least squares 
functionals are non-convex and the Bayesian paradigm presents an attractive alternative to 
optimisation-based approaches. This book develops a general theory of Bayesian inference 
for non-linear forward maps and rigorously considers two PDE model examples arising with 
Darcy’s problem and a Schrödinger equation. The focus is initially on statistical consistency 
of Gaussian process methods, and then moves on to study local fluctuations and approxi-
mations of posterior distributions by Gaussian or log-concave measures whose curvature is 
described by PDE mapping properties of underlying `information operators’. Applications to 
the algorithmic runtime of gradient-based MCMC methods are discussed as well as compu-
tation time lower bounds for worst case performance of some algorithms.
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