SCHRAMM-LOEWNER EVOLUTIONS, LENT 2019, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk
Problem 1. Suppose that $U_{t}=\sqrt{\kappa} B_{t}$ where B is a standard Brownian motion and let $\left(g_{t}\right)$ solve

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z .
$$

- (Markov property) Suppose that τ is a stopping time for U which is almost surely finite and let $\widetilde{g}_{t}=g_{\tau+t}\left(g_{\tau}^{-1}\left(z+U_{\tau}\right)\right)-U_{\tau}$. Show that the maps $\left(\widetilde{g}_{t}\right)$ have the same distribution as the maps $\left(g_{t}\right)$.
- (Scale invariance) Fix $r>0$ and let $\widetilde{g}_{t}(z)=r g_{t / r^{2}}(z / r)$. Show that the maps $\left(\widetilde{g}_{t}\right)$ have the same distribution as the maps $\left(g_{t}\right)$.
Suppose that D is a simply connected domain, $x, y \in \partial D$ are distinct, and $\varphi: \mathbb{H} \rightarrow D$ is a conformal transformation with $\varphi(0)=x$ and $\varphi(\infty)=y$. Explain why the definition of SLE $_{\kappa}$ given by $\varphi(\gamma)$ where γ is an SLE $_{\kappa}$ in \mathbb{H} from 0 to ∞ is well-defined.

Problem 2.

- Suppose that B is a standard Brownian motion and $a<0$. Show that $\sup _{t \geq 0}\left(B_{t}+a t\right)<\infty$ almost surely.
- Suppose that $\left(g_{t}\right)$ is the family of conformal maps which solve the Loewner equation with driving function $U_{t}=\sqrt{\kappa} B_{t}$ and, for each $x \in \mathbb{R}$, let $V_{t}^{x}=g_{t}(x)-U_{t}$ and $\tau_{x}=\inf \{t \geq 0$: $\left.V_{t}^{x}=0\right\}$. For each $0<x<y$, let $g(x, y)=\mathbb{P}\left[\tau_{x}=\tau_{y}\right]$. Show that if $g(1,1+\epsilon / 2)>0$ for all $\epsilon \in\left(0, \epsilon_{0}\right)$ for some $\epsilon_{0}>0$ then $g(x, y)>0$ for all $0<x<y$.

Problem 3. Fix $T>0$ and let $D \subseteq \mathbb{H}$ be a simply connected domain. Suppose that $\left(A_{t}\right)_{t \in[0, T]}$ is a non-decreasing family of compact \mathbb{H}-hulls which are locally growing with $A_{0}=\emptyset, \operatorname{hcap}\left(A_{t}\right)=2 t$ for all $t \in[0, T]$, and $A_{T} \subseteq D$. Let $\psi: D \rightarrow \mathbb{H}$ be a conformal transformation which is bounded on bounded sets. Show that the family of compact \mathbb{H}-hulls $\widetilde{A}_{t}=\psi\left(A_{t}\right)$ for $t \in[0, T]$ is locally growing with $\widetilde{A}_{0}=\emptyset$ and with

$$
\operatorname{hcap}\left(\widetilde{A}_{t}\right)=\int_{0}^{t} 2\left(\psi_{s}^{\prime}\left(U_{s}\right)\right)^{2} d s \quad \text { where } \quad \psi_{t}=\widetilde{g}_{t} \circ \psi \circ g_{t}^{-1} \quad \text { for each } \quad t \in[0, T]
$$

and \widetilde{g}_{t} is the unique conformal transformation $\mathbb{H} \backslash \widetilde{A}_{t} \rightarrow \mathbb{H}$ with $\widetilde{g}_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$.
Problem 4. In the setting of the previous problem, show that

$$
\partial_{t} \psi_{t}\left(U_{t}\right)=\lim _{z \rightarrow U_{t}} \partial_{t} \psi_{t}(z)=-3 \psi_{t}^{\prime \prime}\left(U_{t}\right) .
$$

Problem 5. Suppose that $\left(A_{t}\right)$ is a non-decreasing family of \mathbb{H}-hulls which are locally growing and with $A_{0}=\emptyset$. For each $t \geq 0$, let $a(t)=\operatorname{hcap}\left(A_{t}\right)$ and assume that $a(t)$ is C^{1}. For each $t \geq 0$, let g_{t} be the unique conformal transformation which takes $\mathbb{H} \backslash A_{t}$ to \mathbb{H} with $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$. Show that the conformal maps $\left(g_{t}\right)$ satisfy the ODE:

$$
\partial_{t} g_{t}(z)=\frac{\partial_{t} a(t)}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

for some continuous, real-valued function U_{t}. (Hint: perform a time-change so that the hulls are parameterized by capacity, apply Loewner's theorem as proved in class, and then invert the time change.)

Problem 6. Suppose that B is a standard Brownian motion starting from $B_{0}=x>0$. For each $a \in \mathbb{R}$, let $\tau_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$.

- For $a<x<b$, explain why $\mathbb{P}\left[\tau_{a}<\tau_{b}\right]=(b-x) /(b-a)$.
- Using the Girsanov theorem, explain why the law of B weighted by $B_{\tau_{0} \wedge \tau_{b}}$ is equal to that of a BES^{3} process stopped upon hitting b. That is, if \mathbb{P} denotes the law of B and we define the law $\widetilde{\mathbb{P}}$ using the Radon-Nikodym derivative

$$
\frac{d \widetilde{\mathbb{P}}}{d \mathbb{P}}=\frac{B_{\tau_{0} \wedge \tau_{b}}}{\mathbb{E}\left[B_{\tau_{0} \wedge \tau_{b}}\right]}
$$

then the law of B under $\widetilde{\mathbb{P}}$ is that of a BES^{3} process stopped upon hitting b.

- Explain why a standard Brownian motion conditioned to be non-negative is a BES^{3} process.
- More generally, explain why a BES^{d} process with $d<2$ conditioned to be non-negative is a BES^{4-d} process.

Problem 7. Suppose that $\left(g_{t}\right)$ is the family of conformal maps associated with an SLE $_{\kappa}$ with driving function U_{t}, i.e., $U_{t}=\sqrt{\kappa} B_{t}$ where B is a standard Brownian motion. Fix $z \in \mathbb{H}$ and let $z_{t}=x_{t}+i y_{t}=g_{t}(z)$. Assume that $\rho \in \mathbb{R}$ is fixed. Use Itô's formula to show that

$$
M_{t}=\left|g_{t}^{\prime}(z)\right|^{(8-2 \kappa+\rho) \rho /(8 \kappa)} y_{t}^{\rho^{2} / 8 \kappa}\left|U_{t}-z_{t}\right|^{\rho / \kappa}
$$

is a continuous local martingale. (Hint: let

$$
Z_{t}=\frac{(8-2 \kappa+\rho) \rho}{8 \kappa} \log g_{t}^{\prime}(z)+\frac{\rho^{2}}{8 \kappa} \log y_{t}+\frac{\rho}{\kappa} \log \left(U_{t}-z_{t}\right),
$$

compute $d Z_{t}$ using Itô's formula, take its real part, and exponentiate.)
Problem 8. Assume that we have the setup of Problem 7. Let $\Upsilon_{t}=y_{t} /\left|g_{t}^{\prime}(z)\right|$.

- Explain why Υ_{t} is proportional to $\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbb{H})$. More precisely, explain why

$$
\frac{1}{4} \leq \frac{\Upsilon_{t}}{\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbb{H})} \leq 4 .
$$

- Let $S_{t}=\sin \left(\arg \left(z_{t}-U_{t}\right)\right)$. Explain why

$$
M_{t}=\left|g_{t}^{\prime}(z)\right|^{(8-\kappa+\rho) \rho /(4 \kappa)} \Upsilon_{t}^{\rho(\rho+8) /(8 \kappa)} S_{t}^{-\rho / \kappa}
$$

- By considering the above martingale with the special choice $\rho=\kappa-8$, show that if $\kappa>8$ then the $\operatorname{SLE}_{\kappa}$ curve γ almost surely hits z. Conclude that γ fills all of \mathbb{H}. (Hint: recall that we showed in class that γ fills $\partial \mathbb{H}$. Deduce from this and the conformal Markov property that γ cannot separate z from ∞ without hitting it. Consider the behavior of S_{t} when γ is hitting a point on $\partial \mathbb{H}$ with either very large positive or negative values.)

Problem 9. In the context of Problem 4, show that

$$
\partial_{t} \psi_{t}^{\prime}\left(U_{t}\right)=\lim _{z \rightarrow U_{t}} \partial_{t} \psi_{t}^{\prime}(z)=\frac{\psi_{t}^{\prime \prime}\left(U_{t}\right)^{2}}{2 \psi_{t}^{\prime}\left(U_{t}\right)}-\frac{4}{3} \psi_{t}^{\prime \prime \prime}\left(U_{t}\right) .
$$

Problem 10. Prove that the Dirichlet inner product is conformally invariant. That is, show that if $f, g \in C_{0}^{\infty}(D)$ and $\varphi: D \rightarrow \widetilde{D}$ is a conformal transformation, then

$$
(f, g)_{\nabla}=\left(f \circ \varphi^{-1}, g \circ \varphi^{-1}\right)_{\nabla} .
$$

(Hint: use the change of variables formula and the Cauchy-Riemann equations.)
Problem 11. Suppose that $f \in H_{0}^{1}(D)$ with $\Delta f=0$ in U in the distributional sense: if $g \in C_{0}^{\infty}(U)$, then $(f, \Delta g)=0$ where (\cdot, \cdot) denotes the L^{2} inner product. Show that $\left.f\right|_{U}$ is C^{∞} in U and $\Delta f=0$ in U in (the usual sense) using the following steps.

- Let ϕ be a radially symmetric C_{0}^{∞} bump function supported in \mathbb{D}. In other words, $\phi(x) \geq 0$ for all $x, \phi(x)$ depends only on $|x|, \phi(x)=0$ for $|x| \geq 1$, and $\int \phi=1$. For each $\epsilon>0$, let

$$
f_{\epsilon}(x)=\epsilon^{-2} \int f(y) \phi\left(\frac{x-y}{\epsilon}\right) d y .
$$

Explain why f_{ϵ} is C^{∞} in $U_{\epsilon}=\{z \in U: \operatorname{dist}(z, \partial U)>\epsilon\}$.

- Fix $\delta>0$ and let $x \in U_{\delta}$. Explain why $f_{\epsilon}(x)$ does not depend on the value of ϵ for $\epsilon \in(0, \delta)$. (Hint: compute the derivative of $f_{\epsilon}(x)$ respect to ϵ, recall the form of Δ when expressed in polar coordinates, and consider the radially symmetric function $\psi(r)=\int r \phi(r) d r$.)
- Conclude that if $g \in C_{0}^{\infty}(U)$, then the value of $\left(f_{\epsilon}, g\right)$ does not depend on ϵ for sufficiently small values of ϵ.
- Explain why the previous parts imply that f is C^{∞} in U and $\Delta f=0$ in U (in the usual sense).

Bonus Problem. Fill in the missing details to the proof of Theorem 11.3 from the lecture notes by proving the following.

- Suppose that γ is an $\operatorname{SLE}_{8 / 3}$ in \mathbb{H} from 0 to ∞. Suppose that for every $A \in \mathcal{Q}_{ \pm}$with the property that there exists a smooth, simple curve $\beta:(0,1) \rightarrow \mathbb{H}$ such that $\mathbb{H} \cap \partial A=\beta((0,1))$ we have that

$$
\begin{equation*}
\mathbb{P}[\gamma([0, \infty]) \cap A=\emptyset]=\left(\psi_{A}^{\prime}(0)\right)^{5 / 8} \tag{0.1}
\end{equation*}
$$

Show that (0.1) holds for all $A \in \mathcal{Q}_{ \pm}$.

- Using the conformal invariance of Brownian motion, carefully justify (11.6) in the lecture notes.
- Carefully justify the last sentence in the proof of Theorem 11.3.

