SCHRAMM-LOEWNER EVOLUTIONS, LENT 2019, EXAMPLE SHEET 2

Please send corrections to jpmiller@statslab.cam.ac.uk

Problem 1. Suppose that $U_t = \sqrt{\kappa}B_t$ where B is a standard Brownian motion and let (g_t) solve

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

- (Markov property) Suppose that τ is a stopping time for U which is almost surely finite and let $\widetilde{g}_t = g_{\tau+t}(g_{\tau}^{-1}(z+U_{\tau})) U_{\tau}$. Show that the maps (\widetilde{g}_t) have the same distribution as the maps (g_t) .
- (Scale invariance) Fix r > 0 and let $\widetilde{g}_t(z) = rg_{t/r^2}(z/r)$. Show that the maps (\widetilde{g}_t) have the same distribution as the maps (g_t) .

Suppose that D is a simply connected domain, $x, y \in \partial D$ are distinct, and $\varphi \colon \mathbb{H} \to D$ is a conformal transformation with $\varphi(0) = x$ and $\varphi(\infty) = y$. Explain why the definition of SLE_{κ} given by $\varphi(\gamma)$ where γ is an SLE_{κ} in \mathbb{H} from 0 to ∞ is well-defined.

Problem 2.

- Suppose that B is a standard Brownian motion and a < 0. Show that $\sup_{t \ge 0} (B_t + at) < \infty$ almost surely.
- Suppose that (g_t) is the family of conformal maps which solve the Loewner equation with driving function $U_t = \sqrt{\kappa} B_t$ and, for each $x \in \mathbb{R}$, let $V_t^x = g_t(x) U_t$ and $\tau_x = \inf\{t \geq 0 : V_t^x = 0\}$. For each 0 < x < y, let $g(x, y) = \mathbb{P}[\tau_x = \tau_y]$. Show that if $g(1, 1 + \epsilon/2) > 0$ for all $\epsilon \in (0, \epsilon_0)$ for some $\epsilon_0 > 0$ then g(x, y) > 0 for all 0 < x < y.

Problem 3. Fix T > 0 and let $D \subseteq \mathbb{H}$ be a simply connected domain. Suppose that $(A_t)_{t \in [0,T]}$ is a non-decreasing family of compact \mathbb{H} -hulls which are locally growing with $A_0 = \emptyset$, hcap $(A_t) = 2t$ for all $t \in [0,T]$, and $A_T \subseteq D$. Let $\psi \colon D \to \mathbb{H}$ be a conformal transformation which is bounded on bounded sets. Show that the family of compact \mathbb{H} -hulls $\widetilde{A}_t = \psi(A_t)$ for $t \in [0,T]$ is locally growing with $\widetilde{A}_0 = \emptyset$ and with

$$\operatorname{hcap}(\widetilde{A}_t) = \int_0^t 2(\psi_s'(U_s))^2 ds \quad \text{where} \quad \psi_t = \widetilde{g}_t \circ \psi \circ g_t^{-1} \quad \text{for each} \quad t \in [0, T]$$

and \widetilde{g}_t is the unique conformal transformation $\mathbb{H} \setminus \widetilde{A}_t \to \mathbb{H}$ with $\widetilde{g}_t(z) - z \to 0$ as $z \to \infty$.

Problem 4. In the setting of the previous problem, show that

$$\partial_t \psi_t(U_t) = \lim_{z \to U_t} \partial_t \psi_t(z) = -3\psi_t''(U_t).$$

Problem 5. Suppose that (A_t) is a non-decreasing family of \mathbb{H} -hulls which are locally growing and with $A_0 = \emptyset$. For each $t \geq 0$, let $a(t) = \text{hcap}(A_t)$ and assume that a(t) is C^1 . For each $t \geq 0$, let g_t be the unique conformal transformation which takes $\mathbb{H} \setminus A_t$ to \mathbb{H} with $g_t(z) - z \to 0$ as $z \to \infty$. Show that the conformal maps (g_t) satisfy the ODE:

$$\partial_t g_t(z) = \frac{\partial_t a(t)}{g_t(z) - U_t}, \quad g_0(z) = z$$

for some continuous, real-valued function U_t . (Hint: perform a time-change so that the hulls are parameterized by capacity, apply Loewner's theorem as proved in class, and then invert the time change.)

Problem 6. Suppose that B is a standard Brownian motion starting from $B_0 = x > 0$. For each $a \in \mathbb{R}$, let $\tau_a = \inf\{t \ge 0 : B_t = a\}$.

- For a < x < b, explain why $\mathbb{P}[\tau_a < \tau_b] = (b x)/(b a)$.
- Using the Girsanov theorem, explain why the law of B weighted by $B_{\tau_0 \wedge \tau_b}$ is equal to that of a BES³ process stopped upon hitting b. That is, if \mathbb{P} denotes the law of B and we define the law $\widetilde{\mathbb{P}}$ using the Radon-Nikodym derivative

$$\frac{d\widetilde{\mathbb{P}}}{d\mathbb{P}} = \frac{B_{\tau_0 \wedge \tau_b}}{\mathbb{E}[B_{\tau_0 \wedge \tau_b}]}$$

then the law of B under $\widetilde{\mathbb{P}}$ is that of a BES³ process stopped upon hitting b.

- Explain why a standard Brownian motion conditioned to be non-negative is a BES³ process.
- More generally, explain why a BES^d process with d < 2 conditioned to be non-negative is a BES^{4-d} process.

Problem 7. Suppose that (g_t) is the family of conformal maps associated with an SLE_{κ} with driving function U_t , i.e., $U_t = \sqrt{\kappa} B_t$ where B is a standard Brownian motion. Fix $z \in \mathbb{H}$ and let $z_t = x_t + iy_t = g_t(z)$. Assume that $\rho \in \mathbb{R}$ is fixed. Use Itô's formula to show that

$$M_t = |g_t'(z)|^{(8-2\kappa+\rho)\rho/(8\kappa)} y_t^{\rho^2/8\kappa} |U_t - z_t|^{\rho/\kappa}$$

is a continuous local martingale. (Hint: let

$$Z_t = \frac{(8 - 2\kappa + \rho)\rho}{8\kappa} \log g_t'(z) + \frac{\rho^2}{8\kappa} \log y_t + \frac{\rho}{\kappa} \log(U_t - z_t),$$

compute dZ_t using Itô's formula, take its real part, and exponentiate.)

Problem 8. Assume that we have the setup of Problem 7. Let $\Upsilon_t = y_t/|g_t'(z)|$.

• Explain why Υ_t is proportional to $\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbb{H})$. More precisely, explain why

$$\frac{1}{4} \le \frac{\Upsilon_t}{\operatorname{dist}(z, \gamma([0, t]) \cup \partial \mathbb{H})} \le 4.$$

• Let $S_t = \sin(\arg(z_t - U_t))$. Explain why

$$M_t = |g_t'(z)|^{(8-\kappa+\rho)\rho/(4\kappa)} \Upsilon_t^{\rho(\rho+8)/(8\kappa)} S_t^{-\rho/\kappa}.$$

• By considering the above martingale with the special choice $\rho = \kappa - 8$, show that if $\kappa > 8$ then the SLE_{κ} curve γ almost surely hits z. Conclude that γ fills all of \mathbb{H} . (Hint: recall that we showed in class that γ fills $\partial \mathbb{H}$. Deduce from this and the conformal Markov property that γ cannot separate z from ∞ without hitting it. Consider the behavior of S_t when γ is hitting a point on $\partial \mathbb{H}$ with either very large positive or negative values.)

Problem 9. In the context of Problem 4, show that

$$\partial_t \psi_t'(U_t) = \lim_{z \to U_t} \partial_t \psi_t'(z) = \frac{\psi_t''(U_t)^2}{2\psi_t'(U_t)} - \frac{4}{3}\psi_t'''(U_t).$$

Problem 10. Prove that the Dirichlet inner product is conformally invariant. That is, show that if $f, g \in C_0^{\infty}(D)$ and $\varphi \colon D \to \widetilde{D}$ is a conformal transformation, then

$$(f,g)_{\nabla} = (f \circ \varphi^{-1}, g \circ \varphi^{-1})_{\nabla}.$$

(Hint: use the change of variables formula and the Cauchy-Riemann equations.)

Problem 11. Suppose that $f \in H_0^1(D)$ with $\Delta f = 0$ in U in the distributional sense: if $g \in C_0^{\infty}(U)$, then $(f, \Delta g) = 0$ where (\cdot, \cdot) denotes the L^2 inner product. Show that $f|_U$ is C^{∞} in U and $\Delta f = 0$ in U in (the usual sense) using the following steps.

• Let ϕ be a radially symmetric C_0^{∞} bump function supported in \mathbb{D} . In other words, $\phi(x) \geq 0$ for all x, $\phi(x)$ depends only on |x|, $\phi(x) = 0$ for $|x| \geq 1$, and $\int \phi = 1$. For each $\epsilon > 0$, let

$$f_{\epsilon}(x) = \epsilon^{-2} \int f(y) \phi\left(\frac{x-y}{\epsilon}\right) dy.$$

Explain why f_{ϵ} is C^{∞} in $U_{\epsilon} = \{z \in U : \operatorname{dist}(z, \partial U) > \epsilon\}.$

- Fix $\delta > 0$ and let $x \in U_{\delta}$. Explain why $f_{\epsilon}(x)$ does not depend on the value of ϵ for $\epsilon \in (0, \delta)$. (Hint: compute the derivative of $f_{\epsilon}(x)$ respect to ϵ , recall the form of Δ when expressed in polar coordinates, and consider the radially symmetric function $\psi(r) = \int r \phi(r) dr$.)
- Conclude that if $g \in C_0^{\infty}(U)$, then the value of (f_{ϵ}, g) does not depend on ϵ for sufficiently small values of ϵ .
- Explain why the previous parts imply that f is C^{∞} in U and $\Delta f = 0$ in U (in the usual sense).

Bonus Problem. Fill in the missing details to the proof of Theorem 11.3 from the lecture notes by proving the following.

• Suppose that γ is an $SLE_{8/3}$ in \mathbb{H} from 0 to ∞ . Suppose that for every $A \in \mathcal{Q}_{\pm}$ with the property that there exists a smooth, simple curve $\beta \colon (0,1) \to \mathbb{H}$ such that $\mathbb{H} \cap \partial A = \beta((0,1))$ we have that

(0.1)
$$\mathbb{P}[\gamma([0,\infty]) \cap A = \emptyset] = (\psi_A'(0))^{5/8}.$$

Show that (0.1) holds for all $A \in \mathcal{Q}_{\pm}$.

- Using the conformal invariance of Brownian motion, carefully justify (11.6) in the lecture notes.
- Carefully justify the last sentence in the proof of Theorem 11.3.